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Bayesian modelling of the abilities in dichotomous IRT
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Abstract. Educational assessment usually considers a contextual question-
naire to extract relevant information from the applicants. This may include
items related to socio-economical profile as well as items to extract other
characteristics potentially related to applicant’s performance in the test.
A careful analysis of the questionnaires jointly with the test’s results may ev-
idence important relations between profiles and test performance. The most
coherent way to perform this task in a statistical context is to use the infor-
mation from the questionnaire to help explain the variability of the abilities
in a joint model-based approach. Nevertheless, the responses to the question-
naire typically present missing values which, in some cases, may be missing
not at random. This paper proposes a statistical methodology to model the
abilities in dichotomous IRT models using the information of the contextual
questionnaires via linear regression. The proposed methodology models the
missing data jointly with the all the observed data, which allows for the esti-
mation of the former. The missing data modelling is flexible enough to allow
the specification of missing not at random structures. Furthermore, even if
those structures are not assumed a priori, they can be estimated from the
posterior results when assuming missing (completely) at random structures
a priori. Statistical inference is performed under the Bayesian paradigm via
an efficient MCMC algorithm. Simulated and real examples are presented to
investigate the efficiency and applicability of the proposed methodology.

1 Introduction

The usual approach in educational assessments consists in applying a test in which
the responses to items in the test are dominantly determined by the latent trait(s)
(ability) one is interested in measuring. This is usually done via Item Response
Theory (IRT) models which relate the probability of a given response to the ap-
plicants’ ability and to the item’s characteristics. In many cases, however, the ap-
plicants also complete a contextual questionnaire to obtain their pedagogic-socio-
economical profile. These questionnaires may even be applied in other levels such
as teachers and schools.

Data extracted from the questionnaires may be used to produce descriptive
statistics to help understand the profile of the applicants, teachers and schools in-
volved in the assessment or even to report the results in the test by profile groups.
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A deeper investigation, however, may reveal relevant association between profiles
and the performance in the test (represented by the respective abilities). This is
typically done by fitting linear regression models with the estimated ability as the
response variable being explained by the covariates from the questionnaire (see,
for example, da Silva Fernandes et al., 2010; Laros and Marciano, 2008; Soares
and Alves, 2003; Alves et al., 2015). This kind of approach may be compromised
by the fact that significant uncertainty is ignore when using only the point estimate
of the abilities (see Zwinderman, 1991).

It is common to have a considerable percentage of missing data in the contextual
questionnaires and there is usually no explicit missing pattern. This implies that,
in order to remove the missing data from the analysis, a significant percentage
of the applicants would have to be removed, which means loosing a lot of useful
information. Moreover, if a missing not at random process exists, the results ob-
tained from the reduced dataset could be seriously misleading. It is then crucial to
model the missing data jointly with the observed data (responses to the test and
questionnaire).

This paper proposes a model-based approach to simultaneously fit a dichoto-
mous IRT model and explain the abilities through covariates from the contextual
questionnaires, allowing for the presence of missing data in the covariates. The
fully Bayesian approach allows for the quantification of all sources of uncertainty.
A flexible modelling structure is able to capture a variety of missing patterns. Fur-
thermore, even if a missing (completely) at random structure is assumed, the re-
sults from the posterior distribution allow for the estimation of missing not at ran-
dom structures, as long as the respective covariate is related to the ability being
measured. The relation between the ability of the applicants and the covariates is
modelled via linear regression on the second level of the model which has any
standard dichotomous IRT model on the first level. We particularly explore the
3PNO model.

The regression approach to model the abilities has been previously considered
in the literature. For example, Zwinderman (1991) considers this approach for the
abilities in the 1PL model. In a more general approach, Fox (2005) proposes a
multilevel linear regression modelling of the abilities to account for covariates
from the questionnaires applied to different levels (student, school, etc.). The au-
thor considers the 2PNO model for dichotomous and polytomous responses and
performs Bayesian inference via MCMC. However, due to the difficulty to fix the
abilities’ scale in a multilevel regression context, the author adopts a particular
strategy inside the MCMC by standardasing the values of the abilities sampled on
each iteration of the algorithm, which implies in a non-fully Bayesian approach.

A general approach to account for modelling both the abilities via covariates in
a simultaneous setup as well as the missing data in the covariates has, to the best
of our knowledge, never been considered before in the literature.

