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Abstract. The primary goal of this paper is to introduce the zero-modified
Poisson–Lindley regression model as an alternative to model overdispersed
count data exhibiting inflation or deflation of zeros in the presence of co-
variates. The zero-modification is incorporated by considering that a zero-
truncated process produces positive observations and consequently, the pro-
posed model can be fitted without any previous information about the zero-
modification present in a given dataset. A fully Bayesian approach based on
the g-prior method has been considered for inference concerns. An inten-
sive Monte Carlo simulation study has been conducted to evaluate the per-
formance of the developed methodology and the maximum likelihood esti-
mators. The proposed model was considered for the analysis of a real dataset
on the number of bids received by 126 U.S. firms between 1978–1985, and
the impact of choosing different prior distributions for the regression coeffi-
cients has been studied. A sensitivity analysis to detect influential points has
been performed based on the Kullback–Leibler divergence. A general com-
parison with some well-known regression models for discrete data has been
presented.

1 Introduction

The standard Poisson (P) distribution is the most adopted discrete model for the
analysis of count data in several research fields, mainly due to its great simplic-
ity and by having its computational implementation available for many statistical
packages. However, it is well-known that such model is not a suitable choice for the
analysis of counts in which the variance-to-mean ratio is not (at least) close to 1,
that is, when the equidispersion property is violated. Apart from data transforma-
tion, the most popular way to circumvent such an issue is the use of finite mixture
models (McLachlan and Peel, 2000) that can accommodate, for example, overdis-
persion (Karlis and Xekalaki, 2005). The Negative Binomial (NB) distribution
(that may arise as a P mixture model by using a Gamma distribution for the con-
tinuous part) is undoubtedly the most famous alternative to model extra-P variabil-
ity. However, the literature concerning discrete models, which can handle different
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levels of overdispersion, is extensive and provides several other mixed distribu-
tions as the Poisson–Lindley (Sankaran, 1970), the Poisson–Lognormal (Bulmer,
1974), the Poisson–Inverse Gaussian (Shaban, 1981), the Negative Binomial–
Lindley (Zamani and Ismail, 2010), the Poisson–Shanker (Shanker, 2016a), the
Poisson–Sujatha (Shanker, 2016b), among others.

Unfortunately, there is a significant drawback regarding such mixture models,
which is the fact that they do not fit well when data presents a modification in
the frequency of zeros. Excess of zeros is the most common case in practice and,
in the sense of address such a problem, several zero-inflated/hurdle approaches
were proposed for the traditional P distribution (Cohen, 1960; Umbach, 1981;
Mullahy, 1986; Lambert, 1992; Zorn, 1996; McDowell, 2003; Wagh and Kamalja,
2018). Various authors have considered these approaches for real applications, and
here we point out a few. Bohara and Krieg (1996) have shown that the modeling of
migratory frequency data can be improved by using zero-inflated Poisson (ZIP)

models. Gurmu and Trivedi (1996) have sought to deal with the excess of zeros
on data from recreational trips. Ridout, Demétrio and Hinde (1998) have exploited
the apple shoot propagation data, and they have addressed the modeling task by
using several ZIP regression models. In the social sciences, Bahn and Massen-
burg (2008) have considered the hurdle version of the P model for the number of
homicides in Chicago (State of Illinois, U.S.). Further applications of these mod-
els were considered for quantitative studies about HIV-risk reduction (Heilbron
and Gibson, 1990; Hu, Pavlicova and Nunes, 2011), for the analysis of DNA se-
quencing data (Beuf et al., 2012) and the modeling of several datasets on chromo-
somal aberrations induced by radiation (Oliveira et al., 2016). Ngatchou-Wandji
and Paris (2011) have provided a comprehensive discussion about zero-inflated
models. A Bayesian approach for the zero-inflated Poisson distribution was con-
sidered by Rodrigues (2003) and by Ghosh, Mukhopadhyay and Lu (2006) in a
regression framework. Usually, zero-deflated data are frequently observed in prac-
tice, but there are very few studies addressing this case solely (Dietz and Böhning,
2000; Angers and Biswas, 2003), even if this situation is often referred to in papers
dealing with zero-inflation.

Zero-modified models provide a more general tool to handle count data with
inflation or deflation at zero when no information about the nature of this phe-
nomenon is available. Dietz and Böhning (2000) have introduced the zero-
modified Poisson (ZMP) regression model for zero-inflated/deflated samples and
Conceição, Andrade and Louzada (2013) have considered a Bayesian approach
for this model as an alternative to model Brazilian leptospirosis notification data.
Bertoli et al. (2018) have proposed the zero-modified Poisson–Shanker regression
model, whose usefulness was illustrated through its application to a real dataset
on fetal deaths notification. Since zero-inflated/deflated models may also be use-
ful to deal with data presenting overdispersed, this paper aims to introduce and
present the usefulness of a regression model based on the zero-modified version
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of the PL distribution (ZMPL, for short). The Poisson–Lindley (PL) distribu-
tion was proposed by Sankaran (1970) as an alternative to model overdispersed
count datasets. The model was derived by mixing the P with the Lindley (L) dis-
tribution (Lindley, 1958). A strictly positive random variable ψ is said to have L
distribution if its probability density function (pdf) has the form

f (ψ; θ) = θ2

(θ + 1)
(ψ + 1)e−θψ , ψ ∈ R+,

where θ ∈ R+ is the shape parameter. The author has shown that this model is
defined by a 2-component mixture of an Exp(θ) and a Gamma(2, θ) distribution
with mixing proportions given, respectively, by θ(θ + 1)−1 and (θ + 1)−1.

Naturally, the proposed model is more flexible than the ZIP model, since it
takes into account inflation or deflation of zeros, which is a feature often encoun-
tered when analyzing count data, besides modeling datasets with overdispersion
that does not come only from the inflation or deflation of zeros. In a general re-
gression framework, discrepant points (outliers) can be identified and, through a
careful sensitivity analysis, one can quantify the influence of such observations.
However, since the PL distribution accounts for several levels of overdispersion,
its zero-modified version is naturally more robust than the ZMP model as it may
accommodate discrepant points that do not significantly influence the parameter
estimates.

For this paper, we consider a reparameterization of the original ZMPL prob-
ability mass function (pmf), which allow the likelihood function to be partitioned
due to orthogonality between the vectors of fixed effects. Inference procedures
are conducted under a fully Bayesian perspective, considering an adaptation of
the g-prior method. The Random-walk Metropolis algorithm is applied for es-
timation via Markov Chain Monte Carlo (MCMC) sampling. A local influence
measure based on the Kullback–Leibler divergence is considered for the task of
detecting influential points. A Monte Carlo simulation study was performed, and
the obtained results are presented to illustrate the performance of the developed
methodology. For comparative purposes, the performance of the maximum likeli-
hood estimators (MLEs) was also assessed. Moreover, an application using a real
dataset on the number of bids received by 126 U.S. firms between 1978–1985 is
presented as a way to assess the usefulness and the competitivity of the proposed
model.

This paper is organized as follows. In Section 2, we briefly present the PL dis-
tribution and some of its main statistical properties. In Section 3, we introduce
the ZMPL model, demonstrating its flexibility to deal with zero-inflated/deflated
data. In Section 4, we present a regression framework based on the hurdle version
of the ZMPL distribution. In Section 5, we describe all the Bayesian procedures
and methodologies that are considered for inferential purposes in this paper. In
Section 6, we discuss the results of a Monte Carlo simulation study and in Sec-
tion 7, an application of the proposed model is exhibited. General comments and
concluding remarks are addressed in Section 8.
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2 The PL distribution

The PL distribution is a probabilistic model that may arise when it is believed that
the rate parameter (ψ) of the P model behaves according to a L random variable
into the subset of positive real numbers R+. In other words, a random variable
Y is said to follow the PL law if the stochastic representation Y |ψ ∼ P(ψ) and
ψ ∼ L(θ) holds for all θ ∈ R+. In this case, the PL distribution is defined by the
equation

P(Y = y; θ) = θ2(θ + y + 2)

(θ + 1)y+3 , y ∈ Y0, (2.1)

for θ ∈ R+ and Y0 = {0,1, . . .} is the set of nonnegative integers. Using the
gamma integral, the equation (2.1) can be easily obtained by integrating P(Y =
y|ψ)f (ψ; θ) respect to ψ over R+, in which P(Y = y|ψ) is the conditional pmf
of a P random variable.

The unconditional distribution of the random variable Y can be denoted by
PL(θ). The pmf (2.1) does not involve complicated expressions, and therefore,
the probabilities can be easily computed over Y0 as

P(Y = 0; θ) = θ2(θ + 2)

(θ + 1)3 .

From the results provided by Sankaran (1970), the mean and the variance of Y

are given, respectively, by

μ = θ + 2

θ(θ + 1)
and σ 2 = θ3 + 4θ2 + 6θ + 2

θ2(θ + 1)2 , (2.2)

for θ ∈ R+. It can be easily shown that μ ∝ θ−1. Also, the expression of σ 2 can
be straightforwardly rearranged as

σ 2 = μ

[
1 + θ2 + 4θ + 2

θ(θ + 1)(θ + 2)

]
,

where the term inside the brackets correspond to the index of dispersion (ID =
σ 2μ−1). One can notice that the ratio involving θ is always positive. This implies
that the PL distribution is always overdispersed, that is, {θ ∈ R+ : σ 2 ≤ μ} =
∅. In addition, the index of dispersion is clearly greater than 1, also implying
overdispersion. Conversely, we have that ID → 1 (σ 2 → μ) as θ → ∞, that is, the
PL distribution has the property of equidispersion for large values of θ .

Another useful measure to characterize a discrete distribution is the zero-
modification (ZM) index

ZM = 1 + μ−1 log
[
P(Y = 0)

]
,

which is defined based on the P distribution. This measure can be easily inter-
preted since ZM > 0 indicates zero-inflation, ZM < 0 indicates zero-deflation and
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ZM = 0 indicates no zero-modification. For the PL distribution, the ZM index is
given by

ZM = 1 + θ(θ + 1)[2 log(θ) + log(θ + 2) − 3 log(θ + 1)]
θ + 2

,

for θ ∈ R+. When analysing the ZM index more deeply, we have obtained that
ZM → −1 as θ → ∞ and ZM → 0 as θ → 0. This implies that, besides the usual
case (ZM = 0), the PL distribution is suitable to deal with zero-deflation, but is
not indicated to model zero-inflated datasets.

