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Keeping the balance—Bridge sampling for marginal
likelihood estimation in finite mixture, mixture of experts

and Markov mixture models
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Abstract. Finite mixture models and their extensions to Markov mixture and
mixture of experts models are very popular in analysing data of various kind.
A challenge for these models is choosing the number of components based
on marginal likelihoods. The present paper suggests two innovative, generic
bridge sampling estimators of the marginal likelihood that are based on con-
structing balanced importance densities from the conditional densities arising
during Gibbs sampling. The full permutation bridge sampling estimator is de-
rived from considering all possible permutations of the mixture labels for a
subset of these densities. For the double random permutation bridge sampling
estimator, two levels of random permutations are applied, first to permute the
labels of the MCMC draws and second to randomly permute the labels of
the conditional densities arising during Gibbs sampling. Various applications
show very good performance of these estimators in comparison to importance
and to reciprocal importance sampling estimators derived from the same im-
portance densities.

1 Introduction

Finite mixture models and their extensions to Markov mixture and mixture of ex-
perts models are very popular in analysing data of various kind. These models
are useful for flexible modelling, density estimation and unsupervised clustering,
see, for example, Frühwirth-Schnatter (2006) and Frühwirth-Schnatter, Celeux and
Robert (2019) for a recent review. The various types of mixture models share a
common structure insofar as it is supposed that N observations y = (y1, . . . ,yN)

are generated by K hidden groups/states. If the unknown group/state indicators
S = (S1, . . . , SN) are introduced as missing data, then the different model classes
differ in their assumption concerning the distribution of the latent indicators S.

For a finite mixture model, the indicators Si are i.i.d. with Pr(Si = k) = ηk and
a mixture with weight distribution η = (η1, . . . , ηK) results as marginal distribu-
tion of yi . For a mixture of experts model, the indicators Si are still independent,
but the weight distribution Pr(Si = k|xi ) depends on covariates xi and additional
parameters γ . For Markov mixture models, y = (y1, . . . ,yN) is a time series and
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Si is a hidden Markov chain with transition matrix ξ . Given the group indicator
Si , for all three model classes yi |Si = k arises from a distribution p(yi |θk) with
group-specific parameter θk that might also depend on covariates.

A challenge for any kind of mixture model is choosing the number K of hidden
states/groups, see Celeux, Frühwirth-Schnatter and Robert (2019) for a compre-
hensive review. For finite mixtures, reversible jump MCMC methods (Richardson
and Green, 1997) have been employed to sample from the posterior p(K|y),
however these methods are very challenging to implement. An attractive alter-
native to choose the number of hidden groups in a model-based clustering con-
text are sparse finite mixture models (Malsiner Walli, Frühwirth-Schnatter and
Grün, 2016). However, this approach does not allow comparisons across differ-
ent model classes or different prior choices and so far has not been extended to
hidden Markov and Markov switching models. A very general form of model se-
lection can be achieved by comparing models and priors through marginal likeli-
hoods and reliable estimators of the marginal likelihood are important for Bayesian
model selection

Hence, in the present paper, we focus on Bayesian model choice among mixture
models of increasing number of components K through the marginal likelihood
p(y|K), defined as

p(y|K) =
∫

p(y|ϑ,K)p(ϑ |K)dϑ . (1)

In (1), ϑ = (θ1, . . . , θK,ω) summarizes all unknown parameters, with ω being a
generic notation for the parameters in the weight distribution for all three types
of mixture models considered in this paper. The marginal likelihood naturally pe-
nalises models with more mixture components (and more parameters), see, for
example, Berger and Jefferys (1992); however, for mixture models it is not avail-
able in closed form and computational approximation methods become an integral
part of model selection.

Frühwirth-Schnatter (2004) introduced simulation-based estimators such as
importance sampling (Geweke, 1989), reciprocal importance sampling (Gelfand
and Dey, 1994) or bridge sampling (Meng and Wong, 1996) to approximate the
marginal likelihood for finite mixture and Markov switching models with moder-
ate values of K . For such sampling-based techniques, one has to select for each K

an importance density qK(ϑ) which is easy to sample from and provides a rough
approximation to the mixture posterior density p(ϑ |y,K). However, for mixture
models, it is not at all straightforward to choose an appropriate importance density
and the reliability of the resulting sampling-based estimators depends on several
factors.

First, as shown by Frühwirth-Schnatter (2004), the tail behaviour of the im-
portance density qK(ϑ) compared to the mixture posterior p(ϑ |y,K) matters.
Whereas the (optimal) bridge sampling estimator (which will be reviewed in Sec-
tion 2) is fairly robust in this respect, other sampling-based estimators are more
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sensitive. For instance, importance sampling which is based on rewriting (1) as

p(y|K) =
∫

p(y|ϑ,K)p(ϑ |K)

qK(ϑ)
qK(ϑ)dϑ, (2)

exhibits high standard errors, if qK(ϑ) has thin tails compared to the mixture pos-
terior p(ϑ |y,K).

Second, as pointed out by Lee and Robert (2016), the importance density qK(ϑ)

has to mimic the multimodality of the mixture posterior p(ϑ |y,K) which is caused
by the invariance of a mixture model with symmetric priors for the components to
permutations of the mixture component labels, the so-called label switching prob-
lem. As proven in Rousseau, Grazian and Lee (2019), the number of symmetric
modes in the posterior distribution p(ϑ |y,K) tends to K! as the number of ob-
servations N increases. A balanced importance density covers all modes of the
posterior or, more formally, qK(ϑ) is (nearly) invariant to permuting the labels of
ϑ . If the importance density is unbalanced and several modes of the mixture pos-
terior are not covered, then sampling-based estimators of the marginal likelihood
are prone to be biased.

Several approaches have been suggested to ensure multimodality in the con-
struction of the importance density also for increasing values of K . Frühwirth-
Schnatter (2004) constructs the importance density from the output of random
permutation posterior sampling (Frühwirth-Schnatter, 2001). However, as demon-
strated in Celeux, Frühwirth-Schnatter and Robert (2019) for univariate Gaussian
mixtures, the resulting bridge sampling estimator might be biased, despite its ro-
bustness to the tail behaviour. A first contribution of the present paper is to show
that marginal likelihood estimators based on random permutation posterior sam-
pling can be improved considerably by introducing a second level of random per-
mutation during the construction of the importance density from the conditional
densities arising during Gibbs sampling. This restores balance and yields the so-
called double random permutation bridge sampling estimator.

An alternative approach is based on constructing perfectly balanced importance
densities by considering all possible permutations of the labels, see, for exam-
ple, Berkhof, van Mechelen and Gelman (2003) and Lee et al. (2009). Lee and
Robert (2016) combine importance sampling with such a perfectly balanced im-
portance density, calling the resulting estimator dual importance sampling. Celeux,
Frühwirth-Schnatter and Robert (2019) show that a particularly stable estimator of
the marginal likelihood, called full permutation bridge sampling estimator, is ob-
tained for univariate Gaussian mixtures by combining (optimal) bridge sampling
with a perfectly balanced importance density qK(ϑ).

The main contribution of the present paper is to introduce such a full permuta-
tion bridge sampling estimator of the marginal likelihood for a much broader class
of mixture models, including finite mixture models of many kinds, mixture of ex-
perts models as well as hidden Markov and Markov switching models. For each of
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these model classes, we discuss in detail how to construct fully balanced impor-
tance densities. The various estimators are illustrated and compared for the various
model classes for well-known data sets. We show that for all model classes consid-
ered very stable estimators of the marginal likelihood are obtained by combining
(optimal) bridge sampling with a perfectly balanced importance density. On the
other hand, dual importance sampling (Lee and Robert, 2016) exhibits larger stan-
dard errors than double random permutation and full permutation bridge sampling
estimators in many cases, in particular for overfitting mixtures.

The rest of the paper is organized as follows. Section 2 reviews bridge sam-
pling estimators and discusses the construction of the importance density from the
outcome of Markov chain Monte Carlo sampling. To achieve balance in the im-
portance density, Section 3 introduces double random and full permutation bridge
sampling. The implementation of these estimators for finite mixtures, Markov mix-
tures and Markov switching models as well as mixture of experts models is out-
lined in Section 4 and illustrative applications are provided in Section 5. Section 6
concludes.