This paper is organised as follows. Section 2 presents the proposed Bayesian
model, which includes the 3PNO model on the first level, the linear regression
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to explain the abilities on the second level and the missing structure on the third
one. Section 3 describes the MCMC algorithm used to explore the posterior distri-
bution. Simulated and real examples are presented in Section 4. Some extensions
of the regression model for the abilities is presented in Section 5. This includes
multilevel modelling, latent covariates, graded response models and more general
structures for the regression errors. Finally, Section 6 brings some final remarks.

2 Proposed model

We propose a Bayesian model that basically combines three components. First, the
3PNO model for dichotomous items, second, a regression structure to the abilities
using covariates from the contextual questionnaires, and third, a joint model for
the covariates which will account for modelling and inference of the missing data.
Note that the data consist of the responses to the dichotomous items and a portion
of the covariate values.

For a dataset with I items and J individuals, let Yij be the indicator variable of
individual j correctly responding item i. The proposed model is given by

(Yij = 1|θj , ai, bi, ci) ∼ Ber
(
ci + (1 − ci)�(aiθj − bi)

)
, (2.1)

θj
ind.∼ N

(
Xj ·β,σ 2

e

)
, (2.2)

X ∼ π(X), (2.3)

where ai , bi and ci are the discrimination, difficulty and guessing parameters of
item i, respectively, and θj is the ability of individual j ; �(·) is the standard nor-
mal c.d.f., β = (β0, β1, . . . , βQ)′ are the regression coefficients, Xj · is the j th row
of the design matrix X, containing the covariates from the questionnaries. Further-
more, π(X) is the prior distribution of the covariates, to be discussed further ahead
in the text.

The model above is not identifiable as the scale of the abilities is not specified.
Identifiability is achieved by setting β0 = 0 and σ 2

e = 1.

2.1 Modelling the covariates and their missingness

In order to define the joint distribution π(X) of the covariates, we set X =
(Xobs,Xmis), where Xobs and Xmis represent the observed and missing values of
the covariates, respectively. Recall that X is a J × Q matrix with Xjq being the
response given by individual j to question q , which may or may not be missing.
We define another J × Q matrix R as

Rjq =
{

1 if Xjq is missing;

0 if Xjq is not missing.

Matrix R describes the missing pattern and, depending on the case, ought to
be modelled jointly with X. In particular, (Rubin, 1976) classifies the missingness
process into three categories:
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• MCAR (missing completely at random): R is independent of (Xmis,Xobs).
• MAR (missing at random): R is not independent of Xobs, but it is independent

of Xmis.
• MNAR (missing not at random): R is not independent of Xmis.

If we assume that the distribution of R has no common parameters with the
remainder of the model and those two sets of parameters are independent a pri-
ori, the missingness process may be ignored to perform inference in the first two
cases above. Under the Bayesian approach, this is clear by looking at the follow-
ing equation. Suppose, for a moment, that Xobs and Xmis represent all the observed
and missing data, respectively, from the model under consideration. Now let φ be
the set of parameters indexing the distribution of R and let θ be all the other pa-
rameters in the model. We have that

π(Xmis, θ, φ|Xobs,R)

∝ π(R|Xmis, θ, φ,Xobs)π(φ)π(Xmis, θ |Xobs)

= π
(
R|φ, (Xobs)

)
π(φ)π(Xmis, θ |Xobs), (2.4)

where the last equality is obtained under a MCAR or MAR scenario.
Equation (2.4) states that the posterior distribution of (Xmis, θ) is independent

of R and, therefore, the latter can be ignored in the inference process. We assume
throughout this paper that the missingness process is MCAR or MAR. Neverthe-
less, it is straightforward to extend our results for the MNAR case, whenever infor-
mation is available to suitably model R. Furthermore, one may infer about possible
MNAR structures based on the missing data estimates provided by our method-
ology. For example, substantial differences between (X|R = 0) and (X|R = 1)

indicate the existence of a MNAR structure.
Different dependence structures may be considered when specifying the joint

distribution of X. In particular, they may differ for different questions in the ques-
tionnaire. We consider the following possibilities:

Xjq ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

πϕ(·),
πϕ(·|Xjq∗), q∗ �= q,

πϕ(·|Xj∗q), j∗ �= j,

πϕ(·|Xjq∗,Xj∗q), q∗ �= qej∗ �= j,

where ϕ are possible unknown parameters indexing the distributions. In the first
specification above, Xjq is independent from any other response. A reasonable
example would be modelling the indicator variable of the response male in a gen-
der question as a Ber(p∗) r.v. For the second specification, the distribution of Xjq

depends on the responses of the same individual to the other questions. For exam-
ple, questions like “family income” and “type of school” would reasonably admit
such a dependence. For the third specification, the distribution of Xjq depends on
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the responses given to the same question by other students. Finally, in the fourth
specification, the two types of dependence are present.