Now, let us reparameterize the pmf (2.1) in terms of the mean μ. It can be par-
ticularly useful since our interest is to derive a regression model based on the PL
distribution, in which the influence of fixed and random effects can be evaluated
directly over the mean of the response variable. Since θ ∈ R+, we have that

θ = −(μ − 1) −
√

(μ − 1)2 + 8μ

2μ
, (2.3)

and, if we denote θ = h(μ), the pmf (2.1) can be rewritten as

P(Y = y;μ) = h2(μ)[h(μ) + y + 2]
[h(μ) + 1]y+3 , y ∈ Y0, (2.4)

for μ ∈ R+.

3 The ZMPL distribution

In addition to the interest in the case where the equidispersion assumption on the P
distribution is violated, we may also be interested in the cases where a large/little
amount of zeros is observed beyond that generated by the original process, which
we already supposed to account for overdispersion. There are some typical situa-
tions where zero-modification may occur, and we list these cases in the following.

(a) Not all members of the population are affected by the process, which causes
inflation of zeros to occur due to the response of unaffected subjects being zero;

(b) When zeros cannot be observed in the population (truncation at zero);
(c) The occurrence of unavoidable problems during the sampling process may

lead to an increase/decrease in the probability of a zero observation being selected,
hence the zero-inflation/deflation situation;

(d) A combination of (a) and (b) causes a part of the population to be zero-
truncated distributed while the other part is not affected and provides the zero
observations.

In this section, the ZMPL model is introduced as an alternative to model
overdispersed count datasets when a large/little amount of zeros is observed be-
yond what would be expected by the PL distribution. Thus, let Y be a discrete
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random variable defined on Y0. It can be stated that Y is distributed according to a
ZMPL distribution if its pmf can be written as

P∗(Y = y;μ,p) = (1 − p)δy + pP(Y = y;μ), y ∈ Y0, (3.1)

for μ ∈ R+ and p is the zero-modification parameter. Also, δy is an indicator
function, so that δy = 1 if y = 0 and δy = 0 otherwise. For the class of zero-
modified models, the parameter p is subject to the condition (the so-called p-
condition) given by

0 ≤ p ≤ P−1(Y > 0;μ), (3.2)

where P(Y > 0;μ) is the probability of Y being positive under the PL distribution,
given that its mean is μ. In this case, we have that

P(Y > 0;μ) = h2(μ) + 3h(μ) + 1

[h(μ) + 1]3 , (3.3)

for μ ∈ R+.
One can easily notice that (3.1) is not a mixture distribution typically chosen

to model zero-inflated data, since parameter p can assume values greater than
1. However, for all values of p between 0 and the boundary P−1(Y > 0;μ), the
equation (3.1) corresponds to a proper pmf since P∗(Y = y;μ,p) ≥ 0 for all y ∈
Y0 and the probabilities sum to 1 over Y0.

The mean and the variance of Y ∼ZMPL(μ,p) are given, respectively, by

μ∗ = pμ and
(
σ 2)∗ = p

[
σ 2 + (1 − p)μ2]

,

where μ and σ 2 are given in equation (2.2). For the zero-modified case, the index
of dispersion can be expressed as ID∗ = σ 2μ−1 + (1 − p)μ. The term (1 − p)μ

represents the overdispersion caused by a modification on the zero frequency, re-
garding the PL distribution.

The ZMPL distribution may be considered an interesting alternative to the
ZMP model, since the base distribution of the former can accommodate several
levels of overdisperson, issue that the P distribution generally fails to deal with.
Figure 1 depicts the behaviour of the ZMPL distribution for different values of p

and for μ = 0.25 (implying p ∈ [0,4.98]), for μ = 0.50 (implying p ∈ [0,2.96]),
for μ = 0.75 (implying p ∈ [0,2.28]) and for μ = 1.00 (implying p ∈ [0,1.94]).
When looking at the pmf plots and the conditions regarding the zero-modification
parameter, one can notice that the behaviour of pmf (3.1) is highly affected by the
value of p, as can also be seen by considering the proportion of additional/missing
zeros

P∗(Y = 0;μ,p) − P(Y = 0;μ) = (1 − p) + pP(0;μ) − P(Y = 0;μ)

= (1 − p)P(Y > 0;μ). (3.4)

The first interpretation one can take from equation (3.4) is that parameter p

plays the primary role of controlling the frequency of zeros and therefore, it has
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Figure 1 Behavior of the ZMPL distribution for different values of μ and p.

a natural interpretation regarding the proportions of either inflation or deflation
at zero. The following statements describe the effect of parameter p on equation
(3.1).

(i) If p = 0, then P∗(Y = 0;μ,p) = 1. This implies that equation (3.1) is the
pmf of a degenerate distribution with all mass at zero;

(ii) If p = 1, then P∗(Y = 0;μ,p) = P(Y = 0;μ). This implies that equation
(3.1) is the pmf (3.3);

(iii) If p ∈ (0,1) then (1 − p)P(Y > 0;μ) > 0. This implies that equation (3.1)
has a proportion of zeros greater than pmf (2.4), hence zero-inflation;

(iv) If p ∈ [1,P−1(Y > 0;μ)], then (1 − p)P(Y > 0;μ) < 0. This implies
that equation (3.1) has a proportion of zeros smaller than pmf (2.4), hence zero-
deflation;

(v) If p = P−1(Y > 0;μ), then P∗(Y = 0;μ,p) = 0. This implies that equa-
tion (3.1) is the zero-truncated Poisson–Lindley (ZT PL) distribution (Ghitany,
Al-Mutairi and Nadarajah, 2008), with pmf given by

P∗(Y = y;μ) = P(Y = y;μ)

P(Y > 0;μ)
(1 − δy), (3.5)
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where the numerator is given by (2.4) and the denominator is given by (3.3). One
can notice that the reparameterization of equation (2.1) in terms of μ does not
affect the general definition of the zero-truncated version of the PL model. See
Shanker and Fesshaye (2016) for further details about the ZT PL distribution.

Given the value of p, one can easily identify the nature of the zero-valued ob-
servations under the phenomenon of interest. In this way, we have that the case
(iii) may be appropriate in situations (a), (c) and (d) as described at the beginning
of this section and the case (iv) may be appropriate in situations (c) and (d). More-
over, the index of dispersion can be investigated in terms of the modification at
zero since ID∗ = ID in the standard case (ii), ID∗ > ID in the zero-inflated case
(iii) and ID∗ < ID in the zero-deflated case (iv).

Now, let us rewritten pmf (3.1) as

P∗(Y = y;μ,p) = [
1 − p + pP(Y = 0;μ)

]
δy + pP(Y = y;μ)(1 − δy)

= [
1 − pP(Y > 0;μ)

]
δy

+ pP(Y = y;μ)(1 − δy), y ∈ Y0,

for μ ∈ R+. Taking ω = pP(Y > 0;μ), we have that

P∗(Y = y;μ,ω) = (1 − ω)δy + ωP∗(Y = y;μ), y ∈ Y0, (3.6)

where P∗(Y = y;μ) is given by equation (3.5). By condition (3.2), we clearly have
that ω ∈ [0,1].

Equation (3.6) corresponds to the hurdle version of the ZMPL distribution.
Mullahy (1986) introduced the class of hurdle models and the relevant feature of
such class is that the zero-valued observations are treated separately from the posi-
tive ones. In the main formulation, a binary probability model determines whether
a zero or a nonzero outcome occurs and hence, an appropriated zero-truncated
discrete distribution is chosen to describe the positive values (Saffar, Adnan and
Greene, 2012). In this case, we have that the probability of Y = 0 is 1 − ω and
the probability of Y > 0 is ω. The ZMPL distribution parameterized by ω can
be denoted by ZMPL(μ,ω). Such representation can be visualized as a super-
position of two random processes, that is, one that produces positive observations
from the ZT PL distribution and another one that produces only zero-valued ob-
servations with probability 1 − ω. Therefore, model (3.6) cannot be considered a
2-component mixture distribution.

By the hurdle representation of zero-modified models, only the positive obser-
vations are required to estimate parameter μ. Conceição et al. (2017) well dis-
cusses this fact for the class of zero-modified Power Series distributions, and here
we extend this result by asserting that the zero-truncated version of the ZMPL
distribution is equivalent to the ZT PL distribution and they have the same param-
eter μ. This can be easily checked using equation (3.6) because if we exclude the
value zero from Y0 and divide the right-hand side of (3.6) by the probability of Y
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being positive (ω), then we will get that Y ∼ ZT PL(μ). Besides, such a repre-
sentation allows us to obtain a closed-form solution for the MLE of parameter ω,
which is given by the proportion of nonzeros in the dataset. Also, it can be easily
seen that, for any fixed μ ∈ R+, the function ωP−1(Y > 0;μ) maps from [0,1] to
[0,P−1(Y > 0;μ)] bijectively and therefore, the invariance principle ensures that
parameter p can be estimated using such function. Indeed, inference procedures
about parameter p are required since we are often interested in identifying the kind
of zero-modification (inflation or deflation) is present in a given dataset.

4 The ZMPL regression model

Let us suppose that we have a collection (Y1, . . . , Yn) of independent discrete ran-
dom variables such that Yi |xᵀ

i ,z
ᵀ
i ,β ∼ ZMPL(μi,ωi), i = 1, . . . , n. In this case,

a regression model for count data based on the ZMPL distribution can be derived
by rewriting equation (3.6) as

P∗(
Yi = yi;xᵀ

i ,z
ᵀ
i ,β

) = (1 − ωi)δyi
+ ωiP∗(Yi = yi;μi), yi ∈ Y0, (4.1)

where x
ᵀ
i = (1, xi1, . . . , xiq1) and z

ᵀ
i = (1, zi1, . . . , ziq2) are related, respectively,

to μi and ωi and can include, for example, dummy variables, cross-level interac-
tions and polynomials. The β = (β1,β2) is the full vector of fixed effects, being
β
ᵀ
1 = (β10, . . . , β1q1) and β

ᵀ
2 = (β20, . . . , β2q2). Here, q1 (q2) denotes the num-

ber of covariates considered on the systematic component of a linear predictor for
parameter μ (ω).