2 Bridge sampling approximations to the marginal likelihood

2.1 Bridge sampling estimators

Meng and Wong (1996) introduced a very general bridge sampling technique to es-
timate the marginal likelihood as the normalising constant of the non-normalized
posterior p(y|ϑ,K)p(ϑ |K), derived from Bayes’ theorem. Let qK(ϑ) be an ap-
proximation to the posterior p(ϑ |y,K) and let α(ϑ) be a positive function such
that

∫
α(ϑ)qK(ϑ)p(ϑ |y,K)dϑ > 0. Exploiting that∫

α(ϑ)qK(ϑ)p(ϑ |y,K)dϑ =
∫

α(ϑ)
p(y|ϑ,K)p(ϑ |K)

p(y|K)
qK(ϑ)dϑ,

yields the general bridge sampling estimator of the marginal likelihood:

p(y|K) = EqK(ϑ)(α(ϑ)p(y|ϑ,K)p(ϑ |K))

Ep(ϑ |y,K)(α(ϑ)qK(ϑ))
,

provided that all expectations are well-defined.
Meng and Wong (1996) derived an optimal choice for α(ϑ) which yields a

bridge sampling estimator that requires i.i.d. draws ϑ (l), l = 1, . . . ,L from the
importance density qK(ϑ) and i.i.d. draws from the posterior p(ϑ |y,K). As
Markov chain Monte Carlo (MCMC) draws ϑ (m),m = 1, . . . ,M from the pos-
terior p(ϑ |y,K) are typically autocorrelated, Meng and Schilling (1996) defined
an alternative optimal bridge sampling estimator pBS(y|K) based on following
function α(ϑ):

α(ϑ) = 1/
(
L · qK(ϑ) + M� · p(ϑ |y,K)

)
.
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M� is the effective sample size, estimated as M̂� = min(M,M/ρ̂), where
ρ̂ is an estimator of the inefficiency factor of the posterior draws f (m) =
p(y|ϑ (m),K)p(ϑ (m)|K). This definition of α(ϑ) requires knowledge of the (un-
known) normalizing constant p(y|K) to evaluate p(ϑ |y,K). Using the estimator
p̂IS(y|K) (to be defined in (4)) as a starting value for p̂BS,0(y|K), the following
recursion is applied until convergence to estimate the (optimal) bridge sampling
estimator p̂BS(y|K) = limt→∞ p̂BS,t (y|K):

p̂BS,t (y|K) =
1
L

∑L
l=1

p(y|ϑ (l),K)p(ϑ (l)|K)

LqK(ϑ (l))+M̂�
p(y|ϑ(l),K)p(ϑ(l)|K)

p̂BS,t−1(y|K)

1
M

∑M
m=1

qK(ϑ (m))

LqK(ϑ (m))+M̂�
p(y|ϑ(m),K)p(ϑ(m)|K)

p̂BS,t−1(y|K)

. (3)

Alternative estimators are obtained by other choices of α(ϑ), for example, choos-
ing α(ϑ) = 1/qK(ϑ) yields importance sampling as in (2). Based solely on the
sample ϑ (l), l = 1, . . . ,L from the importance density qK(ϑ), the importance sam-
pling estimator of the marginal likelihood is given by:

p̂IS(y|K) = 1

L

L∑
l=1

p(y|ϑ (l),K)p(ϑ (l)|K)

qK(ϑ (l))
. (4)

Choosing, instead, α(ϑ) = 1/(p(y|ϑ,K)p(ϑ |K)) yields the reciprocal impor-
tance sampling estimator (Gelfand and Dey, 1994):

pRI(y|K) =
(

Ep(ϑ |y,K)

(
qK(ϑ)

p(y|ϑ,K)p(ϑ |K)

))−1
.

This yields an estimator of the marginal likelihood solely based on the MCMC
draws ϑ (m),m = 1, . . . ,M from the posterior distribution p(ϑ |y,K):

p̂RI(y|K) =
(

1

M

M∑
m=1

qK(ϑ (m))

p(y|ϑ (m),K)p(ϑ (m)|K)

)−1

. (5)

2.2 Defining importance densities for mixture analysis

Each of the estimators introduced in the previous section requires the choice of
an importance density qK(ϑ) for increasing K . As manual tuning of the impor-
tance density for each model under consideration is rather tedious, methods for
choosing sensible importance densities in an unsupervised manner have been in-
troduced. DiCiccio et al. (1997), for instance, suggested various methods to con-
struct Gaussian importance densities from the MCMC output. However, the mul-
timodality of the posterior density of a mixture model evidently forbids such
a simple choice. Frühwirth-Schnatter (1995) is an early reference using Rao–
Blackwellisation (Robert and Casella, 1999) to construct the importance density in
an unsupervised manner from the MCMC output. She applied this idea to marginal
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likelihood estimation for linear Gaussian state space models and extended this idea
to finite mixture and Markov switching models in Frühwirth-Schnatter (2004).

For mixture models, a Rao–Blackwellised approximation of the posterior dis-
tribution of ϑ based on introducing the latent allocations S as missing data yields:

p(ϑ |y,K) =
∫

p(ϑ |S,y,K)p(S|y,K)dS ≈ 1

M

M∑
m=1

p
(
ϑ |S(m),y,K

)
, (6)

where S(m),m = 1, . . . ,M are M posterior draws of the latent allocations S.
The right-hand side of (6) is a mixture approximation of the posterior density
p(ϑ |y,K) where the component densities p(ϑ |S(m),y,K) arise in Gibbs sam-
pling for mixture models (Diebolt and Robert, 1994), since ϑ (m+1) is drawn from
p(ϑ |S(m),y,K). If this conditional density arises from a well-known family of
probability distributions, then its moments are available as a by-product of Gibbs
sampling and can be stored easily, making the construction of an importance den-
sity based on the mixture approximation (6) fully automatic.

However, for mixture models there are several challenges with using (6) as im-
portance density in bridge sampling techniques. First of all, the importance density
qK(ϑ) has to mimic the multimodality of the posterior p(ϑ |y,K) which results
from invariance to label switching. Gibbs sampling might lead to (implicit) la-
bel switching in S(m), meaning that the component densities p(ϑ |S(m),y,K) in
(6) will cover several posterior modes. However, even if M is very large, the re-
sulting importance density qK(ϑ) very likely is unbalanced, as (6) hardly ever
covers all posterior modes equally well, if it is based on standard Gibbs sampling
of (S,ϑ)(m),m = 1, . . . ,M . As noted earlier, balance of the importance density
across all modes is important for obtaining reliable estimators for the marginal
likelihood. Section 3 discusses various strategies to ensure that importance densi-
ties for mixture models are (nearly) balanced.

Second, despite introducing the latent states S as missing data, the conditional
posterior p(ϑ |S,y,K) is not available in closed form for many interesting mixture
models. As will be shown in Section 4, a mixture approximation in the spirit of (6)
can be constructed for these mixture models nevertheless, taking the form

qK(ϑ) = 1

M

M∑
m=1

qK

(
ω|S̃(m))qK

(
θ1, . . . , θK |S̃(m),y

)
. (7)

In (7), S̃(m) is a generic notation summarizing all information needed to construct
the mth component densities qK(ω|S̃(m)) and qK(θ1, . . . , θK |S̃(m),y) at the mth
sweep of MCMC sampling. For instance, for non-Gaussian mixtures often a sec-
ond level of data augmentation with latent variables z is introduced such that
p(θk|S̃(m),y) with S̃(m) = (S(m), z(m)) is of closed form. If S̃(m) = S(m), then
qK(ω|S̃(m)) = p(ω|S(m)) and qK(θ1, . . . , θK |S̃(m),y) = p(θ1, . . . , θK |S(m),y)

and (7) reduces to (6).
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Provided balanced mixing across the posterior modes, (6) converges at a para-
metric speed toward the posterior p(ϑ |y,K) as M increases (Gelfand and Smith,
1990), whereas the density qK(ϑ) defined in (7) remains an approximation to
p(ϑ |y,K), even if M goes to infinity, unless S̃(m) = S(m). As choosing a large
value of M makes the evaluation of qK(ϑ) more expensive, an issue will be how
to construct qK(ϑ) from a subset of Q < M component densities qK(ϑ |S̃(q),y) =
qK(ω|S̃(q))qK(θ1, . . . , θK |S̃(q),y) in an efficient manner. On one hand, Q should
be small for computational reasons, because qK(ϑ) has to be evaluated for each
of the Q components numerous times, for example, L times for the importance
sampling estimator (4). On the other hand, to cover all symmetric modes of the
posterior, a dramatically increasing value of Q proportional to K! is required as
K increases. Hence, estimators based on such an importance density are limited to
fairly moderate values of K , say up to K = 7.