In order to specify the joint distribution of X, one should consider the proba-
bilistic features of the covariates—categorical, latent or not; the information from
specialists, if this is available; and previous studies.

3 Bayesian inference

Model specification and inference is performed under the Bayesian approach. The
full model specification combines the model proposed in the previous section with
the prior distribution of the remaining unknown quantities. Standard prior distribu-
tions are adopted in a way to facilitate the computation in the MCMC algorithm.
In particular, we set:

(a, b)′ ∼ N2
(
(μa,μb)

′,diag
(
σ 2

a , σ 2
b

))
, (3.1)

c ∼ Beta(αc, βc), (3.2)

β ∼ NQ(μβ,
β), (3.3)

ϕ ∼ · · · , (3.4)

where the prior for ϕ is suitably chosen in a case-by-case basis.
For computational reasons, we introduce two sets of auxiliary variables, as

proposed in Gonçalves, Dias and Soares (2018), which allow us to sample di-
rectly from all the full conditional distributions of the Gibbs sampler to be de-
vised. Define Zij , i = 1, . . . , I , j = 1, . . . , J , where Zij ∼ Bernoulli(ci), and Vij ,
i = 1, . . . , I , j = 1, . . . , J , where (Vij |Zij = 0) ∼ N(aiθj − bi,1) and P(Vij =
0|Zij = 1) = 1. We get that:

Yij =
{

1 if (Vij = 0,Zij = 1) or (Vij ≥ 0,Zij = 0);
0 if (Vij < 0,Zij = 0).

Note that this preserves the original marginal model for the data Y .
Under the Bayesian paradigm, inference is based on the posterior distribution

of all the unknown quantities of the model, defined as ψ = (Z,V, a, b, c, θ, β,

Xmis, ϕ), omitting the respective indexes for cleanness of notation. The posterior
density of ψ is given by

π(ψ |·) ∝
I∏

i=1

J∏
j=1

π(Yij |Vij ,Zij )π(Zij |ci)π(Vij |Zij , ai, bi, θj )

×
I∏

i=1

π(ai)π(bi)π(ci)

J∏
j=1

π(θj |Xj ·, β)π(X|ϕ)π(β)π(ϕ). (3.5)
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This is a complex and highly dimensional distribution which cannot be analyt-
ically explored. Instead, we draw from this distribution via MCMC and compute
Monte Carlo (MC) estimates to explore its properties, like means, variances, quan-
tiles, marginal densities, etc. We propose a Gibbs sampling algorithm with blocks

(Z,V ), c, (a, b), θ, β,Xmis, ϕ.

It is feasible to sample directly from all the full conditional distributions. The al-
gorithms to do so are presented in the Appendix.

4 Examples

We present some simulated and real examples. The simulated example illustrates
the efficiency of the proposed inference methodology to recover the parameters
and missing values. Several datasets from two large scale educational assessment
exams in Brazil—Saeb and Enem, are analysed to illustrate the applicability of the
proposed methodology. We highlight the possibility to investigate possible MNAR
structures in the missingness process.

4.1 Simulated example

We consider 5000 thousand individuals responding 30 items each. The contextual
questionnaire contains 3 items, in which item 1 has three alternatives and items 2
and 3 have two alternatives.

The real values of the item parameters are drawn from U(0.5,3), U(−9,8) and
U(0,0.15), for a, b and c, respectively. We also set β = (−2,2.5,−2.5,2)′ and
X as a binary matrix such that the first two columns refer to the first item and the
other two columns to items 2 and 3, respectively. Parameters ci were fixed in their
respective real values for the analysis.

The missing values were randomly chosen to have around 10% of missingness.
As a result, we had 503 missing responses from 487 individuals. The observed
responses were uniformly chosen among the alternatives in each of the three items.

The fitted model assumes Bernoulli and multinomial priors for the responses
of the questions with two and three alternatives, respectively, with uniform priors
(Beta(1,1) and Dihichlet(1,1,1)) for the respective probability vectors.

The MCMC chain runs for 20 thousand iterations with a burn-in of 5 thousand.
The following priors are used: ai ∼ N(0,∞)(1,22), bi ∼ N(0,42), ∀i = 1, . . . ,30,
β ∼ N4(0,diag(10,000)).