The full design matrices of model (4.1) can be written as X = (1n,Xn×q1) and
Z = (1n,Zn×q2), where 1n is the intercept column and the submatrices Xn×q1 and
Zn×q2 are defined in such a way that the vector (xi1, . . . , xiq1) is the ith row of
Xn×q1 and the vector (zi1, . . . , ziq2) is the ith row of Zn×q2 . To complete model
definition, one have to specify two monotonic, invertible and twice differentiable
link functions, say g1 and g2, in which μi = g−1

1 (x
ᵀ
i β1) and ωi = g−1

2 (z
ᵀ
i β2) are

well defined on R+ and (0,1), respectively. For this purpose, one can choose any
suitable mappings g1 and g2 such that g−1

1 : R → R+ and g−1
2 : R → (0,1). The

logarithm link function, log(μi) = x
ᵀ
i β1, is the natural choice for g1. For g2(ωi),

the most usual choice is the logit link function,

logit(ωi) = log
(

ωi

1 − ωi

)
= z

ᵀ
i β2. (4.2)

The probit link function,

�−1(ωi) = z
ᵀ
i β2, (4.3)

is also appropriate for the requested purpose. Another possible choice for g2 is

log
[− log(1 − ωi)

] = z
ᵀ
i β2, (4.4)
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which corresponds to the complementary log–log link function. One can notice that
these link functions exclude the limit cases (i) and (v). Unlike the logit and probit,
the complementary log–log transformation provides an asymmetric specification
that can be useful when the probability of an outcome is very small/large. Further,
a more sophisticated approach considering the power and the reversal power link
functions was proposed by Bazán et al. (2017) and can be applied in our context to
provide more flexible relationships between the linear predictor and the parameter
ω.

The ZMPL regression model has q1 + q2 + 2 unknown parameters to be es-
timated, the components of the vectors β1 and β2. The link functions (4.2), (4.3)
and (4.4) for parameter ω exclude the limit cases (i) and (v). Besides, it is worth-
while to mention that identifiability problems could occur if the same covariate
were used to model both mean (μ) and the zero-modification parameter (p) if
we had considered a regression model derived from (3.6). Also, to ensure that the
regression coefficients are identifiable, it is essential the covariates (within linear
predictors) to be linearly independent. Unlike traditional approaches, the proposed
model can be fitted to both zero-inflated/deflated datasets. In this case, given a set
of covariates, the probability of a zero-valued count being observed for the ith
individual is given by 1 − ωi . The adopted parameterization makes model (4.1)
separable into two parts due to orthogonality between parameters in the structural
form of μ and ω. It also avoids non-identifiability problems as well as the use of
the EM algorithm, typically used to fit mixture models. Regardless of the model
framework, in this paper, we propose a fully Bayesian approach for estimation and
inference procedures. The next section is dedicated to present the details of such
an approach.

5 Inference

Let Y be a discrete random variable taking values on Y0. Suppose that a random
experiment is carried out n times independently and, subject to x

ᵀ
i and z

ᵀ
i for each

i, a vector y = (y1, . . . , yn) of observed values from Y is obtained. Considering
model formulation (4.1), if Yi |xᵀ

i ,z
ᵀ
i ,β ∼ ZMPL(μi,ωi) holds for all i, then

the likelihood function of the vector β can be written as

L(β;y,X,Z) =
n∏

i=1

ωi

(
1 − ωi

ωi

)δyi
[

P(Yi = yi;μi)

P(Yi > 0;μi)

]1−δyi

=
n∏

i=1

{
g−1

2

(
z
ᵀ
i β2

)[1 − g−1
2 (z

ᵀ
i β2)

g−1
2 (z

ᵀ
i β2)

]δyi

×
{

P[Yi = yi;g−1
1 (x

ᵀ
i β1)]

P[Yi > 0;g−1
1 (x

ᵀ
i β1)]

}1−δyi
}
,
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and the correspondent log-likelihood function is given by

	(β;y,X,Z) =
n∑

i=1

(1 − δyi
) log

{
P[Yi = yi;g−1

1 (x
ᵀ
i β1)]

P[Yi > 0;g−1
1 (x

ᵀ
i β1)]

}

+
n∑

i=1

{
log

[
g−1

2

(
z
ᵀ
i β2

)] − δyi
log

[
g−1

2 (z
ᵀ
i β2)

1 − g−1
2 (z

ᵀ
i β2)

]}
= 	1(β1;y,X) + 	2(β2;y,Z). (5.1)

For the ZMPL regression model, we will consider the log-linearity of the
mean, that is, g1(μi) = log(μi) = x

ᵀ
i β1. The choice of g2 is left open and the

notation ωi = g−1
2 (z

ᵀ
i β2) will be used when necessary. From equation (5.1), one

can easily notice that the vectors β1 and β2 are orthogonal and that 	1(β1;y,X)

depends only on the positive values on y. In this way, the log-likelihood function
of β1 takes the form

	1(β1;y,X) = ∑
k∈K1

log
[
h
(
exp

{
x
ᵀ
kβ1

}) + yk + 2
]

+ 2
∑

k∈K1

log
[
h
(
exp

{
x
ᵀ
kβ1

})]
− ∑

k∈K1

log
[
h2(

exp
{
x
ᵀ
kβ1

}) + 3h
(
exp

{
x
ᵀ
kβ1

}) + 1
]

− ∑
k∈K1

yk log
[
h
(
exp

{
x
ᵀ
kβ1

}) + 1
]
, (5.2)

where K1 = {i : yi > 0, yi ∈ y} is the finite set of indexes regarding the positive
observations of y. Adopting this set-up is equivalent to assuming that each positive
element of y comes from a ZT PL distribution. We are extending the fact that a
loss of efficiency in an estimation procedure based on the zero-truncated Poisson
model occurs whether additional information about the kind of zero-modification
is available (Dietz and Böhning, 2000). Now, the log-likelihood function of β2 can
be written as

	2(β2;y,Z) =
n∑

i=1

log
[
g−1

2

(
z
ᵀ
i β2

)] − ∑
k∈K2

log
[

g−1
2 (z

ᵀ
kβ2)

1 − g−1
2 (z

ᵀ
kβ2)

]
, (5.3)

where K2 = {i : yi = 0, yi ∈ y} is the finite set of indexes regarding the zero-valued
observations of y.

There are no closed-form solutions for the MLEs of β1 and β2 and therefore,
nonlinear optimization algorithms or direct numerical search on the surface of log-
likelihoods functions may be applied in order to obtain point estimates in the clas-
sical approach. By the maximum likelihood theory, a consistent estimator for the
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covariance matrix of ̂βr , r = 1,2, is given by the inverse of the Fisher information
Ir = EY [Jr ], where

J1 = −∂2	1(β1;y,X)

∂β1 ∂β
ᵀ
1

and J2 = −∂2	2(β2;y,Z)

∂β2 ∂β
ᵀ
2

,

are the observed information matrices. In our context, however, the computation
of the expected value respect to Y is unfeasible and therefore, a numerical approx-
imation for the covariance matrices can be obtained by evaluating J −1

r at βr = ̂βr

and using the observed vector y.

5.1 Prior distributions

A Bayesian analysis starts by choosing suitable prior distributions for the set of
unknown parameters. The g-prior (Zellner, 1986) is a common choice among
Bayesian users of the multiple linear regression model, mainly due to the fact
of providing a closed-form posterior distribution for the regression coefficients.
The g-prior is classified as an objective prior method which uses the inverse of
the Fisher information matrix up to a scalar variance factor (τ ∈R+) to obtain the
prior covariance structure of the multivariate Normal distribution. Such specifica-
tion is indeed quite attractive since the Fisher information plays a major role in the
determination of large sample covariance in both Bayesian and classical inference.

The problem of eliciting conjugate priors for generalized linear models (GLMs)
was addressed by Chen and Ibrahim (2003). Their approach can be considered as
a generalization of the original g-prior method, but its application is restricted for
the class of GLMs since the proposed prior does not have closed-form for non-
normal exponential families. As an alternative, Gupta and Ibrahim (2009) have
proposed the information matrix prior as a way to assess the prior correlation
structure between the regression coefficients, not including the intercept since the
design matrix is centered in order to ensure that β0 is orthogonal to the other co-
efficients. This method uses the Fisher information similarly to a precision matrix
whose elements are shrunken by the factor τ , which is considered fixed (τ ≥ 1).
Based on such approach, we will consider, for the vectors β1 and β2, two multi-
variate Normal prior distributions of the form

β1 ∼ MVN
[
β0

1, τ1�
0
1
]

and β2 ∼ MVN
[
β0

2, τ2�
0
2
]
, (5.4)

where �0
r refers to J −1

r evaluated numerically at β0
r , and τr is assumed known.

The vectors β0
1 and β0

2 can be chosen arbitrarily if no specialized information is
available. It is worthwhile to mention that we are not considering centered design
matrices in our approach. Hence, we are able to include β10 in the proposed g-
prior but, in this case, the intercept is a priori correlated with the other coefficients
(β11, . . . , β1q1). The same applies for β20 and (β21, . . . , β2q2).
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5.2 Posterior distributions and estimation

After prior specifications, the following step in a Bayesian analysis consists in the
obtaining of computable posterior densities for the unknown model parameters.
For the ZMPL regression model (4.1), the unnormalized joint posterior distribu-
tion of the vector β can be expressed as

π(β;y,X,Z) ∝ exp
{
	1(β1;y,X) + 	2(β2;y,Z)

}
π1(β1)π2(β2).

However, since β1 and β2 are orthogonal, we have that

π1(β1;y,X) ∝ exp
{
	1(β1;y,X)

}
π1(β1) (5.5)

and

π2(β2;y,Z) ∝ exp
{
	2(β2;y,Z)

}
π2(β2), (5.6)

where 	1 and 	2 are given by (5.2) and (5.3), respectively. Obviously, the use of
the proper priors given in (5.4) avoid the posterior distributions given in (5.5) to
be improper.

From the Bayesian point of view, the parametric inference is based on the
marginal posterior distributions, which can be obtained by integrating the joint
posterior distributions given in (5.5). These densities have unknown forms mainly
due to the complexity of the respective likelihood functions. In this case, Bayesian
estimates for each element of βr can be obtained by applying iterative procedures
within a broad class of MCMC methods. Here we will consider the well-known
Random-walk Metropolis (RwM) algorithm. Through this procedure, qr +1 chains
can be generated for βr . The dimensionality issue will depend on how much
covariates will be taken under consideration to describe the parameters of the
ZMPL model. For the posterior distributions in (5.5), we will consider multi-
variate Normal specifications for the proposal (candidate-generating) densities in
the algorithm. These distributions will be used as the main terms in the transition
kernels when computing the acceptance probabilities. Hence, at any state k > 0,
the MCMC simulation is performed by proposing a candidate ψ r for βr as

ψ r |β∗
r ∼MVN

[
β∗

r , νrS∗
r

]
,

where β∗
r = νrβ

(k−1)
r + (1 − νr)β

0
r and νr = τr(τr + 1)−1. One can notice that

transitions depends on the acceptance of pseudo-random vectors generated with
mean given by the mixture between the actual state of the chains and the priors
specification, which are shrunk by the factor 1 − νr . In addition, at any state k > 0,
the covariance matrix of the candidate vector ψ r can be approximated numerically
by evaluating S∗

r = H−1
r at βr = β∗

r , where

H1 = −∂2 log[π1(β1;y,X)]
∂β1 ∂β

ᵀ
1

and H2 = −∂2 log[π2(β2;y,Z)]
∂β2 ∂β

ᵀ
2

.
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Algorithm 1 Random-walk Metropolis

1: procedure RWM(N,β
(0)
1 ,β

(0)
2 ,β0

1,β
0
2, τ1, τ2)

2: Set k ← 1
3: Set ν1 ← τ1(1 + τ1)

−1 and ν2 ← τ2(1 + τ2)
−1

4: while k ≤ N do
5: Set β

(k)
1 ← β

(k−1)
1 and β

(k)
2 ← β

(k−1)
2

6: Set β∗
1 ← ν1β

(k)
1 + (1 − ν1)β

0
1 and β∗

2 ← ν2β
(k)
2 + (1 − ν2)β

0
2

7: Generate ψ1 ∼ MVN [β∗
1, νS∗

1 ] and ψ2 ∼ MVN [β∗
2, νS∗

2 ]
8: Set α1 ← log[π1(ψ1;y,X)] − log[π1(β

(k)
1 ;y,X)]

9: Set α2 ← log[π2(ψ2;y,Z)] − log[π2(β
(k)
2 ;y,Z)]

10: Generate u1, u2 ∼ U(0,1)

11: if log(u1) < α1 then
12: Set β

(k)
1 ← ψ1

13: end if
14: if log(u2) < α2 then
15: Set β

(k)
2 ← ψ2

16: end if
17: Set k ← k + 1
18: end while
19: return {β(k)}, k = 1, . . . ,N

20: end procedure

Algorithm 1 can be used to generate chains for the regression coefficients us-
ing the RwM algorithm. To run the algorithm, initial conditions β

(0)
1 and β

(0)
2 are

needed. For a specific asymptotic Gaussian environment, Roberts, Gelman and
Gilks (1997) have shown that the optimal acceptance rate should be around 45%
for 1-dimensional problems and asymptotically approaches to 23.40% in higher
dimensional problems (> 4). Here we are considering acceptance rates varying
between 23.40% and 40% as quite reasonable since the proposed model will gen-
erally have at least two parameters to be estimated. Indeed, the higher the values
of τ1 and τ2 the smaller the acceptance rates in the RwM algorithm, which re-
sults in smaller variability of the estimates. This procedure generates a sample of
size N for each parameter. The convergence of the chains can be monitored by
the Gelman–Rubin (Gelman and Rubin, 1992) and Geweke (Geweke, 1992) di-
agnostics. After convergence, some of the generated samples can be discarded as
burn-in. The procedure to decrease the correlation between generated values is the
usual approach of getting thinned steps. The final sample is supposed to have size
M . A summary of the posterior distributions can be obtained through the MCMC
estimates.

In the next section, we discuss the results of a Monte Carlo simulation study that
was conducted to assess the performance of the proposed Bayesian methodology.
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Algorithm 2 Sequential-search
1: procedure SEQSEA(β10, β11, β20, β21)
2: Generate x,u ∼ U(0,1)

3: Set μ ← exp{β10 + β11x} and ω ← [1 + exp{−(β20 + β21x)}]−1

4: Set k ← (1 − ω) and y ← 0
5: while u > k do
6: Set y ← y + 1 and k ← k + ωP∗(Y = y;μ)

7: end while
8: return y

9: end procedure

In Section 7, the usefulness and the competitivity of the proposed regression model
are illustrated by using a real dataset. All computations were performed using the
R environment (R Development Core Team, 2017). The executable scripts can be
made available by the authors upon justified request.

6 Simulation study

The primary empirical properties of an estimation procedure can be evaluated
through Monte Carlo simulations. We have performed an intensive simulation
study aiming to validate the proposed Bayesian approach. For comparison pur-
poses, the performance of the MLEs was also assessed. The simulation pro-
cess was performed by generating 500 pseudo-random samples of sizes n =
50,100,200 and 500 of a variable Y following a ZMPL distribution under the
regression framework (4.1). For the whole process, it was considered a n × 2 de-
sign matrix X = (1n,Xn×1) in which Xn×1 is a vector containing n generated val-
ues from an Uniform distribution on the unit interval. Here, we have fixed Z = X.
Moreover, we have assigned different values for the vectors β

ᵀ
1 = (β10, β11) and

β
ᵀ
2 = (β20, β21) in order to generate both zero-inflated and zero-deflated samples.

We have considered two scenarios for each kind of zero-modification and these
cases are treated separately in the following subsections. The logarithm link func-
tion was considered for g1. For g2, we have considered the link function (4.2).

Algorithm 2 can be used to generate a single pseudo-random realization from
the ZMPL distribution in the regression framework with covariate U(0,1) for μ

and ω. The extension for the use of more covariates is straightforward. The process
to generate a pseudo-random sample of size n consists of running the algorithm
as often as necessary, say n∗ times (n∗ ≥ n). The sequential-search is a black-box
type of algorithm (see Hörmann, Leydold and Derflinger (2004)) and works with
any computable probability vector. The main advantage of such a procedure is its
simplicity. On the other hand, sequential-search algorithms may be slow as the
while-loop may have to be repeated very often.
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For the ZMPL distribution, the expected number of iterations (NI), that is, the
expected number of comparisons in the while condition, is given by

E(NI) = μ∗ + 1 = ω[h(μ) + 1]2[h(μ) + 2]
h(μ)[h2(μ) + 3h(μ) + 1] + 1,

where h(μ) is given by equation (2.3).
To apply the proposed Bayesian approach in each case, we have considered

the RwM algorithm for MCMC sampling. For each generated sample, a chain
with N = 50,000 values was generated for each parameter, considering a burn-in
of 20% of the size of the chain. Using trace plots and Geweke’s diagnostic, the
convergence of the chains was monitored, and their stationarity was revealed. To
obtain pseudo-independent samples from the posterior distributions given in (5.5),
a value generated out of 10 was considered, resulting in chains of size M = 4000
for each parameter. The priors were chosen to ensure that parameter p provides
zero-inflation or zero-deflation depending on the case. We classify these priors as
being “vague” since the only information we have taken into account is the kind
of zero-modification present on the generated sample. We fixed τ1 = τ2 = 5.0,
which have provided acceptance rates ranging between 30 and 35%. The posterior
mean was considered as the Bayesian point estimator and its performance was
assessed by evaluating its bias (B), its mean squared error (MSE) and its mean
absolute percentage error (MAPE). Also, the coverage probability (CP) of the 95%
Bayesian credible intervals (BCIs) was estimated for each parameter. Using the
generated samples and letting γ = β10, β11, β20 or β21, the measures of interest
were obtained by

B(γ̂ ) = 1

M

M∑
j=1

(γ̂j − γ ), MSE(γ̂ ) = 1

M

M∑
j=1

(γ̂j − γ )2 (6.1)

and

MAPE(γ̂ ) = 1

M

M∑
j=1

∣∣∣∣ γ̂j − γ

γ

∣∣∣∣. (6.2)

The variance of γ̂ was estimated as the difference between the MSE and the
square of the bias. Moreover, the CP of the BCIs was estimated as follow

CP%(γ ) = 100

M

M∑
j=1

δj (γ ), (6.3)

where δj (γ ) assumes 1 if the j th BCI contains the real value γ and 0 otherwise.
Also, we have estimated the below noncoverage probability (BNCP) and the above
noncoverage probability (ANCP) of the BCIs. These measures are computed anal-
ogously to CP. The BNCP and ANCP may be useful to determine asymmetrical
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features since they provide the probabilities of finding the real value of parameter
γ on the tails of the generated posterior distribution.

For the classical approach, we have considered the Newton–Raphson optimiza-
tion method to obtain numerical estimates, since no closed-form solution is avail-
able for the MLE of vector β . The estimates were obtained using several ini-
tial values to guarantee convergence to the global maximum. Again, assuming
γ = β10, β11, β20 or β21, the bias, the MSE and the MAPE of γ̂MLE were esti-
mated as previously stated in equations (6.1) and (6.2). Besides, we were also
interested in the computation of the coverage and noncoverage probabilities of the
asymptotic confidence interval (ACI) of γ . The large sample approximation for
the 100(1 − α)% two-sided confidence interval of γ is given by

γ̂MLE ± z(1−α/2)ŜE(γ̂MLE),

where z(1−α/2) is the upper (α/2)th percentile of the standard Normal distribu-
tion. The standard error (SE) is estimated as the squared root of the variance of
γ̂MLE. Finally, the CP of the ACIs is estimated using (6.3) and the noncoverage
probabilities were computed analogously.

The computed measures are presented in Tables 1–3 (general summaries) and
Tables 2–4 (coverage and noncoverage probabilities). We have noticed that, as
expected, the parameter estimates became more accurate with increasing sample
sizes since the estimated biases and mean squared errors have decreased consider-
ably as n increased. In general, the MLEs were found more biased regarding the
posterior mean. Although high MAPE values were obtained for some parameters,
this does not compromise accuracy in estimation. For example, on Table 1 (Sce-
nario 1), for n = 200, we have obtained a estimated MAPE value of approximately
55% for β11, the Bayesian approach. Taking into account that the real value of this
parameter is 0.50, we have that the estimates for β11 were ranging mostly between
0.23 and 0.78, which do not represent such a huge impact on the estimated mean
(μ). Moreover, we have observed that the estimated CPs of the BCIs are con-
verging to the nominal level of 95% and the posterior distributions became more
symmetric with increasing sample sizes. At this point, one can see that slightly
better results were obtained for the ACIs, but the use of asymptotic results plays
against the classical approach since they are valid only for large n (n → ∞). Thus,
considering the predefined structure, our simulation study has provided several in-
dications about the suitability of the proposed Bayesian approach to estimate the
parameters of the ZMPL regression model.

Regarding the comparison between the estimation procedures, it is well-known
that the Bayesian approach has advantages when specialized prior information is
available for the phenomenon under investigation. One of the main concerns of this
paper is to provide the necessary tools for users interested in the application of the
proposed model and who have this kind of information accessible. Nonetheless,
our methodology can be applied using “vague” and noninformative priors. When
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Table 1 Summary of Bayesian and classical estimation procedures for zero-inflated samples

Bias Variance MSE MAPE (%)

n Par. Bayes MLE Bayes MLE Bayes MLE Bayes MLE

Scenario 1
50 β10 −0.0496 −0.0514 0.1201 0.1813 0.1225 0.1839 18.4958 19.0244

β11 0.0327 0.0148 0.5590 0.6374 0.5601 0.6376 119.3572 120.8523
β20 0.1516 0.0879 0.5012 0.7762 0.5242 0.7839 55.3431 55.7580
β21 −0.3017 −0.1640 1.7303 3.3837 1.8213 3.4106 68.5309 70.0988

100 β10 −0.0254 −0.0343 0.0778 0.1357 0.0785 0.1369 14.5455 15.1311
β11 0.0193 0.0240 0.2704 0.3506 0.2708 0.3512 82.2737 83.4865
β20 0.0366 −0.0147 0.2353 0.5232 0.2366 0.5234 38.4661 40.5110
β21 −0.0511 0.0429 0.7113 2.3246 0.7139 2.3265 45.6203 48.1084

200 β10 −0.0229 −0.0304 0.0299 0.0935 0.0305 0.0944 9.1091 9.9292
β11 0.0249 0.0294 0.1182 0.2163 0.1188 0.2172 54.5856 57.8233
β20 0.0342 −0.0059 0.0993 0.4401 0.1004 0.4401 24.9519 27.4913
β21 −0.0494 0.0357 0.2999 2.3711 0.3023 2.3724 29.5489 33.7693

500 β10 −0.0065 −0.0194 0.0098 0.0780 0.0098 0.0784 5.2412 6.0263
β11 0.0013 0.0144 0.0337 0.1350 0.0337 0.1352 29.2489 32.1616
β20 0.0059 −0.0198 0.0335 0.3524 0.0353 0.3527 14.7641 17.4109
β21 −0.0033 0.0577 0.1043 2.0047 0.1043 2.0080 16.8862 20.9636

Scenario 2
50 β10 −0.0559 −0.0763 0.2565 0.3049 0.2596 0.3108 15.0565 15.4028

β11 0.0345 0.0284 1.2664 1.3063 1.2676 1.3071 54.2357 54.2181
β20 0.0140 −0.0185 0.4487 0.9193 0.4489 0.9196 104.6621 108.5400
β21 −0.2539 −0.1335 2.0746 2.9093 2.1391 2.9271 114.3879 114.9491

100 β10 −0.0274 −0.0525 0.1300 0.1613 0.1308 0.1641 11.0662 11.0420
β11 0.0047 0.0321 0.4326 0.4518 0.4326 0.4528 34.5772 34.1142
β20 0.0030 −0.0412 0.2639 0.8869 0.2639 0.8886 81.9453 87.8518
β21 −0.1044 0.0113 0.8780 2.0218 0.8889 2.0220 74.6983 79.8030

200 β10 −0.0332 −0.0526 0.0433 0.3165 0.0445 0.3193 6.7164 7.6425
β11 0.0358 0.0535 0.1627 0.4814 0.1640 0.4843 21.3950 23.3487
β20 −0.0061 −0.0393 0.0955 0.7542 0.0955 0.7557 48.9634 56.3251
β21 −0.0299 0.0217 0.3616 1.5927 0.3625 1.5932 47.6516 53.7506

500 β10 −0.0116 −0.0309 0.0149 0.2812 0.0151 0.2821 3.9067 4.8219
β11 0.0051 0.0225 0.0519 0.3654 0.0520 0.3659 12.1947 13.7427
β20 −0.0035 −0.0573 0.0372 1.4334 0.0372 1.4367 31.1360 40.9934
β21 −0.0051 0.0658 0.1269 2.6745 0.1269 2.6788 28.5447 34.8024

“vague” priors are considered, Bayesian procedures and MLEs present similar re-
sults as those obtained in this section. On the other hand, when noninformative
priors are selected, it can be theoretically proved that both approaches present
equivalent results. Therefore, a comparison between Bayesian and classical ap-
proaches will only show great Bayesian advantage if the priors are specified by
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Table 2 Coverage and noncoverage probabilities of the BCIs and ACIs using zero-inflated samples

BNCP CP ANCP BNCP CP ANCP

n Par. Bayes MLE Bayes MLE Bayes MLE Bayes MLE Bayes MLE Bayes MLE

Scenario 1 Scenario 2
50 β10 2.60 1.40 93.40 95.80 4.00 2.80 4.40 2.40 90.20 93.60 5.40 4.00

β11 4.80 2.40 91.40 95.40 3.80 2.20 5.20 4.00 90.60 92.40 4.20 3.60
β20 6.60 2.40 91.00 95.40 2.40 2.20 5.80 2.80 90.80 95.40 3.40 1.80
β21 3.40 2.80 90.80 94.40 5.80 2.80 4.00 3.20 90.20 94.80 5.80 2.00

100 β10 3.00 1.80 91.80 94.40 5.20 3.80 4.80 2.20 91.00 94.20 4.20 3.60
β11 5.60 4.20 90.40 93.20 4.00 2.60 4.60 2.80 92.00 95.60 3.40 1.60
β20 3.20 2.00 94.20 96.00 2.60 2.00 4.00 2.20 92.40 95.60 3.60 2.20
β21 3.80 2.40 92.80 96.60 3.40 1.00 3.00 3.60 92.60 94.80 4.40 1.60

200 β10 3.80 1.60 91.00 94.60 5.20 3.80 3.40 2.40 91.60 94.00 5.00 3.60
β11 6.00 4.40 89.20 91.20 4.80 4.40 4.80 3.00 92.60 94.80 2.60 2.20
β20 4.60 3.00 92.80 94.40 2.60 2.60 3.80 2.40 93.40 95.60 2.80 2.00
β21 3.00 1.80 93.00 95.60 4.00 2.60 3.20 2.80 92.20 94.40 4.60 2.80

500 β10 4.60 3.60 92.20 93.80 3.20 2.60 2.40 1.80 92.60 95.20 5.00 3.00
β11 3.20 2.80 93.00 94.40 3.80 2.80 4.20 3.00 92.40 94.80 3.40 2.20
β20 3.40 2.00 92.00 94.80 4.60 3.20 3.80 3.00 93.20 94.80 3.00 2.20
β21 4.20 4.00 91.80 93.80 4.00 2.20 3.80 2.60 92.20 94.60 4.00 2.80

aggregating relevant information about the parameters to be estimated. Further,
with small samples and good prior information, the Bayesian procedure is indeed
more advantageous.

6.1 Zero-inflated artificial data

For the zero-inflated case, the samples were generated from the ZMPL distri-
bution by considering that pi ∈ (0,1) for all i. Here, the regression coefficients
were chosen by taking into account that zero-inflated samples has, naturally, pro-
portion of zeros greater than expected and therefore, the variable Y was generated
with mean (μ) not even close to zero. Then, for the first scenario we have con-
sidered β

ᵀ
1 = (1.5,0.5) and β

ᵀ
2 = (1.0,−1.5) to perform the simulation. In the

following, the procedure was repeated by considering β
ᵀ
1 = (2.5,1.5) and β

ᵀ
2 =

(−0.5,−1.0). For these scenarios, the “vague” prior set-up is (β0
1)

ᵀ = (1.0,0.0)

and (β0
2)

ᵀ = (0.0,1.0). Figure 2 depicts the Bayesian estimates obtained for pa-
rameter p using zero-inflated samples with n = 500 for each scenario. The real
values are represented by the straight blue lines and the 95% BCIs are represented
by the red dashed lines. The filled black dots represent the estimated values for
each generated observation.
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Table 3 Summary of Bayesian and classical estimation procedures for zero-deflated samples

Bias Variance MSE MAPE (%)

n Par. Bayes MLE Bayes MLE Bayes MLE Bayes MLE

Scenario 1
50 β10 −0.1971 −0.1667 0.6135 0.7634 0.6524 0.7912 60.4995 59.4275

β11 0.1060 0.0973 1.9266 2.1244 1.9378 2.1338 216.5709 214.5939
β20 0.0941 0.0674 0.5204 0.6096 0.5292 0.6142 111.2615 110.3212
β21 −0.0105 −0.0356 2.1566 3.1154 2.1567 3.1167 116.0536 115.4830