3 Achieving balance in the importance density

As discussed above, it is essential to construct the component densities qK(ω|S̃(m))

and qK(θ1, . . . , θK |S̃(m),y) in (7) from MCMC sampling such that qK(ϑ) is nearly
or even perfectly balanced. A perfectly balanced importance density qK(ϑ) is en-
tirely invariant to relabelling the components in ϑ . An efficient way to introduce
multimodality in qK(ϑ) and ensure (near) balance is to force label switching in a
controlled manner.

3.1 Simple random and double random permutation estimators

An early suggestion to ensure multimodality in the construction of the importance
density is based on random permutation posterior sampling (Frühwirth-Schnatter,
2004). A randomly selected permutation is applied at each sweep of MCMC sam-
pling (Frühwirth-Schnatter, 2001) which creates explicit label switching in the
component densities p(ϑ |S(m),y,K) or, more generally, qK(ϑ |S̃(m),y). A subset
of these densities of size Q < M is then used to construct the importance density
qR
K(ϑ) as a mixture approximation as in (7) and to compute the simple random per-

mutation bridge sampling estimator p̂BS,R(y|K); see Algorithm 1 for details. Sim-
ple random permutation sampling has been applied in Frühwirth-Schnatter (2004)
to finite mixture and Markov mixture models, and has been extended to mixtures
of experts models in Frühwirth-Schnatter (2011).

Random permutation posterior sampling enhances mixing over all symmetric
posterior modes and guarantees multimodality of the importance density qR

K(ϑ)

defined in (8). For regular cases, the number of modes in the posterior distribu-
tion p(ϑ |y,K) tends to K! as the number of observations N increases (Rousseau,
Grazian and Lee, 2019). Choosing Q = K!M0 ensures that on average each mode
is visited M0 times and M0 components of the importance density are used to cover
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Algorithm 1 Simple random permutation bridge sampling estimators
(a) Perform random permutation posterior sampling: for each m = 1, . . . ,M , con-

clude the mth sampling step by randomly drawing a permutation τm from
SK , the set of the K! permutations of the labels {1, . . . ,K}, and relabel-
ing the mixture components: (θ

(m)
1 , . . . , θ

(m)
K ,S

(m)
1 , . . . , S

(m)
N ) is substituted

by (θ
(m)
τm(1), . . . , θ

(m)
τm(K), τ

−1
m (S

(m)
1 ), . . . , τ−1

m (S
(m)
N )) and the parameters of the

weight distribution are relabeled accordingly. For a finite mixture model, for
instance, (η

(m)
1 , . . . , η

(m)
K ) is substituted by (η

(m)
τm(1), . . . , η

(m)
τm(K)).

(b) Draw (without replacement) component densities
qK(ω|S̃(q))qK(θ1, . . . , θK |S̃(q),y) for q = 1, . . . ,Q from the M compo-
nent densities qK(ϑ |S̃(m),y) derived from posterior sampling and construct
following importance density:

qR
K(ϑ) = 1

Q

Q∑
q=1

qK

(
ω|S̃(q))qK

(
θ1, . . . , θK |S̃(q),y

)
. (8)

(c) Use the importance density qR
K(ϑ) to define the simple random permutation

bridge sampling estimator p̂BS,R(y|K) from (3).

each posterior mode. Hence, for regular cases, qR
K(ϑ) is (nearly) balanced for large

enough values of M0.
However, for less regular cases such as overfitting mixture models or small

data sets, where more or less than K! posterior modes are likely to be present,
the importance density qR

K(ϑ) tends to be unbalanced even for large values of Q.
Whereas a perfectly balanced importance density is invariant to label switching (or
a lack of it) in the MCMC draws ϑ (m), an imbalanced importance density can be
quite sensitive in this respect. In addition, any lack of balance is amplified when K

is large and Q approaches M , as the permutations underlying the MCMC draws
are strongly tied to the permutations underlying the components densities. As a
consequence, the MCMC draws and the components densities will over- or un-
derrepresent the same modes. As recently shown in Celeux, Frühwirth-Schnatter
and Robert (2019), this might create a bias in the corresponding bridge sampling
estimator (3) for overfitting mixtures and larger values of K .

A surprisingly simple way to achieve (near) balance is introduced in Algo-
rithm 2. It is based on drawing the Q components of the importance density qD

K (ϑ)

with replacement from the component densities arising during random permutation
sampling and applying independent random permutations to each of these compo-
nents. This so-called double random permutation bridge sampling estimator breaks
the dependence between lack of balance in the posterior draws and lack of balance
in the importance density, that can be observed for simple random permutation
sampling.
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Algorithm 2 Double random permutation bridge sampling estimators
(a) Perform random permutation posterior sampling as in Step (a) of Algorithm 1.
(b) Draw (with replacement) Q component densities qK(ϑ |S̃(q),y) for q =

1, . . . ,Q from the M component densities qK(ω|S̃(m))qK(θ1, . . . , θK |S̃(m),y)

derived during posterior sampling for m = 1, . . . ,M .
(c) Draw (with replacement) a sequence of Q permutations ρ1, . . . , ρQ from SK ,

the set of the K! permutations of the labels {1, . . . ,K}, and construct following
importance density:

qD
K (ϑ) = 1

Q

Q∑
q=1

qK

(
ω|ρq

(
S̃(q)))qK

(
θ1, . . . , θK |ρq

(
S̃(q)),y

)
. (9)

(d) Use the importance density qD
K (ϑ) to define the double random permutation

bridge sampling estimator p̂BS,D(y|K) from (3).

3.2 Full permutation estimators

As an alternative to random permutation sampling, several authors exploit full per-
mutations to construct a completely balanced importance density, see, for exam-
ple, Berkhof, van Mechelen and Gelman (2003), Frühwirth-Schnatter (2006) (Sec-
tion 5.5.5) and Lee et al. (2009). The definition of such a fully symmetric impor-
tance density qF

K(ϑ) is based on a mixture approximation as in (7). A small num-
ber M0 of component densities qK(ω|S̃(q))qK(θ1, . . . , θK |S̃(q),y), q = 1, . . . ,M0,
is selected from the M conditional densities qK(ϑ |S̃(m),y), m = 1, . . . ,M , and
expanded by including for each component s all K! possible permutations.

This method yields the so-called full permutation bridge sampling estimator
p̂BS,F (y|K), introduced in Algorithm 3. It should be noted that the importance
density qF

K(ϑ) is completely invariant to relabeling and therefore it is irrelevant
whether the MCMC draws derived in Step (a) cover all posterior modes. Most
notably, in (10) all symmetric modes are visited exactly M0 times, leading to a
symmetric, perfectly balanced importance density qF

K(ϑ).
Note that both importance densities qF

K(ϑ) and qD
K (ϑ) can be used to define

importance sampling estimators p̂IS,•(y|K) as in (4) and reciprocal importance
sampling estimators p̂RI,•(y|K) as in (5). The dual importance sampling estima-
tors of Lee and Robert (2016) results, if the importance density qF

K(ϑ) is used in
combination with (4) to define p̂IS,F (y|K).

The construction of qF
K(ϑ) has in total Q = M0K! components, but is effec-

tively based only on a small number M0 of posterior draws S̃(s). Hence, despite
a possibly large number of terms Q in (10), the tail behaviour of the importance
density is driven by the underlying M0 components, meaning that qF

K(ϑ) is only
a rough approximation to the mixture posterior p(ϑ |y,K) with possibly poor tail
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Algorithm 3 Full permutation bridge sampling estimators
(a) Perform (standard) posterior sampling for m = 1, . . . ,M .
(b) Draw (with replacement) M0 component densities qK(ϑ |S̃(q),y)

for q = 1, . . . ,M0 from the M component densities
qK(ω|S̃(m))qK(θ1, . . . , θK |S̃(m),y) derived during posterior sampling
for m = 1, . . . ,M .

