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The limiting distribution of the Gibbs sampler for the
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Abstract. We study the limiting behavior of the one-at-a-time Gibbs sam-
pler for the intrinsic conditional autoregressive model with centering on the
fly. The intrinsic conditional autoregressive model is widely used as a prior
for random effects in hierarchical models for spatial modeling. This model
is defined by full conditional distributions that imply an improper joint “den-
sity” with a multivariate Gaussian kernel and a singular precision matrix. To
guarantee propriety of the posterior distribution, usually at the end of each
iteration of the Gibbs sampler the random effects are centered to sum to zero
in what is widely known as centering on the fly. While this works well in
practice, this informal computational way to recenter the random effects ob-
scures their implied prior distribution and prevents the development of formal
Bayesian procedures. Here we show that the implied prior distribution, that
is, the limiting distribution of the one-at-a-time Gibbs sampler for the intrin-
sic conditional autoregressive model with centering on the fly is a singular
Gaussian distribution with a covariance matrix that is the Moore–Penrose
inverse of the precision matrix. This result has important implications for
the development of formal Bayesian procedures such as reference priors and
Bayes-factor-based model selection for spatial models.

1 Introduction

The intrinsic conditional autoregressive (ICAR) model is widely used as a prior for
random effects in spatial hierarchical models. These models allow incorporation of
neighborhood-based spatial dependence and have been used in diverse fields such
as for example, disease mapping (Clayton and Kaldor, 1987, Bell and Broemel-
ing, 2000, Goicoa et al., 2016), image restoration (Besag, York and Mollié, 1991),
statistical analysis of fluid flow through porous media (Lee et al., 2002, Ferreira
et al., 2003, Ferreira and Lee, 2007), and neuroimaging (Liu et al., 2016). Usu-
ally, analysis for such hierarchical models is implemented with Gibbs samplers
based on full conditional distributions of the unknown parameters (Gelfand and
Smith, 1990, Robert and Casella, 2005, Gamerman and Lopes, 2006). However,
the ICAR model is defined by full conditional distributions that imply an improper
joint “density” that has a multivariate Gaussian kernel with a singular precision
matrix. By improper, we mean that the density does not integrate to one.
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To guarantee propriety of the posterior distribution, usually at the end of each
iteration of the Gibbs sampler the spatial random effects are centered to sum to
zero in what is widely known as centering on the fly. While this works well in
practice, this informal computational way to recenter the random effects does not
make it explicit the mathematics behind the procedure. This lack of explicit math-
ematics obscures the implied prior distribution and prevents the development of
formal Bayesian procedures. Here we show that the implied prior distribution, that
is, the limiting distribution of the one-at-a-time Gibbs sampler for the intrinsic
conditional autoregressive model with centering on the fly is a singular Gaussian
distribution with a covariance matrix that is the Moore–Penrose inverse of the pre-
cision matrix.

This result is intuitive but it is not straightforward. The difficulty arises be-
cause of an apparent contradiction in the usual implementation of the one-at-a-time
Gibbs sampler for the ICAR model with centering on the fly. Specifically, the one-
at-a-time Gibbs sampler for the ICAR model is usually implemented in two steps.
In the first step, the elements of an auxiliary vector φ∗

t are simulated one at a time
from the full conditional distributions implied by the ICAR model but ignoring the
sum-zero constraint. We note that each such full conditional distribution depends
only on the neighboring regions, which are typically of much lower cardinality
than the total number of regions. In the second step, the sum-zero constraint is
imposed by centering φ∗

t so that the elements of the resulting vector of random ef-
fects sum to zero. Hence, when the sum-zero constraint is taken into account, each
element of the vector of random effects actually depends on all the other elements.
That is, when the sum-zero constraint is considered the actual full conditional dis-
tribution for a spatial random effect should depend on all the other spatial random
effects. Hence, the usual implementation of the one-at-a-time Gibbs sampler for
the ICAR model with centering on the fly does not actually simulate from the full
conditional distributions of the random effects. Therefore, the conditions for the
design of Gibbs samplers are not satisfied and, as a result, the limiting distribution
of the algorithm is unclear.

Keefe, Ferreira and Franck (2018) have proposed a formal specification of a
sum-zero constrained ICAR model. Let τH be the singular precision matrix of
the ICAR model, τ > 0 be a precision parameter, and K be a symmetric positive
semi-definite matrix for which the sum of its elements is positive. To obtain their
specification, Keefe, Ferreira and Franck (2018) perform three steps. First, they
start with a proper CAR model that has a positive definite precision matrix equal
to τ(λK + H), where λ > 0 is a scalar. Second, they project the vector of proper
conditional autoregressive spatial random effects onto a subspace where the pro-
jected vector is constrained to sum to zero. Finally, they take the limit when λ

approaches zero and the proper conditional autoregressive model approaches the
ICAR model. Keefe, Ferreira and Franck (2018) show that, for any matrix K as
describe above, the resulting distribution does not depend on the matrix K. Specif-
ically, the distribution they obtain for the sum-zero constrained ICAR model is
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the singular Gaussian distribution N(0, τ−1H+). Here we show that this distribu-
tion proposed by Keefe, Ferreira and Franck (2018) is the limiting distribution of
the one-at-a-time Gibbs sampler for the intrinsic conditional autoregressive model
with centering on the fly.

The fact that the limiting distribution is the singular Gaussian distribution
N(0, τ−1H+) has important implications for the development of formal Bayesian
procedures for spatial hierarchical models with ICAR random effects. The de-
velopment of formal Bayesian procedures for these models has been prevented
because the ICAR “density” is improper and not fully specified. In contrast, the
density of the singular Gaussian distribution N(0, τ−1H+) is proper, it explicitly
includes the sum-zero constraint, and it has a known constant of proportionality.
This knowledge of the entire density is of fundamental importance for the devel-
opment of formal objective Bayesian methodology.

Formal objective Bayesian methods such as Bayesian model selection and the
development of reference Bayesian analysis require the integrated likelihood func-
tion that is obtained by integrating out the spatial random effects. Further, we note
that the previous lack of clarity about the ICAR density prevented the computation
of such integrated likelihood function. In contrast, in Gaussian hierarchical models
with ICAR random effects the result that the limiting distribution is the singular
Gaussian distribution N(0, τ−1H+) leads to an explicit expression for the inte-
grated likelihood function. Such expression then can be used for the development
of formal objective Bayesian methods. For example, for a Gaussian hierarchical
model with ICAR random effects, Keefe, Ferreira and Franck (2018) have devel-
oped formal Bayesian model selection, and Keefe, Ferreira and Franck (2019) have
developed formal objective Bayesian estimation.

The remainder of the article is organized as follows. Section 2 presents the
intrinsic conditional autoregressive model. Section 3 presents the one-at-a-time
Gibbs sampler for the ICAR model with centering on the fly and shows that the
sequence of simulated vector of random effects follows a time series vector autore-
gressive model of order 1. Section 4 presents the theorem that establishes that the
limiting distribution is a singular Gaussian distribution with a covariance matrix
that is the Moore–Penrose inverse of the precision matrix. Section 4 also presents
a proof for the theorem. Section 5 concludes with a brief discussion and possi-
ble avenues for future research. Finally, the Appendix presents proofs of auxiliary
lemmas.

2 Intrinsic conditional autoregressive model

Consider a geographical region of interest that is partitioned into n disjoint subre-
gions. In addition, assume a neighborhood structure such that Nj , j = 1, . . . , n,
represents the set of subregions that are neighbors of subregion j . Let φ =
(φ1, . . . , φn)

′ be a vector of random effects corresponding to a process of interest



Limiting distribution of Gibbs sampler for ICAR 737

over the n subregions. Assume that φ follows an intrinsic conditional autoregres-
sive model (Besag and Kooperberg, 1995) with joint density

p(φ) ∝ exp
{
−τ

2
φ′Hφ

}
, (1)

where τ > 0 is a precision parameter and τH is the precision matrix. The matrix H
is usually assumed to be known and depends on the neighborhood structure such
that

(H)ij =

⎧⎪⎪⎨
⎪⎪⎩

hi if i = j,

−gij if i ∈ Nj,

0 otherwise,

(2)

where gij ≥ 0 is a measure of similarity of subregions i and j , gij = gji , and
hi = ∑

j �=i gij . For example, a common choice is gij = 1 if subregions i and j are
neighbors, and gij = 0 otherwise. Note that gij = gji implies H is symmetric.

Further, hi = ∑
j �=i gij implies H is positive semidefinite. We assume that any

two subregions are connected by a path. As a consequence, H has only one eigen-
value equal to 0 with corresponding normalized eigenvector n−1/21, where 1 is
the n-dimensional vector of ones. Because H is not positive definite, the covari-
ance matrix of φ and the constant of proportionality in Equation (1) are not well
defined and the implied distribution for φ is improper. Thus, the use of the ICAR
definition given by Equations (1) and (2) for spatial random effects may lead to an
improper posterior distribution.

To guarantee posterior propriety, implementation of Gibbs samplers for models
that have ICAR random effects usually use centering on the fly. That is, at the end
of each iteration of the Gibbs sampler, the vector of random effects is re-centered
to impose a sum-zero constraint so that φ′1 = 0. While this works well in practice,
centering on the fly is a computational hack that does not make it explicit the
mathematics behind the procedure. This lack of mathematical clarity has prevented
previous literature from obtaining the prior distribution for the random effects φ
implied by centering on the fly.

3 One-at-a-time Gibbs sampler centering on the fly

Consider the one-at-a-time Gibbs sampler with centering on the fly (OGC) to sim-
ulate the vector of random effects φ from the ICAR model given in Equation (1).
Let φ∗

t = (φ∗
t1, . . . , φ

∗
tn)

′ be an auxiliary vector simulated at the t th iteration of the
algorithm. And, after centering on the fly, let φt = (φt1, . . . , φtn)

′ be the vector of
random effects simulated at iteration t of the algorithm. Without loss of generality,
assume that the elements of φ∗

t are simulated sequentially from φ∗
t1 to φ∗

tn.
Each iteration of the one-at-a-time Gibbs sampler with centering on the fly pro-

ceeds in two steps. In the first step, the elements of the auxiliary vector φ∗
t are sim-

ulated one at a time from the full conditional distributions implied by the ICAR
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model given in Equation (1) but ignoring the sum-zero constraint. After that, a
centering on the fly step is applied to obtain φt , meaning that the elements of φ∗

t

are centered so that φ′1 = 0. Let I be the n by n identity matrix. Then, a mathemat-
ical way to represent the centering on the fly step is by writing φt = Pφ∗

t , where
P is the projection matrix P = I − n−111′. Specifically, the one-at-a-time Gibbs
sampler with centering on the fly is as follows.

Algorithm 3.1 (One-at-a-time Gibbs sampler with centering on the fly).

1. Initialize φ0 and set iteration counter to t = 1.
2. For i = 1, . . . , n, simulate φ∗

t i from the full conditional distribution

N

(∑i−1
j=1 gijφ

∗
tj + ∑n

j=i+1 gijφt−1,j

hi

,
1

hiτ

)
.

3. Center on the fly: Compute φt = Pφ∗
t .

4. Set t = t +1 and return to Step (2) until desired number of iterations is reached.

Let D = diag(h1, . . . , hn). In addition, consider the lower triangular matrix

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0 0
g21 0 · · · 0 0 0

g31 g32
. . . 0 0 0

...
...

. . .
. . .

...
...

gn−1,1 gn−1,2 · · · gn−1,n−2 0 0
gn1 gn2 · · · gn,n−2 gn,n−2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, the simulation of the auxiliary vector φ∗
t in the OGC algorithm can be

represented with the equation

φ∗
t = Eφ∗

t + Fφt−1 + τ−1/2D−1/2εt ,

where E = D−1L, F = D−1L′, and εt ∼ N(0, I).
Note that the matrix I − E is diagonally dominant and, thus, has an inverse.

Therefore, we can write the simulation of φt as

φt = Aφt−1 + τ−1/2Bεt , (3)

where A = P(I − E)−1F and B = P(I − E)−1D−1/2.
We note from Equation (3) that φt follows a time series vector autoregressive

model of order 1 (VAR(1)). This relationship between the VAR(1) model and the
OGC algorithm provides several properties of the OGC algorithm. First, the num-
ber of lags in the VAR model is just one, which makes intuitive sense because of
the Markovian property that is implicit in the very definition of the OGC algo-
rithm. Second, the vector of random effects simulated in one iteration of the OGC
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algorithm can be written as a linear function of the random effects from the previ-
ous iteration plus a random vector of innovations. Finally, and most important for
our purposes in this article, the limiting distribution of the OGC algorithm can be
obtained through an analysis of the VAR(1) model given in Equation (3) (Reinsel,
1997, Prado and West, 2010).

4 Limiting distribution

As described in the Introduction section, Keefe, Ferreira and Franck (2018)
have proposed a formal specification of a sum-zero constrained ICAR model.
The distribution they obtain for this model is the singular Gaussian distribution
N(0, τ−1H+). This distribution has density

p(φ) = (2π)(n−1)/2τ (n−1)/2

(
n−1∏
i=1

si

)1/2

exp
{
−τ

2
φ′Hφ

}
1
(
1′
nφ = 0

)
, (4)

where s1 ≥ · · · ≥ sn−1 > sn = 0 are the ordered eigenvalues of H and 1(·) is the
indicator function.

Note that the density given in Equation (4) above is proportional to the density
given in Equation (1). However, in contrast to Equation (1), the density in Equa-
tion (4) is proper, explicitly includes the sum-zero constraint, and has a know con-
stant of proportionality. In particular, knowledge of the entire density is of funda-
mental importance for the development of formal objective Bayesian methodology
(Keefe, Ferreira and Franck 2018, 2019). Specifically, formal objective Bayesian
methods require the integrated likelihood function that is obtained by integrating
out the spatial random effects. Further, we note that the lack of clarity in previous
literature about the ICAR density prevented the computation of such integrated
likelihood function.

In contrast, in Gaussian hierarchical models the knowledge that the limiting
distribution of the ICAR random effects is the singular Gaussian distribution
N(0, τ−1H+) leads to an explicit expression for the integrated likelihood func-
tion. Such expression can then be used for the development of formal objective
Bayesian methods for Gaussian hierarchical models with ICAR random effects,
such as for example formal Bayesian model selection (Keefe, Ferreira and Franck,
2018) and formal objective Bayesian estimation (Keefe, Ferreira and Franck,
2019).

The following theorem establishes that the limiting distribution of the OGC
algorithm is indeed the distribution proposed by Keefe, Ferreira and Franck (2018).

Theorem 4.1. The limiting distribution of the one-at-a-time Gibbs sampler with
centering on the fly for the spatial conditional autoregressive model (Algo-
rithm 3.1) is the singular Gaussian distribution N(0, τ−1H+).
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To prove Theorem 4.1, let us consider the spectral decomposition of the preci-
sion matrix H given by H = QSQ′, where Q = (q1, . . . ,qn) is a matrix comprised
of columns which are the normalized eigenvectors of H and S = diag(s1, . . . , sn)

are the ordered eigenvalues of H. Further, to prove Theorem 4.1 we need two aux-
iliary facts and seven lemmas stated below.

The following two auxiliary facts have appeared before in Ferreira and De
Oliveira (2007) and De Oliveira and Ferreira (2011).

Auxiliary Fact 4.1 (Ferreira and De Oliveira, 2007, De Oliveira and Ferreira,
2011). The ordered eigenvalues of H are such that s1 ≥ · · · ≥ sn−1 > sn = 0,

Auxiliary Fact 4.2 (Ferreira and De Oliveira, 2007, De Oliveira and Ferreira,
2011). The eigenvector corresponding to sn = 0 is qn = n−1/21n.

The seven lemmas below provide auxiliary results about matrix operations in-
volving the precision matrix H, its generalized inverse, the projection matrix P,
and the matrices A, B, D, and L that appear in the definition of the VAR(1) model
given in Equation (3). We provide proofs of the seven lemmas in the Appendix.

Lemma 4.1. HH+ = I − n−111′.

Lemma 4.2. L′H+ = DH+ − LH+ − I + n−111′.

Lemma 4.3. (D − L)−1L′1 = 1.

Lemma 4.4. P1 = 0.

Lemma 4.5. P(D − L)−1L′1 = 0.

Lemma 4.6. PH+P = H+.

Lemma 4.7. A = P(D − L)−1L′ and B = P(D − L)−1D1/2.

Lemmas 4.2, 4.4, 4.5, 4.6, and 4.7 are directly used in the proof of Theorem 4.1.
Auxiliary Facts 4.1 and 4.2 as well as Lemmas 4.1 and 4.3 are used in the proofs
of the other lemmas.

We now provide the proof of Theorem 4.1.

Proof of Theorem 4.1. For the VAR(1) model given in Equation (3), because
the eigenvalues of the matrix A are less than one in absolute value and the errors
are Gaussian with mean vector 0, there is a unique limiting distribution that is
multivariate Gaussian with mean vector 0. Further, the covariance matrix V of this
limiting distribution is the unique solution of the equation V = AVA + τ−1BB′
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(Reinsel, 1997). We now check that V = H+ is the solution. That is, we show that
M = AH+A + τ−1BB′ = H+.

First, we apply Lemmas 4.2 and 4.7 to obtain:

M = AH+A + τ−1BB′

= P(D − L)−1L′H+L
(
D − L′)−1P + P(D − L)−1D

(
D − L′)−1P

= P(D − L)−1[{
(D − L)H+ − I + n−111′}L + D

](
D − L′)−1P

= P
[
H+L

(
D − L′)−1 + (D − L)−1(−I + n−111′)L(

D − L′)−1

+ (D − L)−1D
(
D − L′)−1]

P

= P
[
H+L

(
D − L′)−1 + (D − L)−1(D − L)

(
D − L′)−1

+ n−1(D − L)−111′L
(
D − L′)−1]

P.

Next, we apply Lemmas 4.2, 4.4, 4.5, and 4.6 to obtain the main result:

M = P
[
H+L

(
D − L′)−1 + (

D − L′)−1]
P

= P
[{

H+(
D − L′) − I + n−111′}(D − L′)−1 + (

D − L′)−1]
P

= P
[{H+ + n−111′(D − L′)−1]

P

= H+ �

5 Discussion

The result that the limiting distribution of the one-at-a-time Gibbs sampler with
centering on the fly for ICAR models is the singular Gaussian distribution
N(0, τ−1H+) has many important consequences. In particular, the fact that the
N(0, τ−1H+) distribution has a known and fully specified density opens up the
possibility of development of formal Bayesian statistical methods that use the sum-
zero constrained ICAR model as prior for random effects. For example, for a Gaus-
sian hierarchical model with ICAR random effects, Keefe, Ferreira and Franck
(2018) have developed formal Bayesian model selection, and Keefe, Ferreira and
Franck (2019) have developed formal objective Bayesian estimation.

Current research includes the development of analyses for observations in the
exponential family of distributions. In that regard, we are currently working on
the development of formal objective Bayesian model selection and estimation for
spatial generalized linear mixed effects models with sum-zero constrained ICAR
priors for the spatial random effects. The explicit expression and the propriety of
the prior density of the sum-zero constrained ICAR random effects guarantee that
we can integrate out the ICAR spatial random effects to obtain the corresponding
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marginal likelihood. However, with the exception of the case of Gaussian obser-
vations, the marginal likelihood that results from such integration does not have
an explicit analytic expression. Thus, for the case of non-Gaussian observations
the solutions will be approximate. We are currently exploring different ways to
approximate the marginal likelihood such as for example, by using Laplace ap-
proximations which have been successfully used recently for model selection for
non-spatial GLMs (Wu, Ferreira and Gompper, 2016, Wu et al., 2019).

Appendix: Auxiliary facts and lemmas

Proof of Lemma 4.1. From Auxiliary Fact 4.1, the Moore–Penrose inverse of H is
H+ = QS+Q, where S+ = diag(s−1

1 , . . . , s−1
n−1,0). Hence, HH+ = QSQ′QS+Q =

QSS+Q = Qdiag(1, . . . ,1,0)Q = I−n−111′, where the last equality follows from
Auxiliary Fact 4.2. �

Proof of Lemma 4.2. Note that H = D − L − L′. Hence, by Lemma 4.1,
I + n−111′ = HH+ = (D − L − L′)H+. Therefore, L′H+ = DH+ − LH+ − I +
n−111′. �

Proof of Lemma 4.3. Note that (D − L) is a diagonally dominant matrix and
therefore it is invertible. Hence, x = (D − L)−1L′1 is the unique solution to (D −
L)x = L′1. Further, note that D = diag{(L+L′)1} and D1 = (L+L′)1. Therefore,
x = 1. �

Proof of Lemma 4.4. P1 = (I − n−111′)1 = 1 − n−111′1 = 0. �

Proof of Lemma 4.5. : This follows directly from Lemmas 4.3 and 4.4. �

Proof of Lemma 4.6. Using the spectral decomposition of H and Auxiliary
Fact 4.1, we can write H+ = ∑n−1

i=1 s−1
i qiq′

i . In addition, because of Auxiliary
Fact 4.2, q1, . . . ,qn−1 are orthogonal to 1. Thus, for i = 1, . . . , n − 1, Pqi = (I −
n−111′)qi = qi . Therefore, PH+P = P

∑n−1
i=1 s−1

i qiq′
iP = ∑n−1

i=1 s−1
i Pqiq′

iP =∑n−1
i=1 s−1

i qiq′
i = H+. �

Proof of Lemma 4.7. Using the definitions of the matrices A, B, and F we
have A = P(I − E)−1F = P(I − D−1L)−1D−1L′ = P{D−1(D − L)}−1D−1L′ =
P(D − L)−1L′ and B = P(I − E)−1D−1/2 = P{D−1(D − L)}−1D−1/2 = P(D −
L)−1D1/2. �
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