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Abstract. This article proposes a calibration scheme for Bayesian testing
that coordinates analytically-derived statistical performance considerations
with expert opinion. In other words, the scheme is effective and meaning-
ful for incorporating objective elements into subjective Bayesian inference.
It explores a novel role for default priors as anchors for calibration rather
than substitutes for prior knowledge. Ideas are developed for use with mul-
tiplicity adjustments in multiple-model contexts, and to address the issue of
prior sensitivity of Bayes factors. Along the way, the performance proper-
ties of an existing multiplicity adjustment related to the Poisson distribution
are clarified theoretically. Connections of the overall calibration scheme to
the Schwarz criterion are also explored. The proposed framework is exam-
ined and illustrated on a number of existing data sets related to problems in
clinical trials, forensic pattern matching, and log-linear models methodology.

1 Introduction

This article examines the uses and impact of calibrating prior model probabili-
ties in Bayesian testing (a.k.a. model choice) problems. The context emphasizes
the value of expert opinion in statistical analysis, while at the same time stresses
the importance of analytically-derived statistical properties. In conventional terms,
what is proposed is a framework for fully coherent, subjective Bayesian testing that
is equipped with interpretational guidance for incorporating objective elements
into inference.

The examination makes central use of “default priors,” a concept that Bayarri
et al. (2012), succinctly characterizes as priors that “are not subjective priors, and
are chosen conventionally based on the models being considered.” They are tradi-
tionally aligned with the goals of objective Bayes inference, but this article breaks
from that traditional context and motivation by proposing a use for default priors in
the calibration of modeling and evidence assessment, rather than as a convenient
substitute for prior information.

Inspiration for this inquiry is from two primary directions, multiplicity adjust-
ments and prior sensitivity of Bayes factors, although the framework’s potential
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impact is much broader. These two methodological contexts are currently and ac-
tively discussed in the literature, and while they are explored in this article primar-
ily for demonstrating how the proposed calibration framework may be applied and
interpreted, the resulting discussion also offers novel insights that advance each
context’s development.

Multiplicity adjustments are treated within the special case of variable selection:
Suppose there are p independent variables, each to be categorized as a “selected”
or “omitted.” It is shown in Section 3, below, that a setting on ratios of prior model
odds that induces asymptotic consistency under very weak assumptions is

P [Ms]/P [Mt ] ∝ # omitted variables in Ms, (1)

whenever the model Ms has exactly one more omitted variable than Mt . Such a
prior is most closely related to the truncated Poisson priors studied in Womack et
al. (2015), which is shown there to yield asymptotic consistency. It is a substantial
modification of the beta-binomial prior, a more conventional discrete prior used in
variable selection. For the latter, see, for example, Scott and Berger (2010), Wil-
son et al. (2010), and Castillo et al. (2015). The present examination contributes
slightly to this line of inquiry by recharacterizing the assumptions for asymptotic
consistency in terms of “ultra-high” dimensionality and rates of diminishing signal
strength.

Inquiry into variable selection connects to the article’s main objectives as fol-
lows. The proposed framework offers intellectual machinery for interpreting (1)
as a calibration of the equal-weight setting, for which the prior odds between any
two models is one. It is in this way that our ideas depart from the usual mode
of reporting the results of an analysis that involves a default prior: they reflect
a preference for assessing evidence relative to expert opinion–prior odds of one,
say–rather than to (1), the detached prescription of a default. In other words, our
ideas aim to retain the voice of the expert in assessing evidence, even when an-
alytical considerations suggest incorporating into a statistical procedure elements
such as asymptotic consistency that push against that voice.

As for prior sensitivity of Bayes factors, this article offers a novel interpreta-
tion of a technique for avoiding oversensitivity by jointly specifying the discrete
and continuous portions of the prior. The technique is introduced in Robert (1993),
and further developed in Spitzner (2011) and Dellaportas et al. (2012). It is notable
for offering a resolution to a certain “paradox” of inference that is commonly at-
tributed to Lindley (1957), Bartlett (1957), and Jeffreys (1961). In this article, this
joint-specification technique is presented as a calibration of prior probabilities.

The prior sensitivity issue is also valuable for motivating key insights of the
proposed framework. Consider a very simple version of the Gaussian means
problem, in which the target of inference is the mean, θ , of a random sample,
Y = (Y1, . . . , Yn). Assume a Gaussian model for data-generation, Yi |θ ∼ G(θ,1),
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and suppose the the “null” model M0 constrains the mean to θ = 0, while the
“alternative” model M1 has θ ∼ G(0, τ 2). The Bayes factor for M0 vs M1 is

BF01(Y ) = (
1 + τ 2n

)1/2 exp
{
−1

2
wnZ

2
}
, (2)

where Z = n1/2Ȳ , where Ȳ = n−1 ∑n
i=1 Yi , and wn = τ 2n/(1+τ 2n). This follows

from the general formula BF01(Y ) = π0(Y )/π1(Y ), having written πs(Y ) for the
marginal density of Y under model Ms . Recall that the Bayes factor is conven-
tionally interpreted to quantify “weight of evidence,” by which larger values of
BF01(Y ) indicate stronger evidence for M0, and smaller values indicate stronger
evidence for M1. (See, Kass and Raftery, 1995, for additional discussion of Bayes
factors.)

A troublesome property of (2) is its unboundedness across the range of possible
values of the prior scale parameter, τ , for BF01(Y ) increases without bound as τ

grows large. The implication is that as the expert may consider larger values of τ ,
beyond some hazy threshold the data’s influence on weight of evidence becomes
drastically overshadowed by the that of the prior. Upon being confronted with this
property, Jeffreys (1961, p. 251), expressed reassurance by writing that “. . . the
mere fact that it has been suggested that [the parameter] is zero corresponds to
some presumption that it is fairly small.” In other words, he suggests that unbound-
edness does not matter because the expert would naturally restrict themselves to a
range of values for τ within which the Bayes factor behaves sensibly.

This article takes a different viewpoint, which is not of reassurance, but of con-
cern that unboundedness discourages the participation of experts into inquiry: one
imagines an unfortunate scene in which the expert, perhaps recruited into a study
on promises of coherency in Bayesian inquiry, and accustomed to Bayesian estima-
tion wherein statistical summaries converge to meaningful limit points as τ → ∞,
becomes bewildered and discouraged at the inflexibility of what supposedly counts
as meaningful prior knowledge in Bayesian testing. The framework developed in
this article is an effort to avoid this scene; it contributes to a broad goal for the
development of data-analysis methodology of encouraging our experts to engage
in inquiry and contribute their voice with full freedom of expression.

The article’s ambitions are achieved in the following way. Default priors are
removed to a peripheral role in testing, such that their only purpose is to identify
an “anchor point” in the data space. The expert’s prior is then calibrated against
that point, combined with the observed data in the usual way, and converted into a
calibrated Bayes factor. Some initial efforts in this direction are made in Spitzner
(2011), whose ideas are built upon here and augmented with practical ideas for
implementation. Theoretical evaluation and numerical demonstration of the result-
ing procedures explore its effectiveness at clarifying and interpreting evidence in
multiple testing contexts, the generality of the approach in Gaussian and regular
non-Gaussian models, the ease at which it allows formulations that depend on nui-
sance parameters, and its connections and non-connections to Schwarz’s (1978)
model-choice criterion.
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The article’s main ideas are developed in Section 2 in the context of null-vs-
alternative model-comparison, M0 vs M1, in which each model is formulated from
Gaussian distributions. Section 3 explores the formulation for multiple testing.
Section 4 extends the formulation to regular non-Gaussian contexts. Demonstra-
tions on existing data are presented in Section 5, and conclusions are made in
Section 6. Proofs of the article’s major mathematical assertions are placed in the
appendix.

2 Main elements of the proposed framework

The main concepts and techniques of the proposed calibration framework are ini-
tially described in the context of a comparison between null and alternative models,
M0 vs M1. In this setup, there is a parameter under test, θ , or “target” parameter,
which is among the parameters of M1 but not among those of M0, where it has
been constrained to a null value. Possibly, there is also a “nuisance” parameter φ,
which is common to both models. Any nuisance parameter is treated as a quantity
to be conditioned upon during analysis formulation, and integrated across when
calculating analysis results. Accordingly, a prominent concept in the calibration
framework is a conditional version of the Bayes factor,

BF01(Y |φ) = P [M0|Y ,φ]/P [M1|Y ,φ]
ρ01(φ)

= π0(Y |φ)

π1(Y |φ)
, (3)

in which ρ01(φ) = P [M0|φ]/P [M1|φ] is conditional prior odds, and πs(Y |φ) is
a marginal density for the data under model Ms , conditional on φ. Techniques for
integrating (3) across models are illustrated in the application examples of Sec-
tion 5.

2.1 Calibration to a default anchor in the data space

The proposed calibration framework is most readily formulated under the assump-
tion that π1(θ |φ), the conditional prior for θ given φ, is embedded within a para-
metric family indexed by the prior parameter τ , whose value is specified from
expert knowledge. Though many of the concepts proposed in this article are mean-
ingful generally, the present framework is developed only for the case in which
τ is a scale parameter. Such narrowing of focus is motivated by insights into this
case put forward in Robert (1993), which call for the prior odds of M0 to M1 to
reflect a contrast between the models in terms of high-probability regions of the
target parameter: whereas the constraint placed on θ under M0 fixes those regions,
any high-probability region associated with π1(θ |φ) covers a wider range of val-
ues of θ as the scale parameter increases. When this type of contrast is absent,
calibration may be unnecessary, such as in conventional one-sided testing, or in
scenarios where θ is on a weak measurement scale. See also the discussion of the
“device of imaginary results” in Section 2.3, below, which offers a concept that is
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generally applicable to determine whether calibration is called for, and how it may
be achieved.

The initial conceptual step toward calibration is for the analyst to choose a de-
fault prior concept and use it to identify a particular value, τ = τ̃ , to serve as the
parameter’s default setting. There is typically a variety of options to choose from,
and we presume the analyst will choose their favorite. For example, in the Gaussian
means problem that gives rise to (2), the “unit-information” default prior concept
(see, Kass and Wasserman, 1995) would lead that analyst to select the value τ̃ = 1;
the “intrinsic” default prior concept (see, Berger and Pericchi, 1996) would lead
that analyst to select the value τ̃ = √

2. Should the Gaussian prior, θ ∼ G(0, τ 2),
be replaced with a Cauchy prior, θ ∼ Cauchy(0, τ ), then Jeffreys (1961) recom-
mended default setting of τ̃ = 1 would apply. It is not among this article’s objec-
tives to argue which default setting is “best.” Instead, we assume the analyst has de-
veloped their own intuition as to a default prior concept that makes the most sense
to them. As a starting point to the literature on default prior concepts, which is quite
large, see for example, Jeffreys (1961), Zellner (1986), O’Hagan (1995), Kass and
Wasserman (1995), Berger and Pericchi (1996), Ibrahim and Chen (2000), Pérez
and Berger (2002), Berger and Pericchi (2004), Liang et al. (2008), Casella et al.
(2009), Bayarri et al. (2012), Moreno and Pericchi (2014), Fouskakis et al. (2018),
and references therein.

Once a default value τ̃ is identified, the next step is to use that value to locate
an “anchor point” in the data space, against which prior probabilities and evidence
are to be calibrated. This is defined as a point, Y = Ỹ , such that

BF01(Ỹ |φ) = 1 at τ = τ̃ . (4)

Note that φ is omitted in the notation for τ̃ and Ỹ , despite that both quantities are
defined conditionally on that parameter. Non-uniqueness of Ỹ is expected, but an
easy remedy, described below in Sections 2.2 and 4.1, is available to accommodate
this issue. Once a suitable Ỹ is found, the default value, τ̃ , may be discarded.

The anchor point, Ỹ , is then used to formulate a calibrated Bayes factor. This is
defined as

NDC01(Y |φ) = P [M0|Y ,φ]/P [M1|Y ,φ]
ρ̃01(φ)

= BF01(Y |φ)

BF01(Ỹ |φ)
, (5)

where ρ̃01(φ) = P [M0|Ỹ ,φ]/P [M1|Ỹ ,φ], and all quantities other than Ỹ are cal-
culated at the expert’s setting for τ . The label at the left in (5) is shorthand for
“neutral-data comparison,” a concept developed in Spitzner (2011) that interprets
Ỹ as “neutral” (imaginary) data. This interpretation is also suggested in criterion
(4), for when the Bayes factor is one no evidence is exhibited more in support of
one model than the other.

Observe from the middle expressions of (5) and (3) that a calibrated Bayes
factor is a revision of the usual Bayes factor from a comparison of posterior to prior
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odds to a comparison of posterior odds on observed to neutral data. The rightmost
expression in (5) is explicit in stating how the Bayes factor is calibrated relative
to the anchor point. Section 2.3, below, offers a brief summary of the “neutral
data” concepts developed in Spitzner (2011) that justify substituting (5) for (3) in
evidence assessment.

The calibrated Bayes factor gives rise to a calibration of prior model probabili-
ties in the following way. Combine the middle expressions of (5) and (3) to observe
the relationships

P [M0|Y ,φ]/P [M1|Y ,φ] = ρ01(φ)BF01(Y |φ) = ρ̃01(φ)NDC01(Y |φ). (6)

Subsequently, the rightmost expressions in (5) and (6) combine to imply

ρ01(φ) = ρ̃01(φ)/BF01(Ỹ |φ), (7)

which articulates the desired calibration.
The following is a summary of the steps of the approach just described. The

assumption that π1(θ |φ) is embedded in a scale family alludes to a set of pre-
calibration steps: STEP A, identify target and nuisance parameters; STEP B, iden-
tify the scale parameter; and, STEP C, if not obvious, derive a suitable mathemat-
ical framework for working with the model conditionally. These steps are aspects
of model elicitation, and might be carried out in any analysis to gain insight into
the inferential or computational framework. Subsequent to these steps in the pro-
posed scheme are the following calibration steps: STEP D, choose a default prior
concept and set τ to a default value, τ̃ ; STEP E, find an “anchor point” Ỹ by solv-
ing equation (4); STEP F, discard τ̃ and use Ỹ to calculate the quantity BF01(Ỹ |φ),
the divisor in formula (5) for calibrating the Bayes factor, and in formula (7) for
calibrating prior odds. These steps are referred to in later examples and discussion.

2.2 Example: The Gaussian means problem

The following examination of a multivariate version of the Gaussian means prob-
lem illustrates the concepts laid out above, and offers an approach to handling
the non-uniqueness problem when the anchor point, Ỹ , is determined by the crite-
rion (4).

Suppose a sample of n independent ν-dimensional measurements, Y = (Y 1, . . . ,

Y n), is observed. The data are generated from Gaussian distributions, Y i |� ∼
G(θ,�), such that the mean parameter is restricted to θ = 0 under model M0,
but left unrestricted under M1. The covariance matrix is treated as a nuisance
parameter, φ = �. Suppose further that the prior distribution under M1 is such
that θ |� ∼ G(0, τ 2�1/2��1/2), where � is a symmetric, positive-definite matrix,
which has been standardized so that its largest eigenvalue is one. It follows that the
conditional Bayes factor for the model-comparison M0 vs. M1 is

BF01(Y |�) = (
τ 2n

)ν/2|�|1/2|W |−1/2 exp
{
−1

2
ZT WZ

}
, (8)
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having written Z = n1/2�−1/2Ȳ , where Ȳ = n−1 ∑n
i=1 Y i , and W = {I +

�−1/(τ 2n)}−1. This completes the pre-calibration STEPS A, B, and C of Sec-
tion 2.1.

Now suppose a default value τ̃ is identified from the analyst’s favorite default
prior concept, and the equation of criterion (4) is solved. The solutions are suc-
cinctly written in terms of the neutral-data analogue Z̃ to Z in (8), which substi-

tutes Ỹ for Y in defining that quantity. Each solution has Z̃ = √
c̃W̃

−1/2
u, where

W̃ = {I + �−1/(τ̃ 2n)}−1, c̃ = log{(τ̃ 2n)ν |�||W̃ |−1}, and u is any unit-length ν-
dimensional vector, ‖u‖ = 1. It follows that

BF01(Ỹ |�) = {(
τ 2n

)ν |�||W |−1}1/2

/
{(

τ̃ 2n
)ν |�||W̃ |−1} 1

2 uT W̃
−1/2

WW̃
−1/2

u
. (9)

This completes the calibration STEPS D, E, and F of Section 2.1. Our attention
now turns to the issue of non-uniqueness of Ỹ .

The calibrated Bayes factor (5) is

NDC01(Y |�)

= {(
τ̃ 2n

)ν |�||W̃ |−1} 1
2 uT W̃

−1/2
WW̃

−1/2
u exp

{
−1

2
ZT WZ

}
. (10)

Upon noting that W → I as τ → ∞, it is clear from (10) that NDC(Y |�) con-
verges to a meaningful value for evidence assessment even when τ is set to a very
large value,

NDC01(Y |�)

≈ {(
τ̃ 2n

)ν |�||W̃ |−1} 1
2 uT W̃

−1
u exp

{
−1

2
‖Z‖2

}
as τ → ∞. (11)

That is, the calibrated Bayes factor is bounded and therefore avoids oversensitivity
to prior scale, as desired.

Nevertheless, the statistic (10) is generally unsuitable for implementation, due
to the non-uniqueness of Ỹ , which varies with respect to u. (An exception is the

case � = I , for which uT W̃
−1/2

WW̃
−1/2

u = {1 + 1/(τ̃ 2n)}/{1 + 1/(τ 2n)} does
not vary.) Non-uniqueness may be handled in a satisfying way by appealing to
large-sample properties: observe that both W → I and W̃ → I as n → ∞, so that

uT W̃
−1/2

WW̃
−1/2

u → 1, hence BF01(Ỹ |�) has a unique limiting value,

BF∗ = (τ/τ̃ )ν. (12)

Substituting (12) in place of (9), the calibrated Bayes factor is (5) is

NDC01(Y |�) = (
τ̃ 2n

)ν/2|�|1/2|W |−1/2 exp
{
−1

2
ZT WZ

}
, (13)
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which, as with (11), avoids oversensitivity to prior scale, and is the ultimate form
that is proposed for evidence assessment in problems of this sort. Arguments in
Section 4, which develops the calibration framework for regular non-Gaussian
models, motivate the use of a limiting value, an analogue to (12), as a convenient
general means of resolving the non-uniqueness issue.

Note that the proposal is for large-sample analysis to be applied narrowly, only
for the purpose of calibration. Still, given that it is used at all, one might argue for
more a extensive use by which (10) is replaced with its approximation

NDC01(Y |�) ≈ (
τ̃ 2n

)ν/2|�|1/2 exp
{
−1

2
‖Z‖2

}
as n → ∞. (14)

This is not as desirable as (13), due to its excessive suppression of the expert’s
prior; for example, note the complete absence of the expert’s scale parameter τ . It
might, however, be regarded as a variation of the Bayes factor implied by Schwarz
(1978) model-choice criterion, a connection that will be examined more carefully
in Section 4.2.

In addition to inspiring a resolution to the non-uniqueness issue, the Gaus-
sian means problem is also helpful for exploring the potential impact of non-
uniqueness. For this purpose, let us focus on the formula (11) for the limiting value
of the calibrated Bayes factor when τ is set to a very large value, and consider its
range of values as the vector u varies. That range is determined from the eigen-

values of the matrix W̃
−1

, which, according to elementary matrix theory, bound

the quadratic expression, uT W̃
−1

u, appearing in the exponent of the formula’s

initial factor. Since �, which determines W̃
−1

, is standardized so that its largest
eigenvalue is one, the bounds are found to be

1 + 1/
(
τ̃ 2n

) ≤ uT W̃
−1

u ≤ 1 + δ−1
1 /

(
τ̃ 2n

)
,

where δ1 denotes the smallest eigenvalue of �. It is clear from these bounds that
when � is strongly ill-conditioned, hence δ1 is very small, the calibrated Bayes
factor varies widely across the solutions to criterion (4). In other words, potential
impact of non-uniqueness could be quite severe.

As indicated, judicious application of large-sample asymptotics resolves this
issue. However, should the reader not find that resolution compelling, a sensible
second option would be to report the calibrated Bayes factor’s range of possible
values. As an attempt at a third option, it could be tempting to try to identify a pref-
erence for some particular value of u over all others, but it is difficult to imagine
any concept that would make such a preference meaningful. One seemingly con-
venient choice would be to prefer u = Y/‖Y‖, thus aligning the anchor point to
the observed data; yet, this would amount to a double-use of data, and would take
us away from the subjective Bayesian framework for which the proposed method-
ology is intended. Ultimately, either of these alternative options would be chal-
lenging to implement in problems substantially more complex than the present
Gaussian testing scenario, and neither are pursued here.
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2.3 Interpretations and implications

The calibration concepts thus far described have a number of practical and inter-
pretational implications. To set up the discussion of these aspects, it is helpful to
first lay out the key arguments in Spitzner (2011) that motivate using the calibrated
Bayes factor for assessing evidence.

The neutral-data concepts developed in Spitzner (2011) stem from a customized
application of Good’s (1950) “device of imaginary results,” which uses “imaginary
data” to check a candidate prior: Suppose the expert and analyst are in the process
of eliciting a prior, and their attention is focused on the prior probabilities assigned
to M0 and M1. As a check of some particular choice, the analyst imagines data,
Ỹ , that would be characterized as “neutral,” perhaps through a criterion like (4).
Good’s conceptual device is to apply the posterior calculation to Ỹ , and reflect
upon whether the result produced is sensible. Upon doing so the analyst might ex-
pect to observe P [M0|φ] = P [M0|Ỹ ,φ], due to the neutrality of Ỹ . Nevertheless,
the scale properties of a Bayes factor such as (2) or (8) would prevent this from
happening, for BF01(Ỹ |φ) → ∞ as τ → ∞ implies P [M0|Ỹ ,φ] → 1, regardless
of P [M0|φ]. (To see this, use the first equation in Formula 6.) In other words, if τ

is large, unless P [M0|φ] falls in an extreme range, the check fails.
The calibrated Bayes factor (5) is a resolution to this issue. To argue this point,

Spitzner (2011) highlights the form of the Bayes factor (3) as a comparison of pos-
terior to prior odds, and interprets the inequality P [M0|φ] �= P [M0|Ỹ ,φ] as cre-
ating ambiguity over the choice of a baseline in weighing evidence. Whereas the
Bayes factor (3) chooses prior odds, ρ01(φ), as its baseline, the calibrated Bayes
factor (5) makes the other choice, the quantity ρ̃01(φ). In this way, the calibrated
Bayes factor (5) is valid for assessing evidence.

Other implications of this argument are as follows. First, the association of
ρ̃01(φ) with the calibrated Bayes factor parallels that of ρ01(φ) with the usual
Bayes factor, a parallel that is captured in the expressions of formula (6). What
this means for practice is that the expert’s opinion of odds is just as meaningfully
assigned to ρ̃01(φ) as ρ01(φ). If the assignment is to ρ̃01(φ) then (7) yields a mean-
ingful calibration of ρ01(φ). Such thinking admits the synthesis of subjective and
objective elements alluded to at the start of Section 1. Moreover, if ρ̃01(φ) = 1,
then evidence is reported as a ratio of posterior model probabilities, to which the
calibrated Bayes factor reduces, whose interpretation avoids certain criticisms of
Bayes factors that are explored in Lavine and Schervish (1999).

Second, the rightmost expression in (6) is useful for computation when working
with a very diffuse prior, since, in that case, ρ01(φ) is near zero and therefore
difficult to manage, whereas ρ̃01(φ) is of a convenient size.

Third, the calibration formula (7) offers a precise conceptual mechanism for
realizing Robert’s (1993) proposal to jointly specify the discrete and continuous
portions of the prior. Observe that the formula (7) implies that assigning a “large”
value to τ induces a “small” value for ρ01(φ), relative to ρ̃01(φ), assuming the
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type of scaling behavior observed in (2) and (8). This is consistent with Robert’s
(1993) suggestion to choose P [M0|φ] in such a way that its ratio with the shrinking
prior probability of some fixed “reasonable range” of values for θ (i.e., a compact
subset in θ -space) is asymptotically constant as τ grows large. The proposed use
of default priors makes this prescription precise.

3 Calibration in multiple testing

In the multiple-testing context there are multiple models Ms across s ∈ S, where
S is a finite or countable index-set. For example, in variable selection with p vari-
ables, as in Section 1, the set S indexes the 2p sub-models identified with the
possible ways of selecting and omitting variables from consideration. Given some
s ∈ S, the model Ms is defined from a subset As ⊂ {1, . . . , p}, according to which
the variables indexed by i ∈ As are “omitted” in Ms and those with i /∈ As are “se-
lected.” For another example, a null-vs-alternative model-comparison falls trivially
into the multiple-testing framework by setting S = {0,1}.

3.1 Extending “null” vs “alternative” comparisons to multiple testing

In variable selection, a model-comparison, Ms vs. Mt , such that |As − At | = 1 is
“elementary” in the sense that it is a test of a single variable, the one that is simul-
taneously omitted in Ms and selected in Mt . The calibration concepts developed
in Section 2 readily extend to this case in an obvious way: previous formulas are
updated to

NDCst(Y |φ) = P [Ms |Y ,φ]/P [Mt |Y ,φ]
ρ̃st(φ)

= BFst(Y |φ)

BFst(Ỹ |φ)
(15)

for the calibrated Bayes factor, updating (5), to

P [Ms |Y ,φ]/P [Mt |Y ,φ] = ρst(φ)BFst(Y |φ) = ρ̃st(φ)NDC01(Y |φ) (16)

for posterior odds, updating (6), and to

ρst(φ) = ρ̃st(φ)/BFst(Ỹ |φ), (17)

for the calibrated prior probability, updating (7), having written ρst(φ) = P [Ms |φ]/
P [Mt |φ] and ρ̃st(φ) = P [Ms |Ỹ ,φ]/P [Mt |Ỹ ,φ]. In these formulas, the anchor
point Ỹ and nuisance parameter, φ, may be specific to the model-comparison Ms

vs. Mt .
Evidence assessment of a general (i.e., possibly non-elementary) model-

comparison Ms vs. Mt is pieced together from that of relevant elementary model-
comparisons in the following way. Set j1 = |As ∩ Ac

t | and j2 = |Ac
s ∩ At |, and

find a path s = u0, . . . , uj1 , uj1+1, . . . , uj1+j2 = t ∈ S, so that, for 1 ≤ r ≤ j1, the
former model in Mur−1 vs. Mur has exactly one more variable omitted, and, for
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j1 + 1 ≤ r ≤ j1 + j2, the former model in Mur−1 vs. Mur has exactly one more
variable selected. At least one such path always exists. Applying (16), the ratio of
posterior model probabilities is

P [Ms |Y ,φ]
P [Mt |Y ,φ] =

{ j1∏
i=1

P [Mur−1 |Y ,φ]
P [Mur |Y ,φ]

}{ j1+j2∏
r=j1+1

P [Mur−1 |Y ,φ]
P [Mur |Y ,φ]

}

=
{ j1∏

r=1

ρ̃ur−1ur (φ)NDCur−1ur (Y |φ)

}

×
{ j1+j2∏

r=j1+1

ρ̃ur−1ur (φ)
1

NDCurur−1(Y |φ)

}
.

From this, the calibrated Bayes factor, NDCst(Y |φ), is calculated from the middle
expression in (15).

3.2 Multiplicity adjustment

In variable selection, and other multiple-model contexts, a common argument put
forward is that evidence assessment of a model-comparison Ms vs. Mt , say, for
s, t ∈ S, should take into account the presence of all models under consideration,
not just those directly involved in the comparison. In other words, evidence for
Ms vs. Mt would be assessed differently if S = {s, t} than if s and t are just two
index-values among the 2p index-values in S associated with variable selection in
p variables. In the latter case, it is said that a “multiplicity adjustment” is applied
to account for the presence of models other than those indexed by s and t .

A widely discussed approach to multiplicity adjustment in variable selection
is to model the number of omitted variables through a binomial process. See,
for example, Berry and Hochberg (1999), Scott and Berger (2010), Wilson et
al. (2010), and Castillo et al. (2015). Denote by ks the number of variables
that are omitted (i.e., ks = |As |), and by νs the number that are selected (i.e.,
νs = p − ks ). The beta-binomial prior is typically formulated hierarchically ac-
cording to ks |ξ ∼ binomial(p, ξ) and ξ ∼ beta(α,β), according to which a ratio
of prior model probabilities, where Ms has one more variable omitted than Mt ,
becomes P [Ms]/P [Mt ] = (β + ks − 1)(α + νs). The effect of this setting is to
weight the omission of a variable when both Ms and Mt have many variables
omitted, and weight the selection of a variable when both Ms and Mt have many
variables selected. The setting (1), on the other hand, reflects that the mathemat-
ics for asymptotic consistency prescribe that only the omission of variables are to
be weighted. These approaches are compared in Section 5.1 in a demonstration
on example data. Decision-theoretic approaches to multiple-model testing are also
available; see, for example, Müller, Parmigiani and Rice (2007).
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3.3 Asymptotic consistency in Gaussian variable selection

The present exploration of multiple-testing concepts focuses on the following sim-
ple, broadly applicable version of variable selection: each “variable” is identi-
fied with one of p independent sets of sample measurements, Y 1, . . . ,Yp; the
ith set is Y i = (Yi1, . . . , Yin) for independent Yij , which is associated with a pa-
rameter, θi . Underlying the setup is a fixed collection of “null” parameter values,
θ0 = (θ0

i : i = 1, . . . , p). Should, under model Ms , the ith variable be selected,
its associated parameter, θi , is left “free.” The free parameters are collected into
θ s = (θi : i /∈ As), which forms the target parameter of model Ms . Should the ith
variable be omitted, its associated parameter is set to its null value, θi = θ0

i . Denote
by νs the number of free parameters and by ks the number of parameters set to null
values.

Suppose now that, under model Ms , the data are generated according to Yij |θ s ∼
G(θi,1) for i /∈ As and Yij ∼ G(θ0

i ,1) for i ∈ As . The prior has θi ∼ G(θ0
i , τ 2) for

i /∈ As , where τ is a scale parameter to be specified by the expert. Note, in this
case, the absence of any nuisance parameter.

Having adopted model-specific prior distributions as stated, the setting (1) for
prior model odds is achieved through the proposed calibration scheme at the values
τ̃ = ks and ρ̃st = 1. Under these settings, use of the limiting value (12) within the
calibration formula (17) gives rise to (1) in the form P [Ms]/P [Mt ] = ks/τ .

The following result establishes the desirability of this setting.

Theorem 1. Suppose the data are generated from Ms ; that is, Ms is the “true”
model. Suppose the prior model probabilities are such that if u, v ∈ S satisfy |Au −
Av| = 1 then P [Mu]/P [Mv] = ku/τ . Treat the number of variables as a function
of n (that is, p = pn), and suppose there is a lower bound ξn such that ξn ≤ |θi | for
all i /∈ As . Suppose further there are constants a > 0 and b > 0 such that a < 1−b

and the following two conditions hold:

(i) logpn = O(na), and
(ii) there is a c > 0 such that ξn ≥ cn−b.

These conditions imply asymptotic consistency in the sense that

lim infP [Ms |Y ] > 0 as n → ∞.

The conditions in Theorem 1 articulate the notion of “faint signals” (ξn ≥ cn−b)
in “ultra-high dimensional” space (logpn = O(na)), and are very weak for estab-
lishing asymptotic consistency. An early reference to such conditions is Fan and
Lv (2008), where they are used to evaluate a screening procedure known as “sure
independence screening.” Theorem 1 positions the Bayesian solution, using (1),
among the few statistical procedures that are able to achieve asymptotic consis-
tency under these conditions. For further discussion of this property and related
procedures, see, for example, Fan and Lv (2010) and Narissety and He (2014).
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4 Calibration in non-Gaussian contexts

In a non-Gaussian context, calibration is readily formulated and practical to im-
plement for models that arise from an exponential or other expansive parametric
family. Suppose the testing problem is defined from a collection of models indexed
by s ∈ S, and consider a particular model-comparison Ms vs. Mt , for s, t ∈ S,
which is nested in the sense that a parameter, θ , is present in Mt but set to a null
value, θ0, in Ms . A nuisance parameter, φ, that is, a parameter that is common
to both models, may also be present. Because Ms and Mt are nested, a common
log-likelihood function, ln(θ,φ;Y ) is relevant to both models, which give rise to
distinct marginal data-densities according to πs(Y |φ) = ln(θ

0,φ;Y ) for model Ms

and πt(Y |φ) = ∫
exp{ln(θ ,φ;Y )}πt(θ |φ) dθ for model Mt , where πt(θ |φ) is the

associated conditional prior.
An additional requirement is the presence of a “sample size” parameter, n,

which may not strictly represent “the number of objects sampled,” but is part of the
framework in order to facilitate asymptotic analysis. Indeed, the example analyses
of Section 5, below, illustrate the capacity of the proposed calibration framework
to operate meaningfully even when sample size is ambiguously defined.

4.1 Finding an anchor point

The model-comparison Ms vs. Mt is assumed to be suitably regular in the sense
that Laplace’s method provides an approximation to the conditional Bayes factor,
analogous to (3), given by

BFst(Y |φ) = πs(Y |φ)

πt (Y |φ)
≈ |În(θ̂ |φ)|1/2

(2π)ν/2πt(θ̂ |φ)
e− 1

2 ‖Z(θ̂ |φ)‖2
, (18)

as n → ∞, where ν is the dimension of θ ,∥∥Z(θ̂ |φ)
∥∥2 = 2ln(θ̂ ,φ;Y ) − 2ln

(
θ0,φ;Y )

,

θ̂ solves ∇ln(θ̂,φ;Y ) = 0, and În(θ |φ) = −∇2ln(θ ,φ;Y ), writing ∇ and ∇2 to
denote the gradient and Hessian operators with respect to θ . For instance, the
Laplace approximation (18) holds when ln(θ ,φ;Y ) + logπ(θ |φ) is concave in
θ , at least locally near its maximum value; see Tierney and Kadane (1986) for
alternative conditions.

Within this framework, the following simple approximation result offers a
straightforward implementation of the proposed calibration scheme.

Theorem 2. Suppose the approximation (18) holds, the conditional prior on θ
given φ is from a scale family, πt(θ |φ) = τ−νπ∗(θ/τ |φ), where π∗(θ/τ |φ) is
finite and nonzero at θ = θ0, and |În(θ |φ)| → ∞ as n → ∞, for any θ . Suppose
further there is an anchor point Ỹ that satisfies

BFst(Ỹ |φ) = 1 at τ = τ̃ , (19)
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where τ̃ is a “default” value of the scale parameter. It follows that the Bayes factor
calculated at the anchor point has

BFst(Ỹ |φ) ≈ (τ/τ̃ )ν as n → ∞. (20)

The property deduced in Theorem 2 parallels and extends the behavior observed
in the Gaussian means problem of Section 2.2, by confirming that the convergence
of the Bayes factor to (12), when evaluated at the anchor point, is a general prop-
erty. As we have seen, this type of result is important for resolving the potential
conceptual complication that arises when a solution to (19) is not unique, for it
indicates that any two distinct anchor-point solutions would yield nearly the same
calibration. Even when the solution to (19) is unique, the target value (12) may still
be important practically for simplifying how calibration would be implemented,
for if (19) is hard to solve, and the analyst is willing to accept an approximate
calibration, then they may simply work with the calibrated Bayes factor given by

NDCst(Y |φ) = BFst(Y |φ)/BF∗ = (τ̃ /τ )νBFst(Y |φ), (21)

where BF∗ is the limit point to BFst(Ỹ |φ) identified in (12) and (20).

4.2 Connections to the Schwarz criterion

Kass and Wasserman (1995) put forward a description of the Schwarz criterion as
an approximation to the Bayes factor that is formulated from a unit-information
prior. An interesting connection to the calibrated Bayes factor formula (21) is
drawn as follows.

Suppose that În(θ̂ |φ) ≈ In(θ |φ) as n → ∞, for an asymptotic conditional
Fisher information matrix In(θ |φ). Suppose further that it is possible to sensi-
bly formulate a full-rank analogue I 0(θ |φ) to In(θ |φ) that is to represent the case
where n is set to its “minimum” value. For example, this quantity might be units
in the average rate of growth, I 0(θ |φ) ≈ n−1In(θ |φ), or it might be devised by
substituting into In(θ |φ) the minimal sample-size information thought necessary
to begin to understand the phenomenon under study. For further insight, consider
that when Y = (Y 1, . . . ,Y n) is an independent and identically distributed sample,
Fisher information is In(θ |φ) = nI 0(θ |φ), which identifies the quantity I 0(θ |φ)

explicitly.
Assuming a sensible I 0(θ |φ) is available, a scaled unit-information prior takes

the form

π(θ |φ) = (
2πτ 2)−ν/2∣∣I 0

(
θ0,φ

)∣∣1/2
h(θ |φ), (22)

where τ 2 > 0 is the scale parameter, and

h(θ |φ) = f

(
1

2τ 2

(
θ − θ0)T

I 0
(
θ0,φ

)(
θ − θ0))

, (23)
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for some function f , which might be chosen so that (22) is, for example, a Gaus-
sian prior, from f (x) = e−x , or Cauchy prior, from f (x) = √

2/π(1 + 2x)−1.
Within this family, the unit-information prior is defined at the setting τ = τ̃ = 1,
at which the “amount of information in the prior on [the parameter] is equal to
the amount of information about [the parameter] contained in one observation,”
according to Kass and Wasserman’s (1995, p. 929) characterization.

Adopting the prior (22), set τ̃ = 1 and apply (18) within (21) to produce an
approximation to the calibrated Bayes factor (15), given by

NDCst(Y |φ) ≈ |În(θ̂ ,φ)|1/2

|I 0(θ
0,φ)|1/2

e− 1
2 ‖Z(φ)‖2

h(θ̂ |φ)
. (24)

This is the analogue to (14) in the Gaussian means example of Section 2.2. Kass
and Wasserman (1995) derive a similar approximation to the usual Bayes factor,
from the setting τ 2 = 1 in (22), and explore its asymptotic properties when θ̂ =
θ0 + O(n−1/2). This asymptotic condition on θ̂ implies h(θ̂ |φ) ≈ f (0), and the
subsequent approximation NDCst(Y |φ) ≈ expSst(Y |φ) as n → ∞, having defined
the modified Schwarz criterion

Sst(Y |φ) = −1

2

∥∥Z(φ)
∥∥2 + log

|În(θ̂ ,φ)|1/2

|I 0(θ
0,φ)|1/2

− logf (0). (25)

In the case where φ is absent and In(θ) = nI 0(θ), the formula (25) exactly
matches Kass and Wasserman’s (1995) modified Schwarz criterion, in which f (0)

adjusts for a non-Gaussian prior.
In the present development of calibration concepts, asymptotic behavior as τ →

∞ is more central than asymptotic behavior as n → ∞. By this perspective, it
is interesting to observe that h(θ |φ) → f (0) as τ → ∞, hence (24) shows that,
when n is large and τ is very large, the calibrated Bayes factor NDCst(Y |φ) is
very nearly the exponentiated Schwarz criterion in (25). This property is explored
in the examples of the next section.

5 Demonstrations on example data

In this section, the proposed calibration framework is demonstrated in several ex-
ample data-analyses. Special attention is paid to the impact of multiplicity adjust-
ment, sensitivity to prior scale, and connections to the Schwarz criterion.

To interpret the results, calibrated and uncalibrated Bayes factors are trans-
formed to twice their logarithm value, so that they may be compared against the
scale proposed in Kass and Raftery (1995). For example, in a comparison of Ms vs
Mt , larger magnitudes of 2 log BFst or 2 log NDCst indicate stronger evidence for
Ms (if positive) or Mt (if negative). The strength of evidence is categorized into
“positive,” “strong,” and “very strong” above the thresholds 3, 6, and 10.
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Calculations are implemented using various Markov Chain Monte Carlo
(MCMC) techniques for posterior simulation, described in Robert and Casella
(1999). In every set of data-analysis results presented below, the number of itera-
tions is at least one million, yielding a very high level of simulation accuracy.

5.1 Adverse events in a vaccine trial

In this first demonstration, the multiplicity properties of the calibrated setting (1)
for variable selection are explored in the analysis of adverse-event data examined
in Berry and Berry (2004). Also highlighted is the calibration approach laid out in
Section 4.1 for non-Gaussian contexts. In order to compare with Berry and Berry’s
(2004) original analysis, the reanalysis developed here incorporates as much as
possible the features of the original, including its elaborate hierarchical prior. In
doing so, the demonstration highlights the flexibility of the proposed approach for
use with complex prior formulations. To assist the reader, references are made
to the pre-calibration and calibration steps listed at the end of Section 2.1. Some
readers may wish to first go through Sections 5.2 and 5.3, which demonstrate the
proposed concepts in simpler contexts.

The data of this example are an array of incidence-count totals from a vaccine
trial that involved control and treatment groups of n1 = 132 and n2 = 148 subjects.
The counts are of forty pre-defined “adverse event” (AE) occurrences (e.g., a rash
or nausea), which are uniquely grouped into eight body systems. Corresponding
notation identifies pairs of triple-subscripted data, Y jk = (Y1jk, Y2jk), where k

indexes AE-type k ∈ Kj within body system j ∈ J , and the order of pairing reflects
“control” vs “treatment” conditions. Raw relative frequencies, p̂ijk = Yijk/ni , and
AE-type groupings into body systems are listed below in Table 1.

The data-analysis objective is to “flag” any AE-types whose occurrence-rates
are greater under the vaccine treatment. Each Yijk ∼ binomial(ni,pijk), indepen-
dently across i = 1,2 and (j, k) ∈ � = {(j, k) : j ∈ J, k ∈ Kj }. A model Ms is
characterized by three subsets: As,0, which collects index-pairs (j, k) such that
p1jk = p2jk ; As,1, which collects the (j, k) such that p1jk > p2jk ; and, As,2,
which collects the (j, k) such that p1jk < p2jk . The AE-types associated with
the subset As,2 are those to be flagged.

Define φjk = 1
2(η1jk + η2jk) and θjk = 1

2(η1jk − η2jk), having set ηijk =
log{pijk/(1 − pijk)}, and collect these quantities into the parameters φ = (φjk :
(j, k) ∈ �) and θ s = (θjk : (j, k) /∈ As,0), which record ν0 nuisance and νs,1 “free”
target parameters of model Ms , respectively. The likelihood function of model Ms

factors into components,

L(θ ,φ;Y ) = ∏
(j,k)∈As,0

L(0, φjk;Y jk) × ∏
(j,k)/∈As,0

L(θjk, φjk;Y jk), (26)

where each component is from an exponential family,

L(θjk, φjk;Y jk) = Cζ (Y jk) exp
{
(Y1jk − Y2jk)θjk

+ (Y1jk + Y2jk)φjk − ζ(θjk, φjk)
}
,
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where Cζ (Y jk) = ( n1
Y1jk

)( n2
Y2jk

)
and

ζ(θjk, φjk) = n1 log
(
1 + eφjk+θjk

) + n2 log
(
1 + eφjk−θjk

)
.

This completes the pre-calibration STEP A of identifying target and nuisance pa-
rameters.

The prior is formulated hierarchically in such a way that makes use of the ar-
rangement of AE-types within body systems. It is described in Berry and Berry
(2004) as a “three-stage” prior, but it readily collapses to the following two-
stage form: Each φjk|τ 2

0A, τ 2
0B ∼ G(0, τ 2

0A + τ 2
0B + τ 2) and, independently, each

θjk|τ 2
1A,j , τ

2
1B ∼ G(0, τ 2

1A,j + τ 2
1B + τ 2), for hierarchical parameters τ 2, τ 2

H , τ 2
0A,

τ 2
0B , τ 2

1A,j for j ∈ J , τ 2
1B . Among the hierarchical parameters, τ 2 and τ 2

H are

fixed constants to be specified explicitly, while τ 2
0A, τ 2

0B , τ 2
1A,j , and τ 2

1B are mod-

eled independently such that τ 2
H/τ 2

0A ∼ χκ , τ 2
H/τ 2

0B ∼ χκ , τ 2
H/τ 2

1A,j ∼ χκ , and

τ 2
H/τ 2

1B ∼ χκ for an additional prior parameter κ . Berry and Berry set τ 2 = 10,
τ 2
H = 2, and κ = 6; these and other settings are examined in the analysis below.

Berry and Berry incorporate a multiplicity adjustment using a variation of the
beta-binomial formulation discussed in Section 3.2. The analysis explored here
proceeds differently by calibrating the analysis to avoid sensitivity to the prior
scale parameter and to incorporate the multiplicity adjustment specified in (1).
The prior parameter τ is most influential to scale, and so will be treated as a
prior scale parameter in this setup. To accommodate the remaining prior param-
eters, the framework developed in previous sections is extended slightly to ex-
ploit the hierarchical aspect to the prior by applying the calibration techniques
conditionally given φ and τ = (τ 2

0A, τ 2
0B, τ 2

1A,j , τ
2
1B : j ∈ J ), in effect treating

both of these quantities as nuisance parameters, even though τ associated with
the prior. This means, e.g., that expert opinion would be articulated through
ρst(φ,τ ) = P [Ms |φ,τ ]/P [Mt |φ,τ ] in an uncalibrated analysis, and through
ρ̃st(φ,τ ) = P [Ms |Ỹ ,φ,τ ]/P [Mt |Ỹ ,φ,τ ] in a calibrated analysis. Note the con-
venience of additionally conditioning on τ , both for conceptual formulation and
calculation, due to the availability of a closed form for π(φ|τ ), and the absence of
one for π(φ). This completes the pre-calibration STEPS B and C of identifying the
scale parameter, and deriving a suitable mathematical framework for working with
the model conditionally, which is achieved here by treating τ as a special type of
nuisance parameter.

It is readily checked that the likelihood function and prior satisfy the conditions
of Section 4.1. Referring to the terms of Theorem 2, define “sample size” as n =
n1 + n2, and observe that the likelihood function implies

În(θ |φ) = n

{
eφjk

1 + eφjk

(
1 − eφjk

1 + eφjk

)}
, (27)
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Figure 1 Evidence assessments of an adverse event on Berry and Berry’s (2004) data for τ between
1 and 100, plotted on a standard scale of evidence. The left panel plots transformed Bayes factors, the
middle panel plots transformed calibrated Bayes factors that are unadjusted for multiplicity, and the
right panel plots transformed calibrated Bayes factors that are adjusted for multiplicity. Assessments
are reported only of the four AE-types indexed by (j, k) = (3,4), (8,3), (10,4), and (10,6).

which increases without bound as n grows. Hence, the conclusion of Theorem 2
holds, and the target value (12) is valid for calibration. In the absence of well-
studied default settings for priors of this form, the default prior concept applied
here is an appeal to simplicity, setting τ̃ = 1 or τ̃ = ks depending on whether the
multiplicity adjustment (1) is incorporated in the calibration. Given that the hier-
archical parameters in τ are negligible when τ is large, the setting τ̃ = 1 roughly
incorporates the intuition underlying a unit-information prior.

This completes the calibration STEP D of setting τ̃ from a selected default-prior
concept. To be clear, two separate calibrations are examined in this demonstration,
one derived from the “unit-information” concept, for which τ̃ = 1, and the other
that adopts the default setting implied in Theorem 1, for which τ̃ = ks , to induce a
multiplicity adjustment. The appeal to Theorem 2 completes the calibration STEPS

E and F. By that theorem, the corresponding values of BFst(Ỹ |φ,τ ) are directly
ascertained as the limiting values τ/τ̃ identified in formula (20), having implicitly
solved for the anchor point Ỹ .

Calculations are made using the reversible-jump MCMC algorithm, within a
Gibbs structure to integrate across parameters. The algorithm is implemented by
making reversible jumps on individual θjk at fixed values of the remaining param-
eters. Proposed jumps from (θ0

s,jk, φs,jk) in model Ms to (θt,jk, φt,jk) in model

Mt are defined through the invertible transformation φt,jk = 1
4φs,jk{4 + a(u)}

and θt,jk = 1
4φs,jk{4 − a(u)}, where a(u) = 1/u − 1/(1 − u) and u ∼ Beta(2,2).

Acceptance probabilities are calculated using the formula (7) for calibrated prior
odds, extended slightly to ρst(φ,τ ) = ρ̃st(φ,τ )/BFst(Ỹ |φ,τ ) so as to additionally
to condition upon τ .

Results of the analysis, in a variety of configurations, are indicated in Figure 1
and Table 1. Data analysis is carried out repeatedly across twenty values of the
scale parameter τ in the range 1 ≤ τ ≤ 100, which forms the horizontal axis in



Calibrated Bayesian testing 879

Table 1 Posterior probabilities on Berry and Berry’s (2004) adverse-event data. Index values are
listed for body system (j ) and AE-type (k) in the first pair of columns; the remaining columns list
raw adverse-event relative frequencies, followed by the posterior probabilities from Berry and Berry’s
(2004) analysis (headed “B & B”), then those derived from calibrated Bayes factors unadjusted for
multiplicity, and finally those derived from calibrated Bayes factors that are adjusted for multiplic-
ity. The columns labeled “eq.” list posterior probabilities that the rates of adverse events between
treatment and control conditions are equal, and those labeled “AE” list posterior probabilities of an
adverse event

B&B NDC, unadj. NDC, adj.

j k p̂1jk p̂2jk eq. AE eq. AE eq. AE

1 1 0.303 0.385 0.762 0.211 0.392 0.601 0.956 0.043
1 2 0.197 0.230 0.827 0.122 0.798 0.180 0.992 0.007
1 3 0.000 0.014 0.796 0.101 0.054 0.944 0.947 0.053
1 4 0.008 0.020 0.813 0.100 0.765 0.216 0.992 0.008
1 5 0.152 0.182 0.826 0.116 0.798 0.179 0.993 0.007

3 1 0.015 0.047 0.821 0.117 0.328 0.666 0.949 0.050
3 2 0.000 0.014 0.835 0.083 0.067 0.932 0.738 0.261
3 3 0.000 0.014 0.812 0.101 0.068 0.930 0.859 0.141
3 4 0.076 0.162 0.743 0.231 0.030 0.969 0.517 0.483
3 5 0.008 0.020 0.823 0.093 0.767 0.214 0.992 0.008
3 6 0.053 0.014 0.805 0.050 0.211 0.003 0.910 0.000
3 7 0.144 0.128 0.849 0.076 0.890 0.044 0.996 0.002

5 1 0.015 0.020 0.717 0.136 0.882 0.083 0.996 0.003

6 1 0.015 0.000 0.666 0.087 0.039 0.001 0.431 0.000

8 1 0.000 0.014 0.655 0.185 0.023 0.977 0.749 0.251
8 2 0.015 0.014 0.661 0.153 0.898 0.048 0.997 0.001
8 3 0.326 0.507 0.214 0.780 0.001 0.999 0.033 0.967

9 1 0.008 0.027 0.900 0.059 0.560 0.428 0.981 0.019
9 2 0.015 0.027 0.901 0.058 0.828 0.147 0.994 0.005
9 3 0.015 0.007 0.896 0.040 0.858 0.026 0.995 0.001
9 4 0.061 0.088 0.906 0.062 0.758 0.223 0.991 0.008
9 5 0.152 0.189 0.897 0.083 0.754 0.228 0.990 0.009
9 6 0.008 0.014 0.898 0.047 0.870 0.101 0.996 0.003
9 7 0.061 0.088 0.906 0.061 0.758 0.223 0.991 0.008
9 8 0.106 0.101 0.904 0.051 0.894 0.055 0.997 0.002
9 9 0.008 0.020 0.903 0.051 0.766 0.215 0.992 0.008
9 10 0.008 0.014 0.905 0.042 0.870 0.101 0.996 0.003
9 11 0.008 0.020 0.907 0.050 0.769 0.212 0.992 0.008

10 1 0.000 0.027 0.859 0.087 0.001 0.999 0.065 0.935
10 2 0.000 0.014 0.860 0.070 0.001 0.999 0.945 0.054
10 3 0.008 0.014 0.868 0.062 0.872 0.099 0.996 0.003
10 4 0.023 0.088 0.784 0.190 0.011 0.989 0.287 0.713
10 5 0.015 0.041 0.852 0.099 0.540 0.450 0.978 0.022
10 6 0.008 0.054 0.836 0.126 0.014 0.986 0.364 0.636
10 7 0.015 0.027 0.862 0.076 0.828 0.148 0.994 0.005
10 8 0.015 0.000 0.852 0.048 0.009 0.000 0.798 0.000
10 9 0.015 0.007 0.855 0.055 0.857 0.026 0.995 0.001

11 1 0.015 0.000 0.721 0.079 0.008 0.000 0.789 0.000
11 2 0.106 0.122 0.757 0.102 0.858 0.111 0.995 0.004
11 3 0.008 0.014 0.749 0.121 0.872 0.099 0.996 0.003
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each panel of Figure 1, all while holding constant the ratio τ 2/τ 2
H = 5, and the pa-

rameter κ = 6. Each panel plots the relevant assessments after having been trans-
formed according to 2 log{P [E(j,k)|Y ]/(1−P [E(j,k)|Y ])}, where E(j,k) collects all
models Ms such that (j, k) ∈ As,2. That is, the values plotted in Figure 1 indicate
support for an adverse event of type j in body-system k, transformed for inter-
pretation on Kass and Raftery’s (1995) scale of evidence. Only four AE-types are
represented in Figure 1, those with index values (j, k) = (3,4), (8,3), (10,4), and
(10,6), which were selected by Berry and Berry for having been flagged in a pre-
vious frequentist analysis. Selected results for all AE-types are listed in Table 1,
but only at τ = 100.

The three panels of Figure 1 show results of the proposed procedure in three
configurations of the discrete prior: the configuration represented in the left panel
has ρst(φ,τ ) = 1, hence the results shown are from Bayes factors; that of the mid-
dle panel has ρ̃st(φ,τ ) = 1 and τ̃ = 1, hence the results are from calibrated Bayes
factors that are calibrated to avoid sensitivity to the prior, but do not incorporate a
multiplicity adjustment; and, that of the right panel has ρ̃st(φ,τ ) = 1 and τ̃ = ks ,
which is as in the middle panel but with a multiplicity adjustment. The latter two
configurations are also represented in Table 1, as posterior probabilities, alongside
Berry and Berry’s results for comparison.

As expected, and illustrated in Figure 1, support for an adverse event drastically
weakens as τ grows large when it is reported as a Bayes factor, but it eventually
stabilizes when it is reported as a calibrated Bayes factor. “Strong” evidence of
an AE (a reported value above 6) of every selected type is indicated in the mid-
dle panel, with each calibrated Bayes factor stabilizing (by coincidence) near the
maximum of the corresponding Bayes factor in the left panel. Comparison with the
right panel illustrates how the multiple-model adjustment weakens evidence across
the board, so much that “strong” support of an AE remains only for the AE-type
at (j, k) = (8,3). The adjustment ultimately induces a beneficial clarifying effect
of reducing the collection of several suspicious AE-types to just one that is to be
flagged.

In Table 1, it is seen that Berry and Berry’s prior weakens the reported evidence
even more, to the point where no strong evidence of an AE is exhibited among any
of the forty AE-types. Consider that on Berry and Berry’s results the transforma-
tion 2 log{P [E(j,k)|Y ]/(1 − P [E(j,k)|Y ])} yields the values −2.41, 2.53, −2.90,
and −3.87 for (j, k) = (3,4), (8,3), (10,4), and (10,6). These transformed as-
sessments are much different than those of the multiplicity-adjusted calibrated
Bayes factors, and it is interesting that Berry and Berry’s results are also hard
to place among the patterns exhibited in Figure 1: even at τ = 100, the Bayes
factors in the left panel report much stronger evidence than those of Berry and
Berry, and yet the calibrated Bayes factors of the other two panels are well past the
point of having stabilized with respect to τ . From this perspective, the configura-
tion introduced in Berry and Berry’s hierarchical discrete prior is seen to have an
astoundingly strong effect.



Calibrated Bayesian testing 881

5.2 The Behrens–Fisher problem

This next example demonstrates the proposed methodology in the context of the
Behrens–Fisher problem, a setup that has been studied by many authors, frequen-
tist and Bayesian. It is important in forensic “matching” applications in which
measurements of trace material (e.g., glass fragments) or pattern marks (e.g., fin-
gerprints) found at a crime scene are compared to those on a suspect; the aim is
to quantify the strength of evidence that the two sets of measurements are from
the same source. See, for example, Lindley (1977) and Lund and Iyer (2017) for
further discussion of such applications. The present exploration uses data from a
simpler application, the “yarn strength” data from Box and Tiao (1992, ex. 2.5.4).

The Behrens–Fisher problem involves two data vectors, Y 1 and Y 2, which
represent measurements drawn from independent samples of respective size n1
and n2. The example data describe measurements of yarn breaking-strength from
samples of size n1 = 20 and n2 = 12, with respective sample means Ȳ1 = 50
and Ȳ2 = 55, and sample variances s2

1 = 12 and s2
2 = 40. The model M0 puts

Y i |μ,σ 2
i ∼ G(μ1, σ 2

i Ini
) and M1, puts Y i |μi, σ

2
i ∼ G(μi1, σ 2

i Ini
).

Although formula (22) defines a scaled unit-information prior from Fisher infor-
mation, it is possible in this problem to identify such a prior from direct arguments.
Observe that, under M1,

n1Ȳ1/σ
2
1 + n2Ȳ2/σ

2
2

n1/σ
2
1 + n2/σ

2
2

∣∣∣σ 2
1 , σ 2

2

∼ G

(
n1μ1/σ

2
1 + n2μ2/σ

2
2

n1/σ
2
1 + n2/σ

2
2

,
1

n1/σ
2
1 + n2/σ

2
2

)
(28)

and, independently,

Ȳ1 − Ȳ2

σ 2
1 /n1 + σ 2

2 /n2

∣∣∣σ 2
1 , σ 2

2 ∼ G

(
μ1 − μ2

σ 2
1 /n1 + σ 2

2 /n2
,

1

σ 2
1 /n1 + σ 2

2 /n2

)
. (29)

In light of these formulas, Kass and Wasserman’s (1995) characterization of unit-
information is easily adapted to reflect equality of variance in the prior to the vari-
ance associated with one observation from each sample. Applying this concept to
(28) and (29) motivates the transformation

μ = μ1/σ
2
1 + μ2/σ

2
2

1/σ 2
1 + 1/σ 2

2

and θ = μ1 − μ2

σ 2
1 + σ 2

2

, (30)

and identifies the corresponding conditional scaled unit-information priors

μ|σ 2
1 , σ 2

2 ∼ G

(
0,

τ 2

1/σ 2
1 + 1/σ 2

2

)
and θ |σ 2

1 , σ 2
2 ∼ G

(
0,

τ 2

σ 2
1 + σ 2

2

)
,

where τ is the scale parameter. The variance parameters are assigned independent
scaled inverse-chi-square distributions, λ/σ 2

1 ∼ χ2
κ and λ/σ 2

2 ∼ χ2
κ , as priors.
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Under the transformation (30), the model M1 is re-parameterized to Y 1|θ,φ ∼
G((μ + σ 2

1 θ)1, σ 2
1 In1) and Y 2|θ,φ ∼ G((μ − σ 2

2 θ)1, σ 2
2 In2), having set φ =

(μ,σ 2
1 , σ 2

2 ). The model M0 is specified by the setting θ = θ0 = 0. The relevant
conditional Bayes factor is

BF01(Y |φ) =
(

1 + τ 2 n1σ
2
1 + n2σ

2
2

σ 2
1 + σ 2

2

)1/2
exp

{
−1

2
w

(
σ 2

1 , σ 2
2
)
Z(φ)2

}
, (31)

where

Z(φ)2 = {n1(Ȳ1 − μ) − n2(Ȳ2 − μ)}2

n1σ
2
1 + n2σ

2
2

and

w
(
σ 2

1 , σ 2
2
) = τ 2(n1σ

2
1 + n2σ

2
2 )/(σ 2

1 + σ 2
2 )

1 + τ 2(n1σ
2
1 + n2σ

2
2 )/(σ 2

1 + σ 2
2 )

.

This completes the pre-calibration steps listed at the end of Section 2.1. The de-
rived framework for conditioning allows the subsequent calibration steps to be
implemented using the arguments put forward in Section 2.2 for the Gaussian
means problem: by adopting the default value τ̃ = 1, which is implied from the
unit-information default-prior concept, and incorporating the target value (12), the
calibrated Bayes factor is

NDC01(Y |φ) =
(

1

τ 2 + n1σ
2
1 + n2σ

2
2

σ 2
1 + σ 2

2

)1/2
exp

{
−1

2
w

(
σ 2

1 , σ 2
2
)
Z(φ)2

}
. (32)

The present exploration also considers a second version of the analysis in which
the Gaussian prior on the target parameter is replaced with a Cauchy prior,

θ |σ 2
1 , σ 2

2 ∼ Cauchy
(

0, τ

√
1

σ 2
1 + σ 2

2

)
.

This is consistent with a recommendation of Jeffreys (1961), by which the default
setting is τ̃ = 1. A Cauchy prior is also recommended in Liang et al. (2008) in
order to avoid the “information paradox,” a phenomenon that occurs in Gaussian
testing problems when variance parameters are estimated.

The calculation of unconditional versions of a calibrated or uncalibrated Bayes
factor is implemented using the formula

P [M0|Y ] =
{

1 +
∫

P [M1|Y ,φ]π0(φ|Y ) dφ∫
P [M0|Y ,φ]π1(φ|Y ) dφ

}−1
, (33)

which converts conditional posterior model probabilities to unconditional poste-
rior model probabilities. Here, π0(φ|Y ) and π1(φ|Y ) denote the model-specific
posterior densities of the nuisance parameter. Integration in (33) is carried out nu-
merically by averaging over model-specific MCMC-generated samples.
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Figure 2 Evidence assessments on Box and Tiao’s yarn-strength data for τ between 1 and 100,
plotted on a standard scale of evidence. The solid line and dashed lines plot evidence from cali-
brated Bayes factors under a Gaussian and Cauchy prior, respectively. The solid lines overlaid with
circles or diamonds plot evidence from uncalibrated Bayes factors under a Gaussian and Cauchy
prior, respectively. The points BIC1 and BIC2 mark values of the Schwarz criterion, using “MLE
substitution” to handle nuisance parameters, under a Gaussian and Cauchy prior, respectively.

Figure 2 displays unconditional assessments calculated from calibrated and un-
calibrated Bayes factors, under both the Gaussian and Cauchy specifications of
the prior. Twenty values of the scale parameter are examined, across the range
1 ≤ τ ≤ 100, which indexes the horizontal axis of Figure 2. The prior variance
parameters are set to κ = λ = 0 in every evaluation, a standard setting that is ap-
plied for illustration. The precise quantities that are plotted in Figure 2 are mani-
festations of the formula 2 log(P [M1|Y ]/P [M0|Y ]), by which larger magnitudes
indicate stronger evidence for M1.

In Figure 2, the solid lines overlaid with circles or diamonds are calculated from
the uncalibrated Bayes factor (31), under a Gaussian or Cauchy prior, respectively.
The solid and dashed lines calculated from the calibrated Bayes factor (32), under
a Gaussian or Cauchy prior, respectively. As expected from its scaling properties,
the evidence for M1 exhibited by the Bayes factor grows drastically weaker as τ

increases beyond a certain value, while that exhibited by the calibrated Bayes fac-
tor eventually stabilize. The results are also consistent in illustrating that evidence
for M1 is weaker under a Cauchy prior.

Several assessments alluded to in previous discussion, but not addressed in de-
tail, are also plotted in Figure 2. Results from two versions of the Schwarz criterion
are marked by asterisks and labeled “BIC1” and “BIC2,” each of which is calcu-
lated using a different ad hoc technique for handling the nuisance parameters and
definition of “sample size.” The values are calculated by evaluating the formula
(25) and applying “MLE substitution” to handle the nuisance parameters. Refer to
Bollen et al. (2012) for general discussion of such techniques. The formula is

Ŝ01(Y ) = 1

2
Z(φ̂)2 − 1

2
log

(
n1σ̂

2
1 + n2σ̂

2
2

σ̂ 2
1 + σ̂ 2

2

)
− logf (0),
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Figure 3 Evidence assessments on Raftery’s “Smoking,” “Teeth,” and “Lizard Perch” tables for
τ between 0.1 and 10, plotted on a standard scale of evidence. The solid line marks calibrated
Bayes factors; the solid line with circles marks Bayes factors. The asterisks labelled “R1,” “R2,”
“R3,” mark the assessments obtained under Raftery’s prior at respective values 1, 1.65, and 5 of that
prior’s scale parameter.

where φ̂ = (μ̂, σ̂ 2
1 , σ̂ 2

2 ) is the maximum-likelihood value of φ under M1. The value
BIC1 is calculated using f (x) = e−x , which is associated with a Gaussian prior,
and BIC2 is calculated using f (x) = √

2/π(1 + 2x)−1, which is associated with
a Cauchy prior. It is reassuring that the results derived from the calibrated Bayes
factors tend to stabilize near those of the ad hoc Schwarz criteria. It will be seen
in the example analysis of Section 5.2, below, that this pattern can be disrupted in
more complicated testing contexts.

5.3 Log-linear models for the analysis of two-way tables

The example of this section demonstrates the proposed methodology in the anal-
ysis of two-way tables. The data are taken from Raftery (1993, Section 9.3)
and consist of three 2 × 2 tables generated from separate experiments. Write
Y = (Y11, Y12, Y21, Y22) to denote the data of an individual table, where Yjk is the
cell count of the j th row and kth column. The raw data are Y = (32,11,60,30)

for the “Smoking” experiment, Y = (4,16,1,21) for the “Teeth” experiment, and
Y = (32,11,86,35) for the “Lizard Perch” experiment. See Raftery (1993) for
sources and additional description.

The Yjk are taken to be Poisson counts that are independent across the ta-
ble cells. The models M0 and M1 are distinguished by the absence, in M0, or
presence, in M1, of row-column interaction among the log-transformed Poisson
means, ηjk = logE[Yjk]. The nuisance parameter, φ = (φ1, φ2, φ3), collects the
parameters φ1 = (η11 + η12 + η21 + η22)/2, φ2 = (η11 − η12 + η21 − η22)/2, and
φ3 = (η11 +η12 −η21 −η22)/2, which are orthonormal transformations of the ηjk .
The target parameter θ = (η11 −η12 −η21 +η22)/2 identifies the magnitude of in-
teraction; it is fixed at θ = θ0 = 0 under model M0. The log-likelihood function
is

l(θ,φ;Y ) = ∑
j,k

Yjkηjk − n(θ,φ),
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where n(θ,φ) = ∑
j,k eηjk gives the expected total count of table cells, in which the

ηjk are understood as functions of θ and φ by inverting the relationships identified
above.

This completes the pre-calibration STEPS A and C listed at the end of Sec-
tion 2.1. A scaled unit-information prior is to be specified, but its formulation will
be clearer upon first confirming the assumptions of Theorem 2, which will inci-
dentally ready the completion of the calibration STEPS E and F by prescribing
that BFst(Ỹ |φ) be set to the limiting value τ/τ̃ identified in formula (20).

To work with Theorem 2, a suitable asymptotic framework is needed. For that,
treat n(θ0,φ) as “sample size,” and assume that each E[Yjk] = eηjk is asymptot-
ically similar to n(θ0,φ) as the latter quantity becomes arbitrarily large, that is,
the ratios of one to the other of these quantities are both bounded. This represents
a “fixed marginal” scenario in which new measurements arrive independently to
the table and fall into cells in proportions determined by the experimental phe-
nomenon. The fixed marginal scenario is mechanically distinct from the “random
marginal” scenario defined by Poisson counts, but it is easy to check that the re-
spective likelihood functions are proportional, and so the scenarios are equiva-
lent for purposes of inference. The dependence of sample size, n = n(θ0,φ), on
a nuisance parameter is unconventional, but it nevertheless yields a Laplace ap-
proximation to the conditional Bayes factor (18), and is otherwise consistent with
the framework of Section 4. The assumption of asymptotic similarity is neces-
sary to be sure that the conditional maximum-likelihood value θ̂ → θ0 = 0, as
n(θ0,φ) → ∞, for data generated under M0.

To formulate a scaled unit-information prior, start by making the straightforward
deduction that În(θ̂ |φ) ≈ In(θ0|φ) = n(θ0,φ)/4. The rate at which this quantity
grows, relative to sample size, is I0(θ0|φ) = 1/4, which is taken to define unit-
information. Accordingly, the scaled unit-information prior adopted here speci-
fies θ ∼ G(0,4τ 2), independently of φ. Similarly, the prior on φ has independent
φi ∼ G(0,4τ 2). This is equivalent to specifying independent ηjk ∼ G(0,4τ 2) un-
der model M1, and a constrained version of the same prior under model M0. Hav-
ing adopted a scaled unit-information prior, which identifies the scale parameter
and its default value as part of its formulation, this completes the remaining pre-
calibration STEP B and calibration STEP D listed at the end of Section 2.1.

Analysis results on Raftery’s count data, calculated at several settings of τ 2,
are plotted in Figure 3. As in previous example analyses, the scale parameter
is examined across of range of twenty values, this time across 0.1 ≤ τ ≤ 10,
which form the horizontal axis of each panel; as before, the quantities plotted are
2 log(P [M1|Y ]/P [M0|Y ]), calculated from a Bayes factor, with ρ01(φ) = 1, or
calibrated Bayes factor, with τ̃ = 1 and ρ̃01(φ) = 1, either of which indicate the
strength of evidence for the model M1. As in the example of Section 5.2, com-
putations rely on MCMC simulation, together with formula (33). In each panel of
Figure 3, one sees the same pattern observed previously, wherein the uncalibrated
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Bayes factor exhibits increasingly stronger evidence for M0 at larger values of τ ,
while the calibrated Bayes factor stabilizes.

For reference, results associated with the Bayes factors calculated in Raftery
(1993) are marked in each panel of Figure 3 by asterisks and labeled “R1,” “R2,”
and “R3,” which correspond to three values of a scale parameter for the class of pri-
ors used in those analyses. It is unsurprising that these plotted values are typically
smaller than the values produced by calibrated Bayes factors at large τ , since they
presumably respond to scale in much the same way as the Bayes factors calculated
here. A value derived from an ad hoc version of the Schwarz criterion also appears
in each panel, marked by an asterisk and labeled “BIC.” The calculation is made
by the formula Ŝ01(Y ) = l(θ̂ , φ̂n;Y )− l(θ0, φ̂n;Y )− 1

2 logN , where N = ∑
jk Yjk

and θ̂ and φ̂n are maximum-likelihood values. It is interesting that the relative pat-
tern in BIC is inconsistent across these examples: on the “Lizard Perch” data, the
result based on BIC falls near those of the limiting calibrated Bayes factors for
large τ 2; in the other examples, the strength of evidence indicated by BIC for M1,
relative to calibrated Bayes factors, is substantially weaker.

6 Conclusions

The goal of this article is to develop testing methodology for Bayesian practice that
promotes the voice of the expert in scenarios where it is desirable that statistical
procedures exhibit certain analytically-derived properties. The proposed scheme
is fully coherent, and does not deviate from the mathematical formulation of sub-
jective Bayesian analysis. It offers the expert flexibility to specify the continuous
portion of the prior using intuition from estimation, and the option to retain influ-
ence on the discrete portion of the prior and the assessment of evidence through
the quantities ρ̃st(φ). The methodology is proposed with the hope of cultivating
greater involvement by experts in specifying prior knowledge.

Its goal is achieved by reducing the role of default priors from outright sub-
stitutes for prior knowledge to tools used to calibrate Bayes factors. A calibration
scheme is proposed that operates by anchoring analysis to a point in the data space,
under the guidance of a default-prior concept. An unambiguous rule (19) is pro-
vided for defining the anchor point in a meaningful way, in the sense that it may
be interpreted in terms of a conceptual exercise of imagining “neutral” data. The-
oretical results establish that the scheme is relevant and practical to apply within a
widely-used class of regular models. Its feasibility is supported by demonstrations
on example data.

It is worthwhile to delineate the subjective and objective Bayes aspects of the
proposed calibration scheme. Observe that the continuous portion of the prior is
determined before the data are observed or the likelihood function is formulated,
and in that aspect the scheme is entirely subjectivist. This points to one of the
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scheme’s major practical benefits, which is that the analyst need not adopt a dif-
ferent mindset between estimation and testing, but may use the same continuous
prior for both. The discrete portion of the prior is defined through calibrated prior
odds, ρst(φ), as in (17), which is a combination of expert knowledge and a calibra-
tion rule that builds on a chosen default-prior concept. The calibrated prior odds
is determined before the data are collected (i.e., there is no “double-use” of data),
and defines a model that is a plausible result of expert elicitation. Nevertheless,
because default-prior concepts are typically defined from the likelihood function,
there is reason to regard discrete prior’s subjectivism as having been compromised.

In particular, from the viewpoint of personal probability, it may be unclear
whose prior defines the quantity ρst(φ), despite that its uncalibrated analogue,
ρ̃st(φ), is the expression of an expert. One the other hand, it is not difficult to
envision an alternative use for the ideas presented here as tools for guiding the
back-and-forth between expert and analyst in an actual elicitation process, wherein
the expert, having through this process gained some understanding of the nuances
of Bayesian testing, ultimately becomes invested in the value identified for ρst(φ).
Surely such alternative use requires development, which is not attempted here, but
it points to a setting in which the proposed methodology would be entirely subjec-
tive in character.

The article furthermore explores a particular multiplicity adjustment for vari-
able selection problems that is related to the truncated Poisson prior of Womack
et al. (2015). In the present exploration, its asymptotic consistency properties are
established under weak dimensionality assumptions. It is reformulated as a cali-
bration, and demonstrated in an analysis of an example data set of adverse-event
responses, where it is shown to have a strong clarifying effect for flagging worri-
some adverse-event types.

The proposed methodology is also examined for its connection to Schwarz’s
(1978) model-choice criterion. The exploration of Section 4.2 suggests an inter-
pretation by which a scaled unit-information prior (22) places a calibrated Bayes
factor on a spectrum falling between a default-configured Bayes factor and the
exponentiated Schwarz criterion, highlighting that a calibrated assessment of evi-
dence is robust to modifications of the prior, but it is still sensitive to expert opin-
ion. This property is reflected in the example analyses of Section 5; however, those
demonstrations also show that the connection to the Schwarz criterion may be
disrupted when ad hoc adjustments are incorporated in the Schwarz criterion to
account for nuisance parameters.

The proposed methodology makes heavy use of conditioning in order to deal
with nuisance parameters. The example analysis of log-linear models in Sec-
tion 5.2 highlights a particularly useful aspect of this approach, which is that it
expands the concept of sample size to allow formulations that depend on nuisance
parameters, as does the formulation of n(θ0,φ) for that analysis. The possibilities
for meeting the requirements of intuition are widened by the added flexibility of
parameter-specific formulations for sample size.
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Although this article focuses on multiplicity adjustments and prior sensitiv-
ity, an expectation is stated in Section 1 that the proposed calibration frame-
work has broader applicability. As one example of a potential application not
explicitly discussed here, the reader is invited to ponder methodology for high-
dimensional global testing under a smoothness assumption, as would be applied in
non-parametric regression or functional data analysis. For a canonical version of
those contexts, explored in Spitzner (2008), consider working with “preprocessed”
data that are either the Fourier coefficients of a smooth function measured densely,
with error, or the average of Fourier coefficients of a random sample of densely
measured smooth functions. In either situation, suppose the coefficients are col-
lected into a high-dimensional summary vector of p independent components,
Y = (Ȳ1, . . . , Ȳp), in which each component is modeled as Ȳi |θi ∼ G(θi,1/n).
The “global” test is of the model-comparison M0 vs. M1, where M0 has all θi = 0,
and M1 treats all θi as free parameters. A suitable prior for M1 has θi ∼ G(0, τ 2

i ),
independently across i. Smoothness may be understood through such concepts as
a “Sobolev” geometry, which motivates a configuration of the prior such that its
scale parameters taper to zero, τi → 0. Moreover, it is possible to set the taper-
ing rate in such a way as to achieve a desirable analytical property. Should expert
opinion specify a different rate, or no tapering at all, then the calibration techniques
developed here would be useful for managing the discrepancy.

Appendix

Proof of Theorem 1. It is equivalent to establish the boundedness of Rs =
1/P [Ms |Y ]. Writing this quantity as a sum of non-negative terms, Rs =∑

t∈S{P [Mt |Y ]/P [Ms |Y ]}, as is implied by
∑

t∈S P [Mt |Y ] = 1, admits use of an
extension of the Borel–Cantelli lemma (cf. Billingsley, 1995, prob. 22.3, p. 294),
which provides that the boundedness of Rs = 1/P [Ms |Y ] follows from that of
E[Rs |θ ].

Substitution of each calibrated Bayes factor in (18) with NDCuv(Y ) =
kuBFuv(Y )/τ yields

P [Ms |Y ]
P [Mt |Y ] =

{
ks !

(ks − j1)!
BFsuj1

(Y )

τ j1

}{
(ks − j1)!

(ks − j1 + j2)!
τ j2

BFtuj1
(Y )

}
.

For Mu vs. Mv such that Au − Av = {i}, the Bayes factor is BFuv(Y ) =
(1 + τ 2n)1/2 exp{−1

2wnZ
2
i }, where Zi = n1/2Ȳi , Ȳ = n−1 ∑n

j=1 Yij , and wn =
τ 2n/(1 + τ 2n). Conditional on θi , the quantity Z2

i is a non-central chi-square
random variable with one degree of freedom and non-centrality parameter nθ2

i .
It follows from the chi-square moment-generating function formula, M(t) =
(1 − 2t)−1/2 exp{nθ2

i t/(1 − 2t)}, that for r = 1, . . . , j1, since i ∈ As has θi = 0,
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E[1/BFur−1ur (Y )|θ s] = 1; and, for r = j1 + 1, . . . , j1 + j2, since i /∈ As has
ξn ≤ |θi |, E[BFurur−1(Y )|θ s] ≤ τζn, where

ζn =
(

1 + τ 2n

τ 2

)1/2(
1 + τ 2n

1 + 2τ 2n

)1/2
exp

{
−1

2

(
τ 2n

1 + 2τ 2n

)
nξ2

n

}
.

The above insights set up a partition of the index space, S, relative to s ∈ S,
into subsets corresponding to the unique pairs (j1, j2), for j1 = 0, . . . , ks and
j2 = 0, . . . , νs such that the subset associated with a given pair (j1, j2) indexes
the

(ks

j1

)(νs

j2

)
model-configurations that each selects j1 variables among those omit-

ted in Ms and omits j2 variables among those selected in Ms . It follows that

E[Rs |θ s] ≤ R∗
s =

ks∑
j1=0

νs∑
j2=0

(
ks

j1

)(
νs

j2

)
(ks − j1)!

ks ! τ j1
(ks − j1 + j2)!

(ks − j1)! ζ j2
n .

This is evaluated by separately considering the “outer sum” and “inner sum” oper-
ations of the double sum, R∗

s = ∑ks

j1=0 Uout
j1

∑νs

j2=0 U in
j2

(j1), where

Uout
j1

=
(
ks

j1

)
(ks − j1)!

ks ! τ j1 and U in
j2

(j1) =
(
νs

j2

)
(ks − j1 + j2)!

(ks − j1)! ζ j2
n .

Observe that at j2 = 0 one has U in
j2

(j1). Otherwise, if 1 ≤ j2 ≤ νs , use Sterling’s

approximation,
√

2πkk+1/2e−k ≤ k! ≤ ekk+1/2e−k , to see that

U in
j2

(j1) ≤ B0B1(j2)
ks−j1+1/2B3(j2)

νs+1/2

× 1

j2! exp
[
j2

{
log ζn + logB2(j2) + logB4(j2) − 2

}]
, (34)

where B0 is a fixed constant, B1(j2) = 1 + j2/(ks − j1) if j1 < ks and B1(j2) = j2
if j1 = ks ; B2(j2) = ks − j1 + j2 if j2 > 0 and B2(j2) = 1 if j2 = 0; B3(j2) =
1 + j2/(νs − j2) if j2 < νs and B3(j2) = j2 if j2 = νs ; and, B4(j2) = νs − j2
if j2 < νs and B4(j2) = 1 if j2 = νs . The exponent in the final factor of (34) is
bounded above by j2(log ζn + 2 logpn − 2). It follows, after moving initial terms
into the exponent, that

U in
j2

(j1) ≤ B0 × 1

j2! exp
[
j2

{
log ζn + 2 logpn − 2 + g(j2)

}]
, (35)

where

g(j2) = j−1
2

{
(ks − j1 + 1/2) logB1(j2) + (νs + 1/2) logB3(j2)

}
.

For the case in which νs ≥ 2, use the inequality 0 < x−1 log(1 + x) < 1 to see that
g(1), g(νs − 1)/(logνs), and g(νs)/(logνs) are bounded. Moreover, a calculus
exercise will show that g(j2) is convex across 1 ≤ j2 ≤ νs − 1. (To see this, write
g(j2) = g1(j2) + g2(j2) and observe that each of g1(j2) and g2(j2) are convex.) It



890 D. J. Spitzner

follows that g(j2) ≤ g∗ = max{g(1), g(νs − 1)} across j2 = 1, . . . , νs − 1. Hence,
by evaluating the “inner sum” in parts, one has

νs∑
j2=0

U in
j2

(j1)

≤ 1 + B0

νs−1∑
j2=1

1

j2! exp
[
j2

{
log ζn + 2 logpn − 2 + g∗}] + U in

νs
(j1)

≤ 1 + B0 exp
{
log ζn + 2 logpn − 2 + g∗} + U in

νs
(j1), (36)

having noted that the middle term evaluates the first few terms of the power se-
ries expansion of the exponential function. Because g∗ = O(logpn) and g(νs) =
O(logpn), as has been shown, the conditions of the theorem imply that the log ζn

term dominates in each exponent of the last two terms in (36), the exponent of
U in

νs
(j1) defined in (35), sending the exponent diverging toward negative infinity. It

follows that the “inner sum” converges,
∑νs

j2=0 U in
j2

(j1) → 1. The same conclusion
holds for the case νs ≤ 1, and is deduced from (36) in a parallel way by noting that
the middle term is not present when νs = 1 and neither of the last two terms are
present when νs = 0.

Having bounded the “inner sum,” it is straightforward to bound the “outer sum”
using familiar techniques. It has been shown that R∗

s ≤ B5
∑ks

j1=0 Uout
j1

, eventually,

for some fixed constant B5. Subsequently, upon noting that Uout
j1

= (1/j1!)τ j1 , by
simple cancellation, the “outer sum” is understood from the power series expan-
sion of the exponential function,

ks∑
j1=0

Uout
j1

=
ks∑

j1=0

1

j1!τ
j1 ≤ eτ ,

which establishes that R∗
s is bounded and completes the proof. �

Proof of Theorem 2. Write θ̃ and Z̃(θ̃ |φ) for the respective values of θ̂ and
Z(θ̂ |φ) calculated at the solution Ỹ .

For any sequence θ1, θ2, . . . , because În(θn|φ) is a constant multiple of a
derivative of Z̃(θn|φ), the two objects diverge at the same rate, as n → ∞, unless
Z̃(θn|φ) → 0, which requires θn → θ0. Apply the approximation (18) to rewrite
(19) as ∣∣În(θ̃ |φ)

∣∣1/2 ≈ e
1
2 ‖Z(θ̃ |φ)‖2

(2π)ν/2π(θ̃ |φ). (37)

The failure of Z̃(θ |φ) → 0 would imply the contradictory situation wherein the
left and right sides of (37) are asymptotically dissimilar. It must therefore be the
case that θ̃n → θ0.
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By (18), the solution (19) satisfies

e
1
2 ‖Z̃(φ)‖2 ≈ τ̃ ν |În(θ̃ |φ)|1/2

(2π)ν/2π(θ̃/τ̃ |φ)
,

and the approximate Bayes factor is,

BFst(Ỹ |φ) ≈
(

τ

τ̃

)ν π(θ̃/τ̃ |φ)

π(θ̃/τ |φ)
≈

(
τ

τ̃

)ν π(θ0/τ̃ |φ)

π(θ0/τ |φ)
≈

(
τ

τ̃

)ν

. �

Acknowledgments

The author is grateful for invaluable support in preparing this article from the Na-
tional Science Foundation (grant number SES-1260803) and the Center for Statis-
tics and Applications in Forensic Evidence (CSAFE, through Cooperative Agree-
ment #70NANB15H176 between NIST and Iowa State University, which includes
activities carried out at Carnegie Mellon University, the University of California,
Irvine, and the University of Virginia).

References

Bartlett, M. S. (1957). Comment on D. V. Lindley’s statistical paradox. Biometrika 44, 533–534.
Bayarri, M. J., Berger, J. O., Forte, A. and García-Donato, G. (2012). Criteria for Bayesian

model choice with application to variable selection. The Annals of Statistics 40, 1550–1577.
MR3015035

Berger, J. and Pericchi, L. (2004). Training samples in objective model selection. The Annals of
Statistics 32, 841–869. MR2065191

Berger, J. O. and Pericchi, L. (1996). The intrinsic Bayes factor for model selection and prediction.
Journal of the American Statistical Association 91, 109–122. MR1394065

Berry, D. A. and Hochberg, Y. (1999). Bayesian perspectives on multiple comparisons. Journal of
Statistical Planning and Inference 82, 215–227. MR1736444

Berry, S. M. and Berry, D. A. (2004). Accounting for multiplicities in assessing drug safety: A three-
level hierarchical mixture model. Biometrics 60, 418–426. MR2066276

Billingsley, P. (1995). Probability and Measure, 3rd ed. New York: Wiley. MR1324786
Bollen, K., Ray, S., Zavisca, J. and Harden, J. J. (2012). A comparison of Bayes factor approximation

methods including two new methods. Sociological Methods and Research. In press. MR3190708
Box, G. E. P. and Tiao, G. C. (1992). Bayesian Inference in Statistical Analysis. Reading, MA:

Addison-Wesley. MR0418321
Casella, G., Girón, F. J., Martinez, M. L. and Moreno, E. (2009). Consistency of Bayesian procedures

for variable selection. The Annals of Statistics 37, 1207–1228. MR2509072
Castillo, I., Schmidt-Hieber, J. and van der Vaart, A. (2015). Bayesian linear regression with sparse

priors. The Annals of Statistics 43, 1986–2018. MR3375874
Dellaportas, P., Forster, J. J. and Ntzoufras, I. (2012). Joint specification of model space and param-

eter space prior distributions. Statistical Science 27, 232–246. MR2963994
Fan, J. and Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature space.

Journal of the Royal Statistical Society, Series B 70, 849–911. MR2530322

http://www.ams.org/mathscinet-getitem?mr=3015035
http://www.ams.org/mathscinet-getitem?mr=2065191
http://www.ams.org/mathscinet-getitem?mr=1394065
http://www.ams.org/mathscinet-getitem?mr=1736444
http://www.ams.org/mathscinet-getitem?mr=2066276
http://www.ams.org/mathscinet-getitem?mr=1324786
http://www.ams.org/mathscinet-getitem?mr=3190708
http://www.ams.org/mathscinet-getitem?mr=0418321
http://www.ams.org/mathscinet-getitem?mr=2509072
http://www.ams.org/mathscinet-getitem?mr=3375874
http://www.ams.org/mathscinet-getitem?mr=2963994
http://www.ams.org/mathscinet-getitem?mr=2530322


892 D. J. Spitzner

Fan, J. and Lv, J. (2010). A selective overview of variable selection in high dimensional feature
space. Statistica Sinica 20, 101–148. MR2640659

Fouskakis, D., Ntzoufras, I. and Perrakis, K. (2018). Power-expected-posterior priors for generalized
linear models. Bayesian Analysis 13, 721–748. MR3807864

Good, I. J. (1950). Probability and the Weighing of Evidence. London: Griffin. MR0041366
Ibrahim, J. G. and Chen, M. H. (2000). Power prior distributions for regression models. Statistical

Science 15, 46–60. MR1842236
Jeffreys, H. (1961). Theory of Probability, 3rd ed. Oxford: Oxford University Press. MR0187257
Kass, R. E. and Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association

90, 773–795. MR3363402
Kass, R. E. and Wasserman, L. (1995). A reference Bayesian test for nested hypotheses and its

relationship to the Schwarz criterion. Journal of the American Statistical Association 90, 928–
934. MR1354008

Lavine, M. and Schervish, M. J. (1999). Bayes factors: What they are and what they are not. American
Statistician 53, 119–122. MR1707756

Liang, F., Paulo, R., Molina, G., Clyde, C. A. and Berger, J. O. (2008). Mixtures of g priors
for Bayesian variable selection. Journal of the American Statistical Association 103, 410–423.
MR2420243

Lindley, D. V. (1957). A statistical paradox. Biometrika 44, 187–192.
Lindley, D. V. (1977). A problem in forensic science. Biometrika 64, 207–213. MR0518935
Lund, S. P. and Iyer, H. (2017). Likelihood ratio as weight of forensic evidence: a closer look. Journal

of Research of National Institute of Standards and Technology 122, 1–32.
Moreno, E. and Pericchi, L. R. (2014). Intrinsic priors for objective Bayesian model selection. In

Bayesian Model Comparison (I. Jeliazkov and D. J. Poirier, eds.) 279–300. Emerald Group Pub-
lishing Limited.

Müller, P., Parmigiani, G. and Rice, K. (2007). FDR and Bayesian multiple comparison rules. In
Bayesian Statistics 8, 349–370. Oxford: Oxford University Press. MR2433200

Narisetty, N. N. and He, X. (2014). Bayesian variable selection with shrinking and diffusing priors.
The Annals of Statistics 42, 789–817. MR3210987

O’Hagan, A. (1995). Fractional Bayes factors for model comparisons. Journal of the Royal Statistical
Society, Series B 57, 99–138. MR1325379

Pérez, J. M. and Berger, J. O. (2002). Expected-posterior prior distributions for model selection.
Biometrika 89, 491–511. MR1929158

Raftery, A. E. (1993). Approximate Bayes factors and accounting for model uncertainty in general-
ized linear models. Technical Report 255, Dept. Statistics, Univ. Washington.

Robert, C. P. (1993). A note on Jeffreys–Lindley paradox. Statistica Sinica 3, 603–608. MR1243404
Robert, C. P. and Casella, G. (1999). Monte Carlo Statistical Methods. New York: Springer.

MR1707311
Schwartz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6, 461–464.

MR0468014
Scott, J. G. and Berger, J. O. (2010). Bayes and empirical Bayes multiplicity adjustment in the

variable selection problem. The Annals of Statistics 38, 2587–2619. MR2722450
Spitzner, D. J. (2008). An asymptotic viewpoint on high-dimensional Bayesian testing. Bayesian

Analysis 3, 121–160. MR2383254
Spitzner, D. J. (2011). Neutral-data comparisons for Bayesian testing. Bayesian Analysis 6, 603–638.

MR2869959
Tierney, L. and Kadane, J. B. (1986). Accurate approximations for posterior moments and marginal

densities. Journal of the American Statistical Association 81, 82–86. MR0830567
Wilson, M. A., Iversen, E. S., Clyde, M. A., Schmidler, S. C. and Schildkraut, J. M. (2010). Bayesian

model search and multilevel inference for SNP association studies. Annals of Applied Statistics
4, 1342–1364. MR2758331

http://www.ams.org/mathscinet-getitem?mr=2640659
http://www.ams.org/mathscinet-getitem?mr=3807864
http://www.ams.org/mathscinet-getitem?mr=0041366
http://www.ams.org/mathscinet-getitem?mr=1842236
http://www.ams.org/mathscinet-getitem?mr=0187257
http://www.ams.org/mathscinet-getitem?mr=3363402
http://www.ams.org/mathscinet-getitem?mr=1354008
http://www.ams.org/mathscinet-getitem?mr=1707756
http://www.ams.org/mathscinet-getitem?mr=2420243
http://www.ams.org/mathscinet-getitem?mr=0518935
http://www.ams.org/mathscinet-getitem?mr=2433200
http://www.ams.org/mathscinet-getitem?mr=3210987
http://www.ams.org/mathscinet-getitem?mr=1325379
http://www.ams.org/mathscinet-getitem?mr=1929158
http://www.ams.org/mathscinet-getitem?mr=1243404
http://www.ams.org/mathscinet-getitem?mr=1707311
http://www.ams.org/mathscinet-getitem?mr=0468014
http://www.ams.org/mathscinet-getitem?mr=2722450
http://www.ams.org/mathscinet-getitem?mr=2383254
http://www.ams.org/mathscinet-getitem?mr=2869959
http://www.ams.org/mathscinet-getitem?mr=0830567
http://www.ams.org/mathscinet-getitem?mr=2758331


Calibrated Bayesian testing 893

Womack, A. J., Fuentes, C. and Taylor-Rodriguez, D. (2015). Model space priors for objective sparse
Bayesian regression. Preprint. Available at https://arxiv.org/abs/1511.04745.

Zellner, A. (1986). On assessing prior distributions and Bayesian regression analysis using g-prior
distributions. In Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de
Finetti (P. Goel and A. Zellner, eds.) 233–243. Amsterdam: North-Holland. MR0881437

University of Virginia
P.O. Box 400135
Charlottesville, Virginia 22904-4135
USA
E-mail: dan.spitzner@virginia.edu

https://arxiv.org/abs/1511.04745
http://www.ams.org/mathscinet-getitem?mr=0881437
mailto:dan.spitzner@virginia.edu

	Introduction
	Main elements of the proposed framework
	Calibration to a default anchor in the data space
	Example: The Gaussian means problem
	Interpretations and implications

	Calibration in multiple testing
	Extending "null" vs "alternative" comparisons to multiple testing
	Multiplicity adjustment
	Asymptotic consistency in Gaussian variable selection

	Calibration in non-Gaussian contexts
	Finding an anchor point
	Connections to the Schwarz criterion

	Demonstrations on example data
	Adverse events in a vaccine trial
	The Behrens-Fisher problem
	Log-linear models for the analysis of two-way tables

	Conclusions
	Appendix
	Acknowledgments
	References
	Author's Addresses