(c) For each q = 1, . . . ,M0, define K! expanded component densities by applying
all possible permutations ρ ∈ SK :

qF
K(ϑ) = 1

M0

M0∑
q=1

1

K!
∑

ρ∈SK

qK

(
ω|ρ(

S̃(q)))qK

(
θ1, . . . , θK |ρ(

S̃(q)),y
)
. (10)

(d) Use the importance density qF
K(ϑ) to define the full permutation bridge sam-

pling estimator p̂BS,F (y|K) from (3).

behaviour for each single posterior mode. As a result, standard errors for dual im-
portance sampling tend to be high due to their sensitivity to the tail behaviour of
qF
K(ϑ) in particular for overfitting models. As opposed to this, full permutation

bridge sampling is very reliable also for overfitting mixtures, as it combines ro-
bustness with respect to the tail behaviour with robustness with respect to label
switching.

Estimators based on full permutation bridge sampling have been applied to var-
ious specific model classes, including univariate Gaussian finite mixture models
(Celeux, Frühwirth-Schnatter and Robert, 2019) as well as latent class models and
finite Poisson mixture models (Frühwirth-Schnatter and Malsiner-Walli, 2019). We
show in the present paper that full permutation bridge sampling is a very generic
strategy and can be extended to more general finite mixtures (Section 4.1) and
non-Gaussian mixtures (Section 4.3). Most importantly, full permutation bridge
sampling can be extended in a natural way to hidden Markov and Markov switch-
ing models (Section 4.2) as well as mixture of experts models (Section 4.4).

4 Estimating marginal likelihoods in mixture analysis

4.1 Marginal likelihoods for finite mixtures

For finite mixtures, the prior often takes the form:

p(ϑ |K) = p(η|K)

K∏
k=1

p(θk),
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where p(η|K) = DK(η; e0) is a symmetric Dirichlet distribution with hyperpa-
rameter e0 and p(θk) is conjugate to the conditional likelihood p(y|θk,S).1 As a
consequence, the complete-data posterior splits as p(ϑ |S,y,K) = p(θ1, . . . , θK |
S,y)p(η|S). This implies that conditional on S, the parameters defining the weight
distribution η are independent from the mixture parameters θ1, . . . , θK , when
the importance density qK(ϑ) is constructed using Rao-Blackwellisation as in
(6). Very conveniently, this conditional independence given S(m) is preserved,
even if the complete-data posterior p(θ1, . . . , θK |y,S) is not of closed form.
This justifies to construct qK(ϑ) as a mixture approximation in the spirit of
(7), using the conditionally independent components densities qK(ω|S̃(m)) and
qK(θ1, . . . , θK |S̃(m),y).

The choice of qK(ω|S̃(m)) depends on the model chosen for the indicators. For
a finite mixture model, qK(ω|S̃(m)) = qK(η|S(m)) is equal to the complete-data
posterior p(η|S(m)), taking the form of a Dirichlet distribution:

qK

(
η|S(m)) = D

(
η; e(m)

1 , . . . , e
(m)
K

)
, (11)

where e
(m)
k = e0 + ∑N

i=1 I {S(m)
i = k} with I {A} being the indicator function for

the event A.
The conditional independence yields a straightforward extension to Markov

mixture and Markov switching models (Section 4.2) and can be extended to more
general non-Gaussian mixtures (Section 4.3). Also for mixture of experts models
conditional independence holds, however, no closed form posterior for the param-
eters ω in the weight distribution exists. More details how to construct qK(ω|S̃(m))

based on data augmentation are provided in Section 4.4.
Very conveniently, regardless of the specific type of mixture model, the con-

struction of the component density qK(θ1, . . . , θK |S̃(m),y) for the mixture param-
eters (θ1, . . . , θK) follows the same strategy and only depends on the group spe-
cific density p(yi |θk). The construction is straightforward for the one-block case,
where the complete-data posterior p(θk|S(m),y) arises from a well-known distri-
bution family. In this case, S̃(m) = S(m) and

qK

(
θ1, . . . , θK |S̃(m),y

) =
K∏

k=1

p
(
θk|S(m),y

)
. (12)

Consider, e.g. mixture analysis of count data, where the mixture components arise
from a Poisson distribution, that is, yi |Si = k ∼ P(μk). Based on the Gamma prior
μk ∼ G(a0, b0), the full conditional posterior arises from the Gamma distribution
μk|S(m),y ∼ G(a

(m)
k , b

(m)
k ), where

a
(m)
k = a0 +

N∑
i=1

yiI
{
S

(m)
i = k

}
, b

(m)
k = b0 +

N∑
i=1

I
{
S

(m)
i = k

}
.

1More general hierarchical priors are discussed in Section 4.5.
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Modifications are necessary when sampling from p(θk|S,y) requires two (or even
more) blocks, i.e. θk = (θk,1, . . . , θk,B), and knowledge of S alone no longer leads
to a simple closed-form density p(θk|S(m),y). This is achieved by breaking the de-
pendence between the various blocks θk,b of θk when constructing the components
of qK(ϑ). Frühwirth-Schnatter (1995) suggested to use the conditional densities in
the transition kernel of the Gibbs sampler to construct qK(θk,b|S̃(m),y), where S̃(m)

includes S(m) as well as the most recent values of all parameters appearing in the
conditioning argument.

A typical example are multivariate Gaussian mixtures,

yi |Si = k ∼ N (μk,�k),

under the non-conjugate prior p(θk) = p(μk)p(�k) where θk is sampled in two
blocks from p(μk|�k,S,y) and p(�k|μk,S,y). Ignoring the dependence between
μk and �k , the component densities are constructed from conditionally indepen-
dent densities,

qK

(
θ1, . . . , θK |S̃(m),y

) =
K∏

k=1

p
(
μk|�(m)

k ,S(m),y
)
p

(
�k|μ(m−1)

k ,S(m),y
)
,

given S̃(m) = (S(m),�
(m)
1 , . . . ,�

(m)
K ,μ

(m−1)
1 , . . . ,μ

(m−1)
K ).

Estimators of the marginal likelihood based on double random permutation
sampling (Algorithm 2) as well as full permutation sampling (Algorithm 3) are
easily implemented. Given a permutation ρ = (ρ(1), . . . , ρ(K)), the labels of the
component densities qK(η|S) and qK(θ1, . . . , θK |S̃,y) are permuted by reordering
the labels of the corresponding complete-data moments according to ρ. For a finite
mixture model, qK(η|ρ(S(m))) is simply obtained by permuting the labels of the
Dirichlet distribution (11):

q
(
η|ρ(

S(m))) =D
(
η; e(m)

ρ(1), . . . , e
(m)
ρ(K)

)
.

The mixture parameter component densities qK(θ1, . . . , θK |ρ(S̃(m)),y) are easily
obtained by permuting the moments of the complete-data densities of θ1, . . . , θK .
The precise details, however, depend on the specific mixture distribution. For mix-
tures of Poisson distributions, for instance, where μk|S(m),y ∼ G(a

(m)
k , b

(m)
k ), we

simply obtain:

qK

(
μ1, . . . ,μK |ρ(

S̃(m)),y
) =

K∏
k=1

G
(
μk;a(m)

ρ(k), b
(m)
ρ(k)

)
.

4.2 Marginal likelihoods for hidden Markov and Markov switching models

Estimators of the marginal likelihood based on double random permutation sam-
pling (Algorithm 2) as well as full permutation sampling (Algorithm 3) are in-
troduced for this model class in the present paper and provide a considerable im-
provement over simple random permutation sampling estimators as in Algorithm 1
(Frühwirth-Schnatter, 2004). Both estimators are easily implemented.
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The construction of qK(θ1, . . . , θK |S̃(m),y) follows exactly Section 4.1,
whereas the component density for the weight distribution is substituted by a com-
ponent density qK(ξ |S) for the transition matrix ξ of the hidden Markov chain.
The prior p(ξ ) is defined row wise as ξ k,· ∼ D(e0

k1, . . . , e
0
kK) where e0

kk ≡ ep for
all k and e0

kj ≡ et for all k �= j to ensure invariance with respect to relabelling the
states of Si . The initial value S0 of the hidden Markov chain is often assumed to
arise from the ergodic distribution ηξ corresponding to the transition matrix ξ . The
complete-data posterior p(ξ |S(m)) is given by:

p
(
ξ |S(m)) = p

(
S

(m)
0 |ηξ

) K∏
k=1

p
(
ξ k,·|S(m)),

where p(ξ k,·|S(m)) = D(ξ k,·; e(m)
k1 , . . . , e

(m)
kK ) is equal to a Dirichlet distribution

with

e
(m)
kj = e0

kj + N
(m)
kj , N

(m)
kj =

N∑
i=1

I
{
S

(m)
i−1 = k, S

(m)
i = j

}
.