Figure 1 shows the good recovery of the item parameters and abilities. Figure 2
shows the posterior probability of the real response for each of the missing values
and highlights the ones correctly identified by the posterior mode. Finally, Table 1
shows the estimated proportions to each alternative of each item.

The posterior mean of the regression coefficients β are −2.052, 2.523, −2.502
and 1.999, respectively, with standard deviations 0.0425, 0.0507, 0.0392 and
0.0408. All the results suggest that the proposed methodology is efficient to re-
cover the unknown quantities of the models.
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Figure 1 Real (x-axis) versus estimate (y-axis—posterior mean) of the item parameters and abili-
ties. From left to right: a, b and θ .

Figure 2 Posterior probability of the real response for each of the missing values. Values in red
refer to the responses correctly identified by the posterior mode.

Table 1 Real and estimated proportions of the missing responses

Item Real Estimated

1 (0.306, 0.341, 0.353) (0.331,0.344,0.325) − 173
2 (0.545, 0.455) (0.558,0.442) − 176
3 (0.442, 0.558) (0.476,0.524) − 154

4.2 Applications

We apply the proposed methodology to datasets from two large scale educational
assessment exams in Brasil. The Sistema Nacional de Avaliação da Educação
Básica (Saeb) assesses the basic educational system in Brazil. It consists of Por-
tuguese and Mathematics exams applied every other year to students in 5th and 9th
year of Elementary School (ES) and 3rd year of High School (HS). We analyse the
datasets from Saeb 2015 shown in Table 2.
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Table 2 Datasets analysed

Grade Exams Location

5th (ES) Port/Math Minas Gerais state
9th (ES) Port/Math Bahia state
9th (ES) Port Pará state
3rd (HS) Port/Math Brazil

Table 3 Covariates used in at least one of the analysis. Options (a) and (b) of gender where swaped
in the analysis of Enem

Cavariate Description Alternatives

Gender What is your gender? (a) Male (b) Female
Ethnicity How do you consider yourself? (a) Black or Brown

(b) Indigenous or Yellow (c) White
LikeMaths Do you like to study Maths? (a) Yes (b) No
Talk Do your parents talk to you about school? (a) Yes (b) No
Work Do you work out of your home? (a) Yes (b) No
PC Do you have a computer at home? (a) No (b) Yes, 1 (c) Yes, 2 or more
Net Do you have internet access at home? (a) No (b) Yes
Encour Do your parents encourage you to study? (a) Yes (b) No
Read Can you mother read and write? (a) Yes (b) No

Table 4 Covariates used in each analysis

Exame Grade Exams Population Covariates

Saeb 5◦ Math/Port Minas Gerais state Ethnicity, Talk, Work
Saeb 5◦ Port Pará state Ethnicity, Read, PC
Saeb 9◦ Math/Port Bahia state PC, Work, Encour
Saeb 3◦ Math/Port Brazil Ethnicity, Gender, LikeMaths
Enem Math Belo Horizonte city Ethnicity, Gender, Net

The Exame Nacional do Ensino Médio (Enem) is annually applied to students
in the 3rd year of High School or who have finished it and is used as an admission
criterion by most of the universities in Brasil. We consider the Math test applied in
2015 and restrict the analysis to applicants from Belo Horizonte city.

Several items from the respective contextual questionnaires are considered in
the analysis. They are presented in Table 3 and assigned as shown in Table 4.

Since all the covariates are categorical, they are introduced in the regression
model using dummy variables, with the first one referring to option (a) and the
second one to option (b) (when there are three options). The interpretation of the
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Table 5 Observed and estimated proportions for each response with the respective number of re-
sponses. The estimated refers to the proportions of the responses that were estimated for the missing
cases

Covariate Observed Estimated

Ethnicity (0.634,0.068,0.298) − 5167 (0.459,0.248,0.293) − 896
Talk (0.814,0.186) − 5679 (0.633,0.367) − 384
Work (0.104,0.896) − 5597 (0.473,0.527) − 466

results ought to take into account the scale of the regression model, that is, unit
variance error.

In all the analyses considering both the Portuguese and Maths test, the first was
fit separately under the 3PNO model with scale N(0,1) and the estimates (pos-
terior mean) of the abilities used as covariates in the regression model to explain
the the ability in Math. A more elaborated analysis should consider the joint mod-
elling of the two abilities to fit both tests jointly as it is proposed in the extension
presented in Section 5.2. The implication of adopting the first approach is that the
uncertainty about the ability in Portuguese is ignored when estimating the ability
in math and, therefore, the uncertainty about the relation between the two abili-
ties is underestimated. Nevertheless, the analysis presented here is still useful to
investigate this relation.

The analysis regarding missing patterns is performed by comparing the ob-
served and estimated proportions of each response. We use the posterior mean
of the proportions as an estimate. Given that the relation between the respective
question and the abilities is the only source of information about missing patterns,
conclusions about possible MNAR structures can only be drawn for question with
significant regression coefficients. In those cases, larger differences between ob-
served and estimated proportions indicate the presence of a MNAR structure.

The regression coefficients are ordered according to the order that the respective
covariates are presented in Table 4. For questions with two options, the respective
covariate is the indicator of alternative (a). For questions with three options, the
respective first covariate is the indicator of alternative (a) and the second one is the
indicator of alternative (b).

4.2.1 Saeb, 5th grade, Math/Port, Minas Gerais. The dataset consists of 6063
students and each test has 11 items. 1070 students did not respond one of the three
questions in the questionnaire, 206 did not respond two of them and 88 all of them,
leading to a total of 1746 missing values. In particular 896, 384 and 466 did not
answer the first, second and third questions, respectively. Results are shown in
Tables 5 and 6 and Figure 3.

Results suggest a possible MNAR structure associated to the first and third ques-
tions, in which Indigenous or Yellow students would be more likely not to declare
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Table 6 Estimates of the regression coefficients—posterior mean
and 99% credibility interval

Coefficient Estimate

β11 −0.198 (−0.313, −0.078)
β12 −0.218 (−0.440, −0.0004)
β2 0.047 (−0.076, 0.164)
β3 −0.301 (−0.478, −0.130)
β4 1.082 (1.003, 1.167)

Figure 3 Estimated abilities in Portuguese (x-axis) and Mathematics. The correlation is 0.804.

their ethnicity, followed by White students and then Black and Brown students.
Also, students who work are more likely not to declare their work status than
students who do not work. The fitted regression model indicates a positive asso-
ciation between the abilities in Portuguese and Mathematics. It also indicates a
lightly worse performance by non-white students and by student who work. The
regression coefficient of the covariate “Talk” is the least significant one, therefore,
the difference between observed and estimated proportions in Table 5 only weakly
suggests that students who do not talk to their parents about school are more likely
not to answer that question.

4.2.2 Saeb, 5th grade, Port, Pará. The dataset consists of 5395 students and 11
items. 918 students did not respond one of the three questions in the questionnaire,
145 did not respond two of them and 104 all of them, leading to a total of 1520
missing values. In particular 864, 352 and 304 did not answer the first, second and
third questions, respectively. Question PC was dichotomised by merging options
(b) and (c). Results are shown in Tables 7 and 8.

Results do not suggest the presence of a MNAR structure in any of the three
questions. The fitted regression model indicates a lightly better performance by
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Table 7 Observed and estimated proportions for each response with the respective number of re-
sponses. The estimated refers to the proportions of the responses that were estimated for the missing
cases

Covariate Observed Estimated

Ethnicity (0.761,0.068,0.194) − 4531 (0.757,0.045,0.198) − 864
Read (0.934,0.066) − 5043 (0.927,0.073) − 352
PC (0.644,0.356) − 5091 (0.654,0.346) − 304

Table 8 Estimates of the regression’s coefficients—posterior mean
and 99% credibility interval

Coefficient Estimate

β11 0.193 (0.072, 0.315)
β12 0.201 (−0.046, 0.452)
β2 0.652 (0.466, 0.830)
β3 −0.231 (−0.329, −0.137)

Table 9 Observed and estimated proportions for each response with the respective number of re-
sponses. The estimated refers to the proportions of the responses that were estimated for the missing
cases

Covariate Observed Estimated

PC (0.972,0.027,0) − 6035 (0.486,0.179,0.335) − 144
Work (0.152,0.847) − 5830 (0.359,0.641) − 349
Encour (0.982,0.018) − 5964 (0.718,0.282) − 215

non-white students and a considerably better performance by students whose
mother can read and write. A lightly worse performance by students who do not
have a computer at home is also suggested.

4.2.3 Saeb, 9th grade, Math/Port, Bahia. The dataset consists of 6179 students
and each test has 13 items. 311 students did not respond one of the three questions
in the questionnaire, 104 did not respond two of them and 63 all of them, leading
to a total of 708 missing values. In particular 144, 349 and 215 did not answer the
first, second and third questions, respectively. Results are shown in Tables 9 and
10 and Figure 4.

Results suggest a possible MNAR structure associated to the first question, in
which students with at least one computer at home would be more likely not to
provide that information. The fitted regression model indicates a strong positive
association between the abilities in Portuguese and Mathematics. It also indicates
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Table 10 Estimates of the regression’s coefficients—posterior mean
and 99% credibility interval

Coefficient Estimate

β11 −0.339 (−0.532, −0.148)
β12 −0.256 (−0.452, −0.067)
β2 −0.013 (−0.168, 0.144)
β3 0.108 (−0.386, 0.511)
β4 0.994 (0.909, 1.101)

Figure 4 Estimated abilities in Portuguese (x-axis) and Mathematics. The correlation is 0.804.

a lightly worse performance by students with 1 or 0 computer at home compared
to those with 2 or more.

4.2.4 Saeb, 3rd grade, Math/Port, Brazil. The dataset consists of 8000 students
and each test has 13 items. 530 students did not respond one of the three questions
in the questionnaire, 80 did not respond two of them and 9 all of them, leading to
a total of 717 missing values. In particular 349, 183 and 205 did not answer the
first, second and third questions, respectively. Results are shown in Tables 11 and
12 and Figure 5.

Results suggest a possible MNAR structure associated to the third question, in
which students who like Maths would be more likely not to respond this question.
The fitted regression model indicates a positive association between the abilities in
Portuguese and Mathematics. It also indicates a lightly worse performance by In-
digenous or Yellow and moderate worse performance of Black or Brown students
when compared to White students. Finally, a better performance by male students
and by students who declared that they like Maths is strongly suggested.
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Table 11 Observed and estimated proportions for each response with the respective number of
responses. The observed refers the proportions of the responses that were observed, and the estimated
refers to the proportions of the responses that were estimated for the missing cases

Covariate Observed Estimated

Ethnicity (0.617,0.055,0.327) − 7651 (0.617,0.055,0.327) − 349
Gender (0.449,0.551) − 7817 (0.453,0.547) − 183
LikeMaths (0.561,0.439) − 7779 (0.738,0.262) − 211

Table 12 Estimates of the regression’s coefficients—posterior mean
and 99% credibility interval

Coefficient Estimate

β11 −0.370 (−0.462, −0.287)
β12 −0.178 (−0.392, 0.044)
β2 0.548 (0.449, 0.646)
β3 0.873 (0.769, 0.977)
β4 1.300 (1.213, 1.384)

Figure 5 Estimated abilities in Portuguese (x-axis) and Mathematics. The correlation is 0.810.

4.2.5 Enem, Math, Belo Horizonte. The dataset consists of 4470 students and
each test has 45 items. 129 students did not respond the first question in the ques-
tionnaire and 4 did not respond third one. Results are shown in Tables 13 and 14
and Figure 6.

Results do not suggest the presence of a MNAR structure in any of the two ques-
tions with missing values. The fitted regression model indicates a lightly worse
performance by Black and Brown students and a considerably worse performance
by Indigenous or Yellow students when compared to White ones. It also indicates
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Table 13 Observed and estimated proportions for each response with the respective number of
responses. The estimated refers to the proportions of the responses that were estimated for the missing
cases

Covariate Observed Estimated

Ethnicity (0.626,0.027,0.346) − 4341 (0.606,0.025,0.368) − 129
Gender (0.617,0.383) − 4470 −0
Net (0.160,0.840) − 4466 (0.128,0.872) − 4

Table 14 Estimates of the regression’s coefficients—posterior mean
and 99% credibility interval

Coefficient Estimate

β11 −0.384 (−0.491, −0.286)
β12 −0.770 (−1.097, −0.448)
β2 −0.279 (−0.376, −0.182)
β3 −0.701 (−0.838, −0.560)

Figure 6 Estimated abilities in Math for the Enem dataset from Belo Horizonte.

a lightly worse performance by female students and a considerably worse perfor-
mance by students who do not have internet access at home.

5 Extensions of the regression model for the abilities

We present three possible extensions of the regression model for the abilities pre-
sented in Section 2.
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5.1 Multilevel model

Fox (2005) proposes a multilevel regression model to explain the abilities using
covariates from different levels, for example, school, teachers, students. The two
level model, say for school and student, is given by:

θjk = Xj ·kβk + ejk,

βq = Wqγq + uq,
(5.1)

where jk refers to student j from school k, βk = (β0k, . . . , βQk), Xj ·k is the j th
row of the design matrix Xk from school k, βq = (βq1, . . . , βqK)′, Wq are the
covariates in the second level to explain the variability of βq among schools, γq =
(γ0q, . . . , γSq) and, finally, uq = (uq1, . . . , uqK)′ are independent random error
with uqk ∼ N(0, σ 2

u ).
Identifiability is achieved by making β0k = 0, for all k and ejk ∼ N(0,1), for

all jk.

5.2 Latent covariates

The use of latent covariates may be reasonable in several examples. These may
include socioeconomic and cultural status, or any other ability. Each of these co-
variates is a latent factor explaining responses in (part of) a questionnaire or test.
Let λ represent a latent covariate and Ẋ be the responses, from a questionnaire or
another test, modelled by this covariate.

A latent covariate may be inserted in the model under two different approaches.
In the first one, it is previously estimated, based on the responses that it models,
and the point estimates are used as a fixed covariate. This approach is appropriate
when:

• (λ|θ, Ẋ) ≈ (λ|Ẋ);
• it is reasonable to ignore the variability/uncertainty about λ.

One possible example is the socioeconomic status.
The second approach to include a latent covariate in the model consists of mod-

elling this jointly with the remaining components of the model. This is reasonable,
for example, when the latent covariate is a factor summarising (via factor analy-
sis or IRT) the variability among (some of) the items in the questionnaire. This
could allow the use of the information in the questionnaire without having mul-
ticollinearity problems. Another example is when the latent covariate is in fact
another ability, measured in a different test.

In order to present the general formulation of the model with latent covariates,
we consider that the latent covariates treated under the first approach are included
in the design matrix X. The model is as following:

π(Y |θ, ξ)π(ξ)π(Ẋ|λ, ζ )π(ζ )π(θ |λ,X,β,α)π(λ)π(X)π(β)π(α), (5.2)

where:
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• π(Y |θ, ξ) is the 3PNO model in (2.1);
• π(ξ) is the prior on the item parameters;
• π(Ẋ|λ, ζ ) is the factor model or IRT model for the responses modelled by the

latent covariates. ζ are loadings or item parameters;
• π(ζ ) is the prior on ζ ;
• π(θ |λ,X,β,α) defines the regression model θj = Xj ·β + λj ·α + ej ;
• π(λ) is a N(0,1) prior;
• π(X) is the prior on X, essential to model and estimate the missing data;
• π(β)π(α) are the prior on the regression coefficients, with α ∈ (0,1).

Model identifiability is achieved by setting, for example, ej ∼ N(0,1 − α2).

5.2.1 Graded response IRT model. Given that the questions in the questionnaire
are typically polytomous, responses Ẋ are often suitably modelled by a graded re-
sponse IRT model. We consider the model proposed by Samejima (1969), which
assumes a natural graduation of the possible responses, in the sense of being mono-
tonically related to the latent covariate. Defining phkj as the probability that indi-
vidual j gives a response k to item h, we have that:

phkj = p+
h(k−1)j − p+

hkj , (5.3)

p+
hkj = �(ȧhλj − ḃhk), (5.4)

where −∞ = ḃh0 < ḃh1 < ḃh2 < · · · < ḃhK = ∞.

5.3 Mixtures

Mixtures of distributions play an increasingly important role in statistical mod-
elling, specially for regression models. At least two nice features may be intro-
duced by mixtures in a regression context.

Traditional linear regression models assume the errors to be normally dis-
tributed. Although reasonable in many cases, more flexible structures may some-
times need to be considered. Important features like multimodality, skewness and
heavy tails can be efficiently accommodated by mixtures of Normal distributions
in a parsimonious way (see Richardson and Green, 1997). Gonçalves, Dias and
Soares (2018) propose a flexible approach to model the abilities through a mixture
of normals in the 3PNO model that is able to properly accommodate the features
described above and still guarantee model identifiability. The same structure may
be used to model the errors in the regression model for the abilities proposed in
this paper. In particular, this can be a way to model possible latent sources of het-
erogeneity which are not captured by the covariates. We assume

ej ∼
L∑

l=1

rlN
(
μl, σ

2
l

)
, rl > 0,

L∑
l=1

rl = 1. (5.5)
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Gonçalves, Dias and Soares (2018) provide the required conditions to achieve
model identifiability as well as the details to adapt our MCMC algorithm.

Another interesting use of mixtures in a regression context is to perform variable
selection by considering a point-mass mixture prior for the regression coefficients.
This is a well known modelling technique that works well for a reasonable number
of potential covariates. More specifically, we assume

βq ∼ rN
(
μl, σ

2
l

) + (1 − r)δ0, r ∈ (0,1), (5.6)

where δ0 is a point-mass at zero. This approach allows the variable selection pro-
cedure to be performed under the Bayesian Paradigm, based on the posterior prob-
ability of each model.

6 Final remarks

This paper addressed the problem of using covariates from the contextual ques-
tionnaire to explain the ability of students with data modelled via the 3PNO model.
The possibility of having missing values in the covariates was considered by mod-
elling the missing data jointly with the other components of the model. An ef-
ficient MCMC algorithm was proposed to perform inference under the Bayesian
approach. The efficiency of the algorithm was investigated in a simulated example
which also illustrated the possibility of identifying MNAR structures in the miss-
ingness process. Finally, the analysis of some real datasets concerning two large
scale educational assessment exams in Brazil illustrated the applicability of the
proposed methodology and led to some interesting conclusions. Some extensions
of the proposed model were also discussed by considering a hierarchical regression
model for the abilities, the use of latent covariates and mixtures distributions.

Finally, we highlight the fact that the estimation of the abilities is not affected by
the regression prior, in the sense that information about a student’s ability comes
from its performance in the test and is not influenced by the group it belongs to
w.r.t. its covariates’ values. In order to see that, note that, if we integrate out the
regression coefficients β by assuming a zero mean normal prior for these, the re-
sulting model is the traditional 3PNO model with a zero mean normal prior for all
the abilities and different variances for students from different groups. Given that
the joint posterior of all the abilities is the same whether or not we integrate out the
regression coefficients, the regression structure should not affect the estimation of
the abilities.

Appendix

We present all the full conditional distributions of the Gibbs sampling algorithm
proposed in Section 3.
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• (Z,V )

All pairs (Zij ,Vij ) are conditionally independent with

π(Zij ,Vij |·)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∝ φ(vij − m)I(Zij=0)I(Vij<0)

if Yij = 0,

= wI(Zij=1)I(Vij=0)

+ (1 − w)
φ(vij − m)

�(m)
I(Zij=0)I(Vij>0)

if Yij = 1,

(A.1)

where m = aiθj − bi and w = ci

ci+(1−ci)�(m)
.

• c

All the ci ’s are conditionally independent with

(ci |·) ∼ Beta

(
J∑

j=1

Zij + αc, J −
J∑

j=1

Zij + βc

)
(A.2)

• (ai, bi)

All pairs (ai, bi) are conditionally independent with

(ai, bi |·) ∼ N2(μ,
), (A.3)

where μ = [μa
∗

μb
∗
]
, 
 = [ σ 2

a
∗

γ

γ σ 2
b

∗
]

and σ 2
a

∗ = σ 2
a

(σ 2
a

∑Li
j=1 θ2

j +1)(1−γ 2)
, σ 2

b

∗ =
σ 2

b

(σ 2
b J+1)(1−γ 2)

, γ = σaσb
∑Li

j=1 θj

[(σ 2
a

∑Li
j=1 θ2

j +1)(σ 2
b J θ2

j +1)] 1
2

, μa
∗ = σ 2

a

∗
(
∑J

j=1 vij θj +μaσ
−2
a )−

σa
∗σb

∗γ (
∑Li

j=1 vij − μbσ
−2
b ), μb

∗ = σa
∗σb

∗γ (
∑J

j=1 vij θj + μaσ
−2
a ) −

σ 2
b

∗
(
∑Li

j=1 vij − μbσ
−2
b ), Li = {j ; zij �= 0}.

• θ

All the θj ’s are conditionally independent with

(θj |·) ∼ N
(
mθ,σ

2
θ

)
, (A.4)

where mθ = σ 2
e

∑Lj
i=1 ai(vij+bi)+Xj ·∗β∗

σ 2
e

∑Lj
i=1 a2

i +1
, σ 2

θ = σ 2
e

σ 2
e

∑Lj
i=1 a2

i +1
, Lj = {i; zij �= 0}.

• β∗

(
β∗|·) ∼ NQ+P+1

(
μβ,
∗

β

)
, (A.5)

where μβ = 
β(
−1
β μβ + X′θ) and 
∗−1

β = 
−1
β + X′X.
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• Xmis

Assuming that the prior on Xmis is discrete, we have

P(Xmis = xmis|·) ∝ π(θ |Xβ)P (Xmis = xmis), (A.6)

where the missing values of matrix X in the first term of the rhs are set as xmis.
If, for example, the prior of X is independent for different individuals, that is also
true for the full conditional distribution.
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