100 β10 −0.0773 −0.0813 0.2853 0.3727 0.2913 0.3794 41.2579 41.6971
β11 0.0226 0.0476 0.7260 0.8623 0.7265 0.8646 132.8333 133.6173
β20 −0.0188 −0.0356 0.2673 0.4108 0.2676 0.4121 79.8809 81.0349
β21 0.1173 0.1383 0.9410 2.1766 0.9548 2.1957 75.4413 78.0565

200 β10 −0.0564 −0.0695 0.1131 0.3314 0.1163 0.3362 27.0471 29.4275
β11 0.0432 0.0645 0.3103 0.6435 0.3122 0.6476 88.5523 94.8071
β20 0.0058 −0.0218 0.0965 0.3417 0.0966 0.3421 49.6113 54.0982
β21 0.0297 0.0929 0.3488 2.5299 0.3497 2.5386 47.2081 53.7624

500 β10 −0.0284 −0.0433 0.0394 0.1844 0.0402 0.1863 15.8450 17.6385
β11 0.0226 0.0434 0.1000 0.3317 0.1006 0.3336 49.7987 54.7585
β20 0.0026 −0.0195 0.0352 0.2622 0.0352 0.2626 29.4331 33.6326
β21 0.0155 0.0761 0.1299 2.3141 0.1301 2.3199 27.4785 34.1051

Scenario 2
50 β10 −0.5417 −0.3344 2.6364 2.1542 2.9298 2.2660 55.7422 49.1413

β11 0.1932 −0.0237 8.4866 8.4168 8.5239 8.4173 414.1736 397.8847
β20 0.1733 0.1010 0.5235 0.6591 0.5535 0.6693 57.8831 56.3176
β21 −0.2063 −0.1175 1.7803 3.3037 1.8228 3.3176 211.1536 212.7205

100 β10 −0.2281 −0.1943 0.9002 0.9583 0.9522 0.9961 34.3945 33.8649
β11 0.0857 0.0934 2.1968 2.3735 2.2041 2.3822 222.6073 225.7564
β20 0.0325 −0.0097 0.2832 0.4358 0.2842 0.4359 41.4213 41.6895
β21 0.0074 0.0881 0.8323 2.4468 0.8324 2.4546 144.7771 150.7059

200 β10 −0.1305 −0.1385 0.3088 0.9207 0.3258 0.9398 21.3299 22.6907
β11 0.0703 0.0971 0.9024 1.7183 0.9074 1.7277 149.3391 156.1515
β20 0.0219 −0.0181 0.1065 0.4449 0.1069 0.4452 25.6228 28.0340
β21 −0.0049 0.0909 0.3166 3.7195 0.3166 3.7277 90.1610 105.7611

500 β10 −0.0438 −0.0675 0.0839 0.8042 0.0858 0.8087 11.5690 13.2514
β11 0.0073 0.0469 0.2345 1.1821 0.2346 1.1843 76.6633 84.2876
β20 0.0066 −0.0207 0.0373 0.3408 0.0373 0.3412 15.3647 17.9984
β21 0.0010 0.0765 0.1105 3.0407 0.1105 3.0465 52.7069 68.8181

6.2 Zero-deflated artificial data

For the zero-deflated case, the samples were generated from the ZMPL distri-
bution by considering that pi ∈ [1,P−1(Y > 0;μi)] for all i. Here, the regression
coefficients were chosen by taking into account that zero-deflated samples has,
naturally, proportion of zeros smaller than expected and therefore, the variable Y
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Table 4 Coverage and noncoverage probabilities of the BCIs and ACIs using zero-deflated samples

BNCP CP ANCP BNCP CP ANCP

n Par. Bayes MLE Bayes MLE Bayes MLE Bayes MLE Bayes MLE Bayes MLE

Scenario 1 Scenario 2
50 β10 2.80 1.80 92.40 96.20 4.80 2.00 3.00 2.40 91.80 97.60 5.20 0.00

β11 4.00 2.80 92.80 95.20 3.20 2.00 4.00 1.60 91.80 97.80 4.20 0.60
β20 6.40 1.80 89.60 96.00 4.00 2.20 6.40 2.00 91.40 96.20 2.20 1.80
β21 3.40 1.40 91.40 95.80 5.20 2.80 3.00 1.60 90.40 95.80 6.60 2.60

100 β10 3.40 2.40 92.80 95.60 3.80 2.00 2.80 2.60 91.00 96.60 6.20 0.80
β11 4.00 2.80 92.60 95.00 3.40 2.20 6.20 2.20 90.00 95.40 3.80 2.40
β20 3.20 1.60 92.60 95.00 4.20 3.40 4.60 1.40 91.20 94.80 4.20 3.80
β21 5.60 3.20 92.00 95.60 2.40 1.20 4.00 3.40 91.60 94.00 4.40 2.60

200 β10 2.40 2.00 94.40 96.20 3.20 1.80 4.00 2.60 90.20 94.00 5.80 3.40
β11 3.40 2.20 93.80 95.60 2.80 2.20 5.80 3.40 90.40 95.00 3.80 1.60
β20 3.40 2.00 93.00 94.40 3.60 3.60 4.40 2.60 92.00 94.00 3.60 3.40
β21 2.40 1.80 93.60 95.20 4.00 3.00 3.20 3.00 92.40 93.80 4.40 3.20

500 β10 3.00 2.80 93.80 94.40 3.20 2.80 2.60 2.40 93.40 95.40 4.00 2.20
β11 3.80 3.20 93.40 95.20 2.80 1.60 3.80 3.40 93.20 94.60 3.00 2.00
β20 2.60 1.40 93.20 95.80 4.20 2.80 2.60 1.80 93.20 95.20 4.20 3.00
β21 4.40 2.80 91.80 93.80 3.80 3.40 5.20 3.20 92.00 94.80 2.80 2.00

Figure 2 Bayesian estimates for parameter p using zero-inflated samples.

was generated with mean (μ) close to zero. Then, for the third scenario we have
considered β

ᵀ
1 = (−1.0,0.5) and β

ᵀ
2 = (0.5,1.0) to perform the simulation. In the

following, the procedure was repeated by considering β
ᵀ
1 = (−2.0,0.5) and β

ᵀ
2 =

(1.0,−0.5). For these scenarios, the “vague” prior set-up is (β0
1)

ᵀ = (0.0,−1.0)

and (β0
2)

ᵀ = (2.0,0.0). Figure 3 depicts the Bayesian estimates obtained for pa-
rameter p using zero-deflated samples with n = 500 for each scenario. Such rep-
resentation has the same characteristics of Figure 2.
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Figure 3 Bayesian estimates for parameter p using zero-deflated samples.

7 Takeover bids data analysis

In this section, the ZMPL regression model is considered for the analysis of
a real dataset obtained from (Jaggia and Thosar, 1993). The sample consists of
126 U.S. firms that were targets of tender offers between 1978–1985 and which
were taken over within a period of 52 weeks. In this study, the response variable
is the number of additional bids after the initial bid received by the target firms.
Also, a set of explanatory variables regarding target management actions and firm-
specific characteristics was observed. The authors have analyzed the data by fitting
a Poisson regression model, and they have verified that the white knight is one of
the covariates associated with additional bids. The white knight is a management
action of inviting a friendly third part to enter the bidding. The authors pointed out
that, when inviting a friendly bidder, the management is indicating that may cede
at least some control of the firm, and therefore, the entry (or potential entry) of at
least one additional bidder is expected to spur the auction process.

Let us characterize the number of bids as the response variable (Y) and the white
knight as a covariate (X). The variable X was coded as 0 (no additional bidder)
and 1 (additional bidder). From the observed dataset, there exists evidence that Y
is overdispersed since its mean is 1.74 and its variance is 2.05. Also, the range of
Y is 10, and its coefficient of variation is approximately 118%. In this study, 75
out of 126 firms have at least one additional bidder invited for the process. The
average number of bids was 1.18 when no additional bidder was invited and 2.12
otherwise. The absolute frequency of zeros is 9 (about 7% of the entire sample),
which naively indicates a zero-deflation. Such characteristic is evidenced when
fitting model (3.6) using the full dataset. This procedure was performed strictly for
descriptive purposes. The model was fitted using a simpler version of Algorithm
1, since covariate X was not used. From its posterior summary, we have estimated
equation (3.4) as (1 − 1.87)[1 − f (0;0.93)] × 100 ≈ −43%, suggesting that exist
approximately 7 missing zeros, reinforcing our suspect that the sample is zero-
deflated. Moreover, we had noticed that when the sample was observed, 6 firms
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Table 5 Posterior descriptive summary of the fitted ZMPL regression model

95% BCI 95% HPDI

Par. Mean Median SD ESS Lower Upper Lower Upper

β10 −0.8367 −0.8332 0.2563 2368.97 −1.3684 −0.3446 −1.3620 −0.3391
β11 0.9354 0.9319 0.2972 2293.12 0.3665 1.5421 0.3806 1.5529
β20 2.0608 2.0458 0.4055 2406.81 1.3147 2.9033 1.3266 2.9131
β21 0.8104 0.8140 0.5965 2400.04 −0.3397 1.9806 −0.3064 2.0073

had received no further bids when no additional bidder was invited. As would be
expected, the firm which has received the highest number of additional bids (10)
have at least one additional bidder invited.

To fit the ZMPL regression model with X as a covariate, we have adopted a
similar procedure to that one used in the previous section. As X is a dummy vari-
able, we have fixed 0 (no additional bidder) as the baseline for estimation purposes.
The logarithm link function was considered to relate μi with the linear predictor
β10 + β11xi . To relate parameter ωi with β20 + β21xi , we choose the link function
given by (4.2). In this framework, parameter β11 represents the indirect effect of
the invitation of at least one additional bidder on the mean (μ∗) and parameter β21
indicates the direct effect of such invitation on the probability of zeros (1 − ω).
We have considered the RwM algorithm, generating a chain of size N = 50,000
for each parameter whereby the first 10,000 values were discarded as burn-in. The
stationarity of each chain was checked through the Geweke criterion for diagnos-
tic of convergence. To obtain the pseudo-independent samples, we have considered
one value out of every 10 generated one, resulting in chains of size M = 4000 for
each parameter.

Table 5 presents the mean, the median and the standard deviation obtained
from the posterior distribution of β . To obtain the full descriptive summary, we
have arbitrarily selected the priors (β0

1)
ᵀ = (0.0,−1.0), (β0

2)
ᵀ = (2.0,0.0) and

τ1 = τ2 = 5.0. In this framework, the acceptance rates in the RwM algorithm were
at approximately 35%. In addition, we have calculated the number of effectively
pseudo-independent draws (effective sample size—ESS) from the posterior distri-
bution. The 95% BCIs were estimated empirically from the generated samples and
the 95% highest posterior density intervals (HPDIs) were also computed.

A sensitivity analysis was performed to evaluate the behaviour of the Bayesian
estimators under distinct prior specifications. We have established three scenar-
ios where the model parameters were estimated considering different choices for
β0

r and τr , r = 1,2. The results are displayed on Table 6. The Bayesian estimates
for the parameters μ∗, p and n0 (expected number of zeros) are also presented.
Here, parameters μ∗ and p∗ were estimated as functions of the predictive ZMPL
model, that is, μ̂∗ = n−1 ∑n

i=1 μ̂∗
i and p̂ = n−1 ∑n

i=1 ω̂iP−1(Y > 0; μ̂i). Since β1
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Table 6 Sensitivity analysis to evaluate the effect of different prior specifications

Priors Par. Mean μ̂∗ p̂ n̂0

τ1 = τ2 = 2.0
(β

p
1 )ᵀ = (0.0,−1.0) β10 −0.64 1.63 2.15 11

β11 0.56
(β

p
2 )ᵀ = (2.0,0.0) β20 2.04

β21 0.57

(β
p
1 )ᵀ = (4.0,−4.5) β10 −0.07 1.81 1.83 8

β11 0.09
(β

p
2 )ᵀ = (4.0,−1.0) β20 2.25

β21 0.93

(β
p
1 )ᵀ = (8.5,−9.5) β10 −1.05 1.75 2.54 9

β11 0.98
(β

p
2 )ᵀ = (10.0,−7.0) β20 2.09

β21 1.10

τ1 = τ2 = 5.0
(β

p
1 )ᵀ = (0.0,−1.0) β10 −0.84 1.84 2.22 10

β11 0.94
(β

p
2 )ᵀ = (2.0,0.0) β20 2.06

β21 0.81

(β
p
1 )ᵀ = (4.0,−4.5) β10 −0.58 1.85 2.03 8

β11 0.72
(β

p
2 )ᵀ = (4.0,−1.0) β20 2.15

β21 1.10

(β
p
1 )ᵀ = (8.5,−9.5) β10 −1.08 1.95 2.47 8

β11 1.18
(β

p
2 )ᵀ = (10.0,−7.0) β20 2.09

β21 1.17

τ1 = τ2 = 8.0
(β

p
1 )ᵀ = (0.0,−1.0) β10 −0.92 1.93 2.27 9

β11 1.07
(β

p
2 )ᵀ = (2.0,0.0) β20 2.06

β21 0.93

(β
p
1 )ᵀ = (4.0,−4.5) β10 −0.75 1.92 2.13 8

β11 0.93
(β

p
2 )ᵀ = (4.0,−1.0) β20 2.13

β21 1.16

(β
p
1 )ᵀ = (8.5,−9.5) β10 −1.08 2.03 2.45 8

β11 1.23
(β

p
2 )ᵀ = (10.0,−7.0) β20 2.09

β21 1.19



850 Bertoli, Conceição, Andrade and Louzada

Figure 4 Sensitivity analysis to detect influential points.

and β2 are orthogonal, the results can be directly combined by taking τ1 �= τ2. Ob-
viously, we cannot decide on the prior distributions based on the posterior results,
but we can investigate whether the prior specifications are influential. In this way,
we have observed that the estimator of β20 is less sensitive regarding the prior
choice, with variance smaller than 0.005 between estimates. For τj = 2.0, the es-
timators of β10 and β11 are more sensitive, implying higher variability between
estimates of parameter p. In addition, when large values are selected for τr , one
can notice that the lower the prior choices for β11 and β21 the larger the estimates
of μ∗. Amidst these features, it is worthwhile to mention that, as τr increases, the
prior specification tends to have lower impact on the final fit (μ̂∗, p̂, n̂0) and, in
general, such impact can be considered negligible, even for quite distinct priors.

The analysis to verify the existence of influential points is presented in Figure 4.
Figure 4(a) depicts the Kullback–Leibler (KL) divergence (see Appendix A), that
used to evaluate the effect of each observation on the parameter estimates. Conser-
vatively, we consider an observation whose distance has a calibration exceeding
0.75 as an influential point. Based on Figure 4(b), we have observed the existence
of one influential point (36), corresponding to the firm with 10 additional bids.
As a way to access the influence of this observation, the estimation process was
repeated considering the removal of such firm of the sample. The posterior sum-
mary for this case and the variation percentage regarding the posterior summary
obtained from the full dataset is presented on Table 7. When analyzing the pa-
rameter estimates, it can be observed that the removal of observation 36 impacts
reasonably the model fit and the main variation is observed when estimating pa-
rameter β11.

For comparison purposes, identical Bayesian procedures were adopted to fit
the P , the PL and the ZMP regression models. To estimate the fixed dis-
persion parameter (φ) of the NB model, we have considered a noninformative
Inverse–Gamma prior distribution with hyperparameters a = b = 1.0. For each fit-
ted model, we have estimated the measures presented in Appendix B. The model
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Table 7 Posterior descriptive summary—sample without influential observation

95% BCI 95% HPDI

Par. Mean Median SD ESS Lower Upper Lower Upper

β10 −0.8395 −0.8367 0.2549 2597.71 −1.3524 −0.3481 −1.3524 −0.3479
(−0.33%) (−0.42%) (−0.55%) (9.66%)

β11 0.8516 0.8493 0.2979 2394.79 0.2723 1.4447 0.2615 1.4326
(−8.96%) (−8.86%) (0.24%) (4.43%)

β20 2.0622 2.0477 0.4029 2420.74 1.3267 2.8911 1.2674 2.8193
(0.07%) (0.09%) (−0.64%) (0.58%)

β21 0.8002 0.7951 0.5903 2848.08 −0.3396 1.9810 −0.2880 2.0199
(−1.26%) (−2.32%) (−1.04%) (18.67%)

Table 8 Comparison criteria for the fitted models

Full dataset Without observation 36

Model DIC EAIC EBIC LMPL DIC EAIC EBIC LMPL

P 1011.60 409.04 414.71 −195.53 959.15 388.06 393.72 −185.45
NB 988.68 402.04 405.71 −195.87 943.12 383.81 387.47 −185.97
PL 1104.06 446.03 451.70 −291.00 1075.44 434.58 440.24 −213.58
ZMP 941.45 385.37 387.04 −183.65 884.90 362.77 364.42 −172.56
ZMPL 920.02 376.81 378.49 −178.43 882.32 361.71 363.37 −171.40

comparison procedure is summarized in Table 8. One can notice that the zero-
modified models have performed considerably better with ZMPL outperforming
all. These results are highlighting that the proposed model is highly competitive
with well-established models in the literature.

Figure 5 presents the marginal posterior densities of parameters of the ZMPL
regression model. These densities provided the summary displayed on Table 7.
The assumption of normality for the generated chains is quite reasonable even in
the presence of slightly heavy tails on some of the estimated densities. Besides,
there exists evidence of symmetry since posterior mean and median are very close
to each other. For each parameter, the effective sample size was estimated greater
than M/2, which can be considered an indication of good mixing of the generated
chains, without any computational waste.

From the results displayed in Table 7, one can make some inferences and take
some conclusions. Firstly, we have observed that the BCI/HPDI of the parameter
β11 does not contain the value zero, which constitute the white knight as a relevant
covariate to describe the average number of bids. On the other hand, the probability
of not receive at least one additional bid is 1 − [1 + exp{−2.0622}]−1 ≈ 0.113 if
no additional bidder is invited and 1 − [1 + exp{−(2.0622 + 0.8002)}]−1 ≈ 0.054
otherwise. However, as parameter ω is not affected by individual white knights,
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Figure 5 Estimated posterior densities of vectors β1 and β2.

one can re-estimate it not depending on individuals covariate. Hence, the final
predictive ZMPL model is given by

μ̂∗
i = ω̂μ̂i

P(Y > 0; μ̂i)
,

where μ̂i = exp{−0.8395 + 0.8516xi} and ω̂ = 0.9252. Also, since parameter μi

was estimated using only positive observations, if at least one additional bid is
being offered, its expected value will be 1.312 provided that no additional bidder
is invited and 1.808 otherwise.

Table 9 presents the final posterior summary of the fitted models. One can no-
tice that the estimates for n0, obtained from the P , NB and PL models are much
larger than the real one while those provided by zero-modified models are very
close (or exactly equal) to 9. Through these measures, one can better understand
how the fitted models are adhering to the data since the nature of the observed
counts should be well described regarding its frequency and the average number of
nonzero observations. The goodness-of-fit can be evaluated by the χ2 measure ob-
tained from the observed and expected frequencies. To compute such statistic, we



Bayesian approach for the zero-modified Poisson–Lindley regression model 853

Table 9 Bayesian estimates for the extra parameters and goodness-of-fit evaluation

Full dataset Without observation 36

Model μ̂∗ p̂ n̂0 χ2 μ̂∗ p̂ n̂0 χ2

P 1.65 1.00 24 26.19 1.58 1.00 26 24.65
(<0.001) (<0.001)

NB 1.67 1.00 25 27.50 1.62 1.00 25 25.75
(<0.001) (<0.001)

PL 1.60 1.00 45 69.67 1.56 1.00 46 70.59
(<0.001) (<0.001)

ZMP 1.88 1.41 10 8.75 1.78 1.43 10 4.31
(0.119) (0.366)

ZMPL 1.84 2.22 10 0.61 1.77 2.27 9 0.65
(0.986) (0.957)

Figure 6 Expected frequencies estimated under zero-modified models.

have grouped cells with frequencies lower or equal than 5, resulting in 5 d.f. (full
dataset) and 4 d.f. (when removing observation 36). One can notice that ZMP
model provide reliable fits, but it is quite clear that the proposed model adheres
much better on the considered datasets (p-values greater than 0.95).

Figure 6 depicts the expected frequencies estimated through predictive ZMP
and ZMPL models, considering the removal of the influential point. The results
highlight the better adherence of the fitted models when observation 36 is dis-
carded in the estimation procedure. Besides, using the χ2 statistic and the compar-
ison criteria, one can notice that the proposed model provides a more realistic fit
for the considered dataset and inferences about parameter p allow us to classify the
observed sample as being zero-deflated (p̂ > 1). In other words, we have that, by
the proposed model, it would be expected that more firms would not have received
additional bids after the initial bid.
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8 Concluding remarks

The excess or deficit of zeros-valued observations is an issue often encountered in
real applications involving count data. In such a way, this paper aimed to introduce
the ZMPL regression model as an alternative for the analysis of overdispersed
datasets exhibiting zero-inflation/deflation in the presence of covariates. By using
the hurdle version of the ZMPL distribution, it was possible to write separable
likelihood functions for the parameter vectors, which led us to less complicated
Bayesian procedures based on the g-prior method. Also, we have shown that the
mean of the ZMPL model can be estimated using only the positive observations.

An intensive Monte Carlo simulation study was performed in order to evaluate
the empirical properties of the Bayesian estimators and MLEs, and the obtained
results highlighted the suitability of the adopted methodology. Due to the “vague”
nature of the prior distributions, similar results were achieved, but the Bayesian
approach remains an excellent option since does not depend on asymptotic results
for inference and has the advantage of incorporating specific information about
parameters when available.

The proposed model was considered for the analysis of a real dataset obtained
from an economic study with legal implications, where the response variable is
the number of additional bids after the initial bid received by 126 U.S. firms. The
response variable was identified as being overdispersed and zero-deflated, which
justifies the use of the ZMPL model. A sensitivity analysis was conducted using
the Kullback–Leibler divergence, and one firm was identified as locally influent.
The main inferential conclusion one can take from the fitted model is that the white
knight is statistically relevant to describe the average number of additional bids.
In addition, when looking at the χ2 statistic and the posterior based comparison
criteria, we have noticed that the proposed model had presented a better fit when
compared with its competitors, and therefore, the ZMPL regression model can
be considered an excellent addition to the set of models that can be used when
analyzing overdispersed and zero-modified count data.

Appendix A: Influential points

The identification of influential observations is one of the essential steps in any sta-
tistical analysis. Usually, the presence of influential points impacts the inferential
procedures and the subsequent conclusions considerably. In this way, this subsec-
tion is dedicated to presenting some case deletion Bayesian diagnostic measures
that can be useful to quantify the influence of each observation in a given dataset.

The computation of divergence measures between posterior distributions is a
very useful way to quantify influence. According Csiszár (1967), the ϕ-divergence
measure between two densities f and g for θ ∈D is defined by

dϕ =
∫
D

g(θ)ϕ

[
f (θ)

g(θ)

]
dθ , (A.1)
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where ϕ is a smooth convex, lower semicontinuous function such that ϕ(1) = 0.
Some popular divergence measures can be obtained by choosing specific functions
for ϕ (Peng and Dey, 1995). We are interested in the well-known Kullback–Leibler
divergence that can be obtained by setting ϕ(t) = − log(t).

Suppose that we are studying a discrete random variable Y whose distribution
is indexed by a parametric vector θ ∈ �. Aiming to estimate such vector, we have
observed n independent values of Y , hence obtaining the full observed vector y.
Now, let y(−i) = (y1, . . . , yi−1, yi+1, . . . , yn) be a vector obtained after removal
of the ith observation from y. Given a prior distribution π(θ), the full posterior
density of θ can be expressed as

π(θ;y) = L(θ;y)π(θ)∫
�L(θ;y)π(θ)dθ

,

where L stands for the likelihood function of θ . Conversely, using the vector with-
out the ith observation, the posterior distribution of θ can be written as

π [θ;y(−i)] = L[θ;y(−i)]π(θ)∫
�L[θ;y(−i)]π(θ)dθ

.

Now, taking f (θ) = π [θ;y(−i)] and g(θ) = π(θ;y), equation (A.1) becomes

dϕ = Eθ

{
ϕ

[
E

−1
θ [P−1(Yi = yi; θ);y]

P(Yi = yi; θ)

]
;y

}
, (A.2)

where E
−1
θ [P−1(Yi = yi; θ);y] is the conditional predictive ordinate (CPO) statis-

tic (Geisser, 1993) for the ith observation. Given a sample {θ1, . . . , θM} from the
posterior distribution π(θ;y), a Monte Carlo estimator for the CPOi is given by

ĈPOi =
[

1

M

M∑
k=1

P−1(
Yi = yi; θ (k))]−1

, (A.3)

and hence, one can estimate the local influence of a particular observation yi on
the posterior distribution of θ as

d̂ϕ = 1

M

M∑
k=1

ϕ

[
ĈPOi

P(Yi = yi; θ (k))

]
.

From equation (A.2), one can notice that, if π [θ;y(−i)] = π(θ;y), then there is
no divergence caused by the observation yi . In practice, however, it may be quite
difficult to define a threshold value for the divergence measure in order to decide
about the magnitude of the influence. A measure of calibration for the Kullback–
Leibler divergence was proposed by McCulloch (1989). The idea is based on the
typical toy binary experiment of tossing a coin once and observing its upper face
is observed. This experiment can be described by P(Y = y;ρ) = ρy(1 − ρ)1−y ,
where ρ ∈ [0,1] is the probability of success. Regardless what success means, if
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the coin is unbiased, then P(Y = y;ρ) = 0.50, y ∈ {0,1}. Thus, the ϕ-divergence
between a (possibly) biased and an unbiased coin is given by

dϕ(ρ) = ϕ(2ρ) + ϕ[2(1 − ρ)]
2

,

from which one may conclude that the divergence between two posteriors distri-
butions can be associated with the biasedness of a coin (Peng and Dey, 1995). By
analogy, this implies that predict unobserved responses through π [θ;y(−i)] instead
of π(θ;y) is equivalent to describe a not observed event as having probability ρi ,
when the correct probability is 0.50. For the Kullback–Leibler divergence, we have

dϕ(ρi) = −1

2
log

[
4ρi(1 − ρi)

]
.

The function dϕ(ρ) is symmetric about ρ = 0.50 and increases as ρ moves
away from 0.50. Also, infρ∈(0,1) dϕ(ρ) = 0, which is attained at ρ = 0.50 since
dϕ(0.50) = ϕ(1) = 0. Therefore, a general measure of calibration based on a ϕ-
divergence can be obtained by solving equation 2dϕ(ρ) − ϕ(2ρ) − ϕ[2(1 − ρ)] =
0. A Monte Carlo estimator for the calibration measure (ρ) associated with the
Kullback–Leibler divergence is given by

ρ̂i = 1

2

[
1 +

√
1 − e−2d̂i

]
,

where the local influence of each yi can be estimated by

d̂i = 1

M

M∑
k=1

log
[
P
(
Yi = yi; θ (k))] − log(ĈPOi ).

One can notice that ρi ∈ [1
2 ,1] and therefore, for ρi  0.50, the ith observation

can be considered as an influential point. For example, if ρi ≥ 0.80 is considered a
significative bias, then the ith observation will be classified as being influential if
d̂i > 0.223 (dϕ(0.80) ≈ 0.223).

Appendix B: Model comparison

There are several methods for Bayesian model selection that are useful to compare
competing models fitted to the same dataset. One of the most used criteria is the
deviance information criterion (DIC), which was proposed to work simultaneously
as a measure of fit and complexity of the model. To define such a measure, sup-
pose again that we are studying a discrete random variable Y whose distribution
is indexed by a parametric vector θ ∈ � and let y as a vector of n independent
observations obtained from Y . The DIC criterion is given by

DIC = D̄(θ) + ρD = 2D̄(θ) − D(θ̃),
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where D̄(θ) = −2E[	(θ;y)] is the posterior expectation of the deviance and 	 is
the log-likelihood function of θ . In this case, the deviance is evaluated at some
estimate θ̃ for θ (e.g., the posterior conditional mean). In connection with a mea-
sure of model complexity, the criterion considers the measure ρD = D̄(θ) − D(θ̃),
which correspond to the effective number of parameters in the model. One can
notice that the computation of D̄(θ) is a complex numerical problem. In this case,
a Monte Carlo estimator for such a measure is given by

D̄ = − 2

M

M∑
k=1

	
(
θ (k);y)

,

and hence, the DIC can be approximated by

D̂IC = 2D̄ − D(θ̃).

Using the estimate D̄, one can define other measures that can be considered
when comparing models. The expected Akaike information criterion (EAIC) and
the expected Bayesian information criterion (EBIC) can be estimated as

ÊAIC = D̄ + 2q and ÊBIC = D̄ + q log(n),

where q is the total number of estimated model parameters. See Carlin and Louis
(2010) and Brooks (2002) for further details on these comparison criteria.

Another widely used criterion is derived from the CPO measure, which is based
on the cross-validation criterion to compare models. For the ith individual, the
CPO can be estimated using equation (A.3). A summary statistic of the estimated
CPO’s is the log-marginal pseudo-likelihood (LMPL) given by the sum of the log-
arithms of ĈPOi ’s. Regarding model comparison, we have that the lower the value
of DIC, EAIC and EBIC the better the fit. On the other hand, for the latter criterion,
we have that the larger the LMPL, the better the fit. One can notice that, for all the
presented criteria, the computation of the likelihood function is a crucial step to
estimate such measures.
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