For simplicity, construction of the component density qK(ξ |S(m)) is based on ig-
noring the information in the prior p(S

(m)
0 |ηξ ):

qK

(
ξ |S(m)) =

K∏
k=1

D
(
ξ k,·; e(m)

k1 , . . . , e
(m)
kK

)
. (13)

If S0 is independent of ξ , i.e. p(S0|ξ) = p(S0), then qK(ξ |S(m)) is identical with
the complete-data posterior p(ξ |S(m)).

Given a permutation ρ = (ρ(1), . . . , ρ(K)), qK(θ1, . . . , θK |ρ(S̃(m)),y) is per-
muted as in Section 4.1, whereas qK(ξ |ρ(S(m))) is obtained by permuting the rows
and the labels of the Dirichlet distribution (13) in the following way:

qK

(
ξ |ρ(

S(m))) =
K∏

k=1

D
(
ξ k,·; e(m)

ρ(k),ρ(1), . . . , e
(m)
ρ(k),ρ(K)

)
.

4.3 Marginal likelihoods for non-Gaussian mixtures

The methods discussed so far can be extended to non-Gaussian mixture mod-
els, where the complete-data likelihood p(θk|S,y) does not arise from a well-
known distribution family. Examples include mixtures of skew-normal distribu-
tions and mixtures of generalized linear models. Data augmentation introducing
(auxiliary) latent variables z, in addition to S, often leads to a Gibbs sampling
scheme, where the complete-data posterior p(θk|S, z,y) arises from a well-known
distribution family. This allows to construct importance densities through Rao-
Blackwellisation as in the previous sections also for non-Gaussian mixtures by
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conditioning on S̃ = (S, z):

qK

(
θ1, . . . , θK |S̃(m),y

) =
K∏

k=1

p
(
θk|S(m), z(m),y

)
. (14)

Note that the sampling-based estimators of the marginal likelihood introduced in
Section 2 are still based on the mixture likelihood p(y|ϑ) as before, without con-
ditioning on z or S.

Using such an importance density, marginal likelihoods were approximated
through simple random permutation bridge sampling estimators as in Algorithm
1 for mixtures of GLMs based on the Poisson and the negative binomial distribu-
tion (Frühwirth-Schnatter et al., 2009) and for univariate skew-normal and skew-t
mixtures (Frühwirth-Schnatter and Pyne, 2010). In the present paper, estimators
of the marginal likelihood based on double random permutation sampling (Algo-
rithm 2) as well as full permutation sampling (Algorithm 3) are introduced as an
interesting improvement.

Consider, for instance, a mixture of generalized linear models (GLMs), where
the component densities p(yi |xi ,βk) depend on covariates xi through mixture
regression parameters β1, . . . ,βK . Data augmentation through latent variables z
together with a Gaussian prior for βk leads to conditionally Gaussian posteriors
βk|S(m), z(m),y ∼N (b(m)

k ,B(m)
k ). Such data augmentation methods include auxil-

iary mixture sampling (Frühwirth-Schnatter et al., 2009) and Polya-Gamma sam-
pling (Polson, Scott and Windle, 2013). The posterior draws S̃(m) = (S(m), z(m))

can be used to define component densities for the mixture regression parameters:

qK

(
β1, . . . ,βK |S̃(m),y

) =
K∏

k=1

N
(
βk;b(m)

k ,B(m)
k

)
. (15)

Given a permutation ρ = (ρ(1), . . . , ρ(K)) a permuted component simply reads

qK

(
β1, . . . ,βK |ρ(

S̃(m)),y
) =

K∏
k=1

N
(
βk;b(m)

ρ(k),B(m)
ρ(k)

)
.

4.4 Marginal likelihoods for mixture of experts models

The weight distribution (η1(xi ), . . . , ηK(xi )) of a mixture of experts (ME) model
depends for each observation yi on covariates and is typically given by a multino-
mial logit (MNL) model:

Pr(Si = k|xi ) = ηk(xi ) = exp(xiγ k)∑K
k′=1 exp(xiγ k′)

, (16)

where xi is a row vector containing the covariates (including a constant) and γ k are
unknown regression parameters. One category, for example, k0 = 1, is considered
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as baseline with γ k0
= 0 for identifiability reasons; see Gormley and Frühwirth-

Schnatter (2019) for a recent review of ME models. No sparse finite mixture frame-
work has been developed for mixture of experts models sofar and only a few papers
discuss marginal likelihood estimation. In the present paper, we introduce marginal
likelihood estimators for ME models based on double random and full permutation
sampling.

The MNL model (16) is a further example of a non-Gaussian model, where data
augmentation based on latent variables z yields conditionally Gaussian posteriors
γ k|γ −k,S, z ∼ N (ak,Ak) for simple MCMC updates of the weight parameters
(γ 2, . . . ,γ K) in a ME model. Data augmentation methods such as auxiliary mix-
ture sampling (Frühwirth-Schnatter and Frühwirth, 2010) and Polya-Gamma sam-
pling (Polson, Scott and Windle, 2013) allow to construct an importance density
qK(ω|S̃) for the weight parameters ω = {γ 2, . . . ,γ K} in a similar manner as in
Section 4.3, based on further blocking and assuming independence across blocks.
Conditional on S̃(m) = (γ

(m)
−k ,S(m), z(m)), where γ

(m)
−k = (γ

(m)
<k ,γ

(m−1)
>k ), we ob-

tain:

qK

(
ω|S̃(m)) =

K∏
k=2

p
(
γ k|γ (m)

−k , z(m),S(m)) =
K∏

k=2

N
(
γ k;a(m)

k ,A(m)
k

)
. (17)

Based on (17), Frühwirth-Schnatter (2011) used simple random permutation sam-
pling estimators as in Algorithm 1 to compute marginal likelihoods for ME models.
Alternatively, a fully balanced importance density qF

K(ϑ) can be constructed as in
Algorithm 3:

qF
K(ϑ) = 1

M0

M0∑
q=1

1

K!
∑

ρ∈SK

K∏
k=2

qK

(
γ k|ρ

(
S̃(q)))qK

(
θ1, . . . , θK |ρ(

S̃(q)),y
)
, (18)

where the construction of qK(θ1, . . . , θK |S̃(q),y) follows exactly Section 4.1.
As noted by Frühwirth-Schnatter et al. (2012), special attention has to be paid to

the correct relabelling of the coefficients γ k in the MNL model (16) when applying
a permutation ρ. This affects both permuting the labels during MCMC sampling
in Step (a) of Algorithms 1 and 2 and constructing the importance density by per-
muting the components densities in Step (c) of Algorithms 2 and 3.

To relabel the weight distribution of an ME model for a given permutation
ρ, define η�

k(xi ) = ηρ(k)(xi ) for k = 1, . . . ,K . The coefficients (γ 1, . . . ,γ K) and
(γ �

1, . . . ,γ
�
K) defining, respectively, the MNL models ηk(xi ) and η�

k(xi ) are related
through

xiγ
�
k = log

[
η�

k(xi )

η�
k0

(xi )

]
= log

[
ηρ(k)(xi )

ηρ(k0)(xi )

]
= xi (γ ρ(k) − γ ρ(k0)

).

Given ρ, the coefficients are permuted in the following way:

γ �
k = γ ρ(k) − γ ρ(k0)

, k = 1, . . . ,K. (19)
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This implies that γ �
k0

= 0 and ensures that the baseline k0 remains the same, despite
relabelling. For K = 2, the signs of all coefficients of γ 2 are simply flipped if
ρ = (2,1), and remain unchanged otherwise.

Random permutation posterior sampling applies such relabelling at each sweep
m during MCMC sampling using ρ = τm. Correct relabelling of the densities
qK(γ k|ρ(S̃(q))) in (18) proceeds as follows. For k = k0, qK(γ k0

|ρ(S̃(q))) degen-

erates to a point mass at 0, as expected. For k �= k0, due to (19), qK(γ k|ρ(S̃(q))) is
Gaussian with following moments:

qK

(
γ k|ρ

(
S̃(q))) = N

(
γ k;a(q)

ρ(k) − a(q)
ρ(k0)

,A(q)
ρ(k) + A(q)

ρ(k0)

)
.

4.5 Marginal likelihoods under hierarchical priors

For all kind of mixture models, the prior for the group-specific parameters often
takes the following hierarchical form:

p(θ1, . . . , θK |K) = p(ψ)

K∏
k=1

p(θk|ψ). (20)

For the one-block case, p(θk|ψ) is conditionally conjugate to the conditional like-
lihood p(y|θk,S). Further blocking is needed, if the conditional priors within each
block enjoy this property. For random hyperparameters ψ , a hierarchical prior
p(ψ) is employed and posterior sampling is based on adding a block for sam-
pling ψ (m) from p(ψ |θ1, . . . , θK). Integrating over p(ψ) yields a joint marginal
prior p(θ1, . . . , θK |K) which usually has a closed form.

Also for hierarchical priors, marginal likelihood estimation is based on (1) and
operates in the marginal space where ψ is integrated out. For the various bridge
sampling estimators, the prior marginal p(θ1, . . . , θK |K) has to be evaluated at all
draws (θ1, . . . , θK) from the posterior or the importance density. This can be done
using the candidate’s formula, see, for example, Chib (1995):

p(θ1, . . . , θK |K) = p(ψ�)
∏K

k=1 p(θk|ψ�)

p(ψ�|θ1, . . . , θK)
, (21)

where ψ� is an arbitrary parameter value, for example, a draw from p(ψ |θ1,

. . . , θK).
While the various bridge sampling estimators operate in the marginal space

where ψ is integrated out, the components of the importance density are con-
structed conditional on ψ to keep sampling from qK(ϑ) simple. For instance, in
the one-block case, S̃(m) = (S(m),ψ (m)) is used, yielding

qK

(
θ1, . . . , θK |S̃(m),y

) =
K∏

k=1

qK

(
θk|S̃(m),y

) =
K∏

k=1

p
(
θk|S(m),ψ (m),y

)
, (22)

with an obvious extension to more than one block.
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Consider, for illustration, Gaussian mixtures under the non-conjugate hierar-
chical prior p(θk|ψ) = p(μk)p(�k|ψ) where ψ ∼ W(g0,G0) follows a Wishart
distribution. In this case, the components in (22) read:

qK

(
θk|S̃(m),y

) = p
(
μk|�(m)

k ,S(m),y
)
p

(
�k|μ(m−1)

k ,ψ (m−1),S(m),y
)
,

hence S̃(m) = (S(m),�
(m)
1 , . . . ,�

(m)
K ,μ

(m−1)
1 , . . . ,μ

(m−1)
K ,ψ (m−1)). Note that the

marginal prior p(θ1, . . . , θK |K) can be evaluated as in (21):

p(θ1, . . . , θK |K) = p(ψ�)

p(ψ�|�1, . . . ,�K)

K∏
k=1

p(μk)p
(
�k|ψ�).

5 Applications

By combining bridge sampling (BS), importance sampling (IS) and reciprocal im-
portance sampling (RI) with the various ways to construct the importance density,
following marginal likelihood estimators are obtained: p̂BS,F (y|K), p̂IS,F (y|K),
and p̂RI,F (y|K) using full permutation sampling (Algorithm 3), where the fully
balanced importance density qF

K(ϑ) is constructed from (10) with M0 components
per mode, as well as p̂BS,D(y|K), p̂IS,D(y|K), and p̂RI,D(y|K) using double ran-
dom permutation sampling (Algorithm 2), where the (nearly) balanced importance
density qD

K (ϑ) is constructed from (9) with Q = M0K!, ensuring that each mode
is visited on average M0 times.

The aim of this section is to apply these marginal likelihood estimators to a wide
range of mixture models for increasing values of K and to compare them to the
simple random permutation estimators p̂BS,R(y|K), p̂IS,R(y|K), and p̂RI,R(y|K)

(Frühwirth-Schnatter, 2004) based on the importance density qR
K(ϑ) defined in

Algorithm 1 with Q = M0K!.
Unless stated otherwise, MCMC estimation is performed for a given K for

M = 12,000 draws after a burn-in of 5000. Construction of all importance densi-
ties is based on M0 = 100 and the various bridge sampling estimators are based on
L = M = 12,000. All computations are carried out in MATLAB, using the bayesf
package (Frühwirth-Schnatter, 2019). Results are visualised by plotting the nine
estimators log p̂(y|K) as well as log p̂(y|K) ± 3SE in the order log p̂BS,•(y|K),
log p̂IS,•(y|K), and log p̂RI,•(y|K) over K , where the standard errors SE are com-
puted as in Frühwirth-Schnatter (2004).

5.1 Finite mixture models

Subsequently, finite mixture analysis is based on the prior η ∼ DK(e0) with e0 = 4
for the weight distribution η.
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Figure 1 Marginal likelihood estimation for the GALAXY DATA over K = 2 to K = 7. For each K ,
nine estimators log p̂•(y|K) are given together with log p̂•(y|K)±3SE in following order from left to
right: log p̂BS,F (y|K), log p̂BS,D(y|K), log p̂BS,R(y|K) (green); log p̂IS,F (y|K) (dual importance
sampling), log p̂IS,D(y|K), log p̂IS,R(y|K) (red); log p̂RI,F (y|K), log p̂RI,D(y|K), log p̂RI,R(y|K)

(blue).

5.1.1 Univariate Gaussian mixtures. For illustration, marginal likelihoods are
computed for univariate Gaussian mixtures yi |Si = k ∼ N (μk, σ

2
k ) for the

GALAXY DATA (Richardson and Green, 1997) for K = 2, . . . ,7, using the pri-
ors μk ∼ N (m,R2), σ 2

k ∼ G−1(2,C0), and C0 ∼ G(0.2,10/R2), where m and
R are the midpoint and the length of the observation interval. For a given
K , full conditional Gibbs sampling is performed by iteratively sampling from
p(σ 2

k |μk,C0,S,y), p(μk|σ 2
k ,S,y), p(C0|σ 2

1 , . . . , σ 2
K), p(η|S), and p(S|ϑ,y), see

Frühwirth-Schnatter (2006).
Results of marginal likelihood estimation are visualised in Figure 1. There is

a striking difference in the reliability of the nine estimators, in particular as K

increases. (Optimal) bridge sampling in combination with the fully symmetric
importance density qF

K(ϑ) and the importance density qD
K (ϑ) (first two estima-

tors in green) yield the most reliable results. Up to K = 5, the dual IS estimator
log p̂IS,F (y|K) is as good as log p̂BS,F (y|K) and log p̂BS,D(y|K). However, for
K ≥ 6, the standard errors of both bridge sampling estimators are considerably
smaller than the standard errors of the dual IS estimator due to their robustness
with respect to the tail behaviour of the importance density. Reciprocal importance
sampling estimators log p̂RI,•(y|K) (in blue) become particularly unreliable as K

increases, with extreme bias and huge SE, even for the fully symmetric importance
density qF

K(ϑ).

5.1.2 Multivariate Gaussian mixtures. For further illustration, marginal likeli-
hoods are computed for multivariate Gaussian mixtures as in Section 4.1 for the
well-known FISHER’S IRIS DATA for K = 2, . . . ,5. We use the normal prior μk ∼
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Figure 2 Marginal likelihood estimation for FISHER’S IRIS DATA over K = 2 to K = 5. For
each K , nine estimators log p̂•(y|K) are given together with log p̂•(y|K) ± 3SE in following order
from left to right: log p̂BS,F (y|K), log p̂BS,D(y|K), log p̂BS,R(y|K) (green); log p̂IS,F (y|K) (dual
importance sampling), log p̂IS,D(y|K), log p̂IS,R(y|K) (red); log p̂RI,F (y|K), log p̂RI,D(y|K),
log p̂RI,R(y|K) (blue).

N (my,Sy) and the hierarchical inverse Wishart prior �k ∼ W−1(c0,C0), C0 ∼
W(g0, g0/φSy

−1) where my is the componentwise median and Sy is the sample
covariance matrix of the data, c0 = 2.5+ (d −1)/2 and g0 = 0.5+ (d −1)/2, with
d = 4 being the dimension of the data, and φ = (1 − R2)(c0 − (d + 1)/2), where
R2 = 0.5 is the amount of explained heterogeneity (Frühwirth-Schnatter, 2006).

Results of marginal likelihood estimation are visualised in Figure 2. Again,
(optimal) bridge sampling in combination with the fully symmetric importance
density qF

K(ϑ) and the importance density qD
K (ϑ) yields the very reliable esti-

mators log p̂BS,F (y|K) and log p̂BS,D(y|K). Up to K = 4, the dual IS estimator
log p̂IS,F (y|K) is as good as these estimators. However, for K = 5, the standard
errors of the bridge sampling estimators are considerably smaller than the stan-
dard errors of the dual IS estimator due to their robustness with respect to the tail
behaviour of the importance density. Also for this example, the simple random
bridge sampling estimator log p̂BS,R(y|K) and all reciprocal importance sampling
estimators log p̂RI,•(y|K) are substantially biased for K ≥ 4.

5.1.3 Poisson mixtures. Finally, marginal likelihoods are computed for Pois-
son mixtures as in Section 4.1 for the EYE TRACKING DATA (Escobar and
West, 1998) for K = 3, . . . ,7 under a Gamma prior with a0 = y2/(s2

y − y2) and
b0 = a0/y (Frühwirth-Schnatter, 2006). Results of marginal likelihood estima-
tion are visualised in Figure 3. Once more, the (optimal) bridge sampling esti-
mators log p̂BS,F (y|K) and log p̂BS,D(y|K) are very precise even for increasing
K , whereas all other estimators yield poor results beyond K = 5.



Bridge sampling strategies for marginal likelihood estimation 725

Figure 3 Marginal likelihood estimation for the EYE TRACKING DATA over K = 3 to K = 7. For
each K , nine estimators log p̂•(y|K) are given together with log p̂•(y|K) ± 3SE in following order
from left to right: log p̂BS,F (y|K), log p̂BS,D(y|K), log p̂BS,R(y|K) (green); log p̂IS,F (y|K) (dual
importance sampling), log p̂IS,D(y|K), log p̂IS,R(y|K) (red); log p̂RI,F (y|K), log p̂RI,D(y|K),
log p̂RI,R(y|K) (blue).

5.2 Hidden Markov and Markov switching models for time series analysis

For illustration, we apply the estimators introduced in Section 4.2 to two time
series analyzed in Frühwirth-Schnatter (2006). The prior of the transition matrix ξ
is defined with ep = 4 and et = 1/(K − 1) and the initial value S0 is assumed to
follow a uniform distribution.

5.2.1 Hidden Markov models for the LAMB DATA. A Markov mixture of Pois-
son distribution, yi |Si = k ∼ P(μk), is applied to the LAMB DATA, a time series of
count data (Leroux and Puterman, 1992), under the prior μk ∼ G(1,0.5). Marginal
likelihoods are computed for K = 2, . . . ,6 and visualised in Figure 4.

Using simple random permutation estimators, Frühwirth-Schnatter (2006),
p. 353, reports quite unstable estimators of the marginal likelihood for K = 4, lead-
ing to choose K = 3 based on the BS and the RI estimator, whereas the IS estimator
indicates K = 4. Instability beyond K = 3 is also evident in Figure 4, reporting
nine different estimators for each K . Also for Markov mixtures, the only reliable
estimators of the marginal likelihood are log p̂BS,F (y|K) and log p̂BS,D(y|K) (the
first two estimators in green), based on (optimal) bridge sampling in combination
with the fully symmetric importance density qF

K(ϑ) and the importance density
qD
K (ϑ). Up to K = 4, the dual IS estimator log p̂IS,F (y|K) (first estimator in red)

is as good as these estimators.
However, as for finite mixtures, for K ≥ 5 the standard errors of this estimator

are considerably larger than for the two BS estimators due to its lack of robustness
with respect to the tail behaviour of the importance density. Once more, recipro-
cal importance sampling estimators log p̂RI,•(y|K) become particularly unreliable



726 S. Frühwirth-Schnatter

Figure 4 Marginal likelihood estimation for the LAMB DATA data over K = 2 to K = 6. For
each K , nine estimators log p̂•(y|K) are given together with log p̂•(y|K) ± 3SE in following order
from left to right: log p̂BS,F (y|K), log p̂BS,D(y|K), log p̂BS,R(y|K) (green); log p̂IS,F (y|K) (dual
importance sampling), log p̂IS,D(y|K), log p̂IS,R(y|K) (red); log p̂RI,F (y|K), log p̂RI,D(y|K),
log p̂RI,R(y|K) (blue).

as K increases, with extreme bias and huge SE even for the fully symmetric im-
portance density qF

K(ϑ). The ever increasing marginal likelihood obtained through
balanced bridge sampling indicates that the state-specific distribution might be
misspecified and more flexible distributions, for example, a negative binomial dis-
tribution should be considered.

5.2.2 Markov switching models for GDP analysis. A fully Markov switching
model of order p with K states is fitted to the GDP DATA as in Frühwirth-
Schnatter (2006), assuming that conditional on Si = k,

yi = δk,1yi−1 + · · · + δk,pyi−p + ζk + εi,

where εi |Si = k ∼ N (0, σ 2
ε,k). Priors are chosen as δk,j ∼ N (0,0.25), j = 1,2,

ζk ∼ N (0,10), and σ 2
ε,k ∼ G−1(2,0.5).

For illustration, marginal likelihoods are computed for p = 2 for K = 1, . . . ,4
and visualised in Figure 5. Also for this Markov switching model, the estimators
log p̂BS,F (y|K) and log p̂BS,D(y|K) based on (optimal) bridge sampling in com-
bination with the fully symmetric importance density qF

K(ϑ) and the importance
density qD

K (ϑ) are very precise, whereas all alternative estimators exhibit consider-
ably larger standard errors and/or considerable bias. The presence of K = 2 states
is clearly confirmed by this analysis.

5.3 Mixture of experts models in model-based clustering of time series

In many areas of applied statistics, like biometrics, economics, finance, psycho-
metrics, public health, or in social sciences, data are available in the form of panel
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Figure 5 Marginal likelihood estimation for the GDP DATA over K = 1 to K = 4. For each K ,
nine estimators log p̂•(y|K) are given together with log p̂•(y|K)±3SE in following order from left to
right: log p̂BS,F (y|K), log p̂BS,D(y|K), log p̂BS,R(y|K) (green); log p̂IS,F (y|K) (dual importance
sampling), log p̂IS,D(y|K), log p̂IS,R(y|K) (red); log p̂RI,F (y|K), log p̂RI,D(y|K), log p̂RI,R(y|K)

(blue).

or longitudinal data where, for a given sample of subjects, repeated measurements
are taken for a set of variables at several points in time. Standard methods for panel
or longitudinal data analysis assume homogeneity across the subjects (Diggle et
al., 2002). To capture (unobserved) heterogeneity across subjects, model-based
clustering has been applied where each time series is considered to belong to one
of K unknown clusters, where each cluster is described by a different data gen-
erating mechanism, see, for example, Frühwirth-Schnatter and Kaufmann (2008)
and Frühwirth-Schnatter (2011).

To apply model-based clustering, one has to choose the clustering kernel
p(yi |θk) and the prior class assignment distribution Pr(Si = k|ω) for k = 1, . . . ,K .
To address serial dependence among the observations for each subject, model-
based clustering of time series data is often based on dynamic clustering kernels
derived from first-order homogeneous or inhomogeneous Markov processes, see
Frühwirth-Schnatter (2011) for a review.

Assuming Pr(Si = k|ω) = ηk as for finite mixtures would imply that all sub-
jects have the same prior probability to belong to a certain cluster, regardless of
their specific characteristics. To achieve more flexibility, covariates xi are allowed
to influence the weight distribution, modeled as in (16) through a multinomial logit
(MNL) model. Such mixture of experts models have been applied to model-based
clustering of time series in combination with dynamic regression clustering ker-
nels (Frühwirth-Schnatter and Kaufmann, 2008), Markov chain clustering kernels
(Frühwirth-Schnatter et al., 2012), and locally independent MNL clustering ker-
nels (Aßmann and Boysen-Hogrefe, 2011).
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A crucial issue in model-based clustering is, of course, how to select the number
of clusters present in the panel. Various Bayesian criteria such as marginal likeli-
hoods as well as information based criteria are reviewed in Frühwirth-Schnatter
(2011). Below, the various estimators of the marginal likelihood of mixture of ex-
perts models introduced in Section 4.4 are applied for model-based clustering of
discrete time series arising in panels from the Austrian labour market.

Long-term career outcomes after job loss due to a plant closure—where all
workers are automatically displaced—are an often researched topic in labor eco-
nomics, see, for example, Frühwirth-Schnatter et al. (2018) for the Austrian labour
market. Our empirical analysis is based on administrative register data from the
Austrian Social Security Database (ASSD), which provides detailed longitudinal
information on employment and earnings of all private sector workers in Austria
(Zweimüller et al., 2009). To define our sample of displaced workers, we con-
centrate on all male workers employed during the years 1982 to 1988, who ex-
perienced a job displacement due to plant closure in this period. We follow these
workers’ detailed labor market careers for 4 years prior to job displacement and for
10 years afterwards. We further restrict the sample to workers displaced from firms
that have more than 5 employees at least once during the period 1982 to 1988 and
who have at least one year of tenure prior to displacement. Moreover, we select
workers who were between 35 and 55 years of age at the time of job displacement.

To compare labor market careers after job loss with a counterfactual situation
without job displacement, a control group of workers is selected who were em-
ployed during the years 1982 to 1988 in firms which did not close down. Following
Schwerdt et al. (2010), controls are selected who are very similar to the displaced
group in terms of their pre-displacement labor market careers and observable in-
dividual characteristics such as age, broad occupation (white versus blue collars)
and industry using exact statistical matching. This yields a panel of N = 17,511
time series, containing 3417 displaced workers and 14,094 controls.

The outcome variable yit , i = 1, . . . ,N , t = 1, . . . ,40 is a categorical vari-
able with J = 7 categories, among them employed, retired, sick, and unemployed.
Frühwirth-Schnatter (2011) provides a review how to choose clustering kernels
specifically for discrete-valued time series observations, where yit is a categorical
variable with J states labelled by j ∈ {1, . . . , J }. Such clustering kernels are based
on modelling the probability distribution Pr(yit = j |θk), j = 1, . . . , J in terms of
class-specific parameters θk . If covariate information wit is available, inhomoge-
neous Markov chains are used as clustering kernels, by modeling the rows of the
transition matrix through a dynamic multinomial logit (MNL) model,

Pr(yit = j |yi,t−1 = l, Si = k) = exp(λitk,lj )∑J

j̃=1
exp(λ

itk,lj̃
)
, (23)

where λitk,lj = αk,lj + witβk,l depend on the past state yi,t−1 = l and cluster spe-
cific regression parameter βk,j capturing the effect of the covariates wit .
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A special version of (23) results, if wit take on only a few values. Assume,
for instance, that the only covariate information to be used for each subject i is a
dummy variable gi . If all H possible combinations Hit = (yi,t−1, gi) of the past
state yi,t−1 and the dummy variable gi are indexed by h = 1, . . . ,H , then the
dynamic MNL model (23) reduces to a generalized transition matrix ξ k with H

rows. The hth row ξ k,h· = (ξk,h1, . . . , ξk,hJ ) defines for each cluster k = 1, . . . ,K

the conditional distribution of yit , given that the state of the history Hit equals h:

ξk,hj = Pr(yit = j |Hit = h,Si = k), j = 1, . . . , J. (24)

Evidently, the clustering kernel for the time series yi in state k reads:

p(yi |ξ k) =
H∏

h=1

J∏
j=1

ξ
Ni,hj

k,hj , (25)

where, for each time series i, Ni,hj = #{t ∈ {1, . . . ,40}|yit = j,Hit = h} is the
number of transitions into state j given a history of type h.

Each row ξ k,h· of the generalized transition matrix ξ k follows a Dirichlet prior
distribution,

ξ k,h· ∼ D(e0,h1, . . . , e0,hJ ), e0,hj = max(N0ξ̂hj ,0.5),

where N0 = 2.5, ξ̂hj = Nhj/Nh, Nhj = ∑N
i=1 Ni,hj is the total number of transi-

tions into state j given a history of type h, and Nh = ∑J
j=1 Nhj is the total number

of observations with history h.
To cluster the time series of labor market states, the generalized transition model

(25) is used as clustering kernel, with following history Hit . It is assumed that the
distribution of yit depends on the previous state yi,t−1, the broad occupation (blue
versus white collar) and the age group (35–44 versus 45–55) of a worker. This
yields a transition matrix with H = 28 rows. Clustering these data provides quite
a challenge due to the high dimensionality both of the data, with a total of N =
17,511 time series each with T = 40 observations, and the mixture model with a
high-dimensional component-specific parameter of dimension dim(ξ k) = 168.

Marginal likelihoods are computed for two types of mixture of experts models.
First, choosing xi ≡ 1 in (16) corresponds to an alternative parameterization of
a finite mixture model. Second, choosing xi = (1Di), where Di is 1, iff person
i experienced plant closure, and 0 otherwise, assumes that cluster membership
depends on whether a person experienced plant closure.

Results of marginal likelihood estimation based on the completely balanced im-
portance density qF

K(ϑ) are visualised for both models for K = 2, . . . ,6 in Fig-
ure 6. All estimators are extremely accurate and bridge and importance sampling
yield very similar results. The mixture of experts model clearly dominates the finite
mixture model and cluster membership depends on whether a person experienced
plant closure or not. For the mixture of experts model, K = 5 is selected. The
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Figure 6 Marginal likelihood estimation for the plant closure data for a finite mixture model (top
panel) and a mixture of experts model including a plant closure dummy variable (bottom panel) over
K = 2 to K = 6. For each K , the following estimators including ±3SE are given: log p̂BS,F (y|K)

(green); log p̂IS,F (y|K) (dual importance sampling, red); log p̂RI,F (y|K) (blue).

same number of clusters was identified for a closely related data set in Frühwirth-
Schnatter et al. (2018), using less formal criteria based on economic interpretabil-
ity of the resulting clusters as well as AIC and BIC. The resulting clusters are
rather similar to the clusters obtained in that paper.

6 Concluding remarks

The present paper shows that sampling-based estimators of the marginal likelihood
are prone to be biased under a strongly unbalanced importance density, even for the
optimal bridge sampling estimator which is fairly robust to the tail behaviour of the
importance density. To address this problem, two bridge sampling estimators are
suggested to compute the marginal likelihood for finite mixture models and their
extensions to Markov mixture, Markov switching and mixture of experts models.
These estimators are based on constructing balanced importance densities from the
conditional densities arising during Gibbs sampling.

A particularly stable estimator is obtained, when (optimal) bridge sampling is
combined with the perfectly balanced importance density qF

K(ϑ) yielding the full
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permutation bridge sampling estimator p̂BS,F (y|K). This importance density is de-
rived from considering all possible permutations of the mixture labels for a subset
of the conditional densities arising during Gibbs sampling. For the double random
permutation bridge sampling estimator p̂BS,D(y|K), two levels of random permu-
tations are applied, first to permute the labels of the MCMC draws and second to
independently permute the labels of the conditional densities arising during Gibbs
sampling. The double random permutation estimator provides a simple, yet effec-
tive improvement concerning balance and avoids the bias observed for the simple
random permutation bridge sampling estimator p̂BS,R(y|K) for all case studies for
larger values of K .

A wide range of applications of these balanced bridge sampling estimators
shows very good performance in comparison to importance and, in particular, to
reciprocal importance sampling estimators derived from the same importance den-
sities. As the case studies demonstrate, this is true for all types of finite mixtures,
including Markov switching and mixture of experts models. The reliability of these
estimators results from two main factors. First, these estimators are robust to the
tail behaviour of the importance density compared to the mixture posterior. Sec-
ond, these estimators rely on an importance density that mimics the multimodality
of the mixture posterior in a (nearly) balanced way.

For reciprocal importance sampling, considerable bias and large standard errors
may occur even if the estimator is based on the perfectly balanced importance den-
sity qF

K(ϑ), as reciprocal importance sampling estimators are particularly sensitive
to poor tail behaviour of the importance density and cannot be recommended. As
opposed to that under balanced importance densities, importance sampling estima-
tors are in general as reliable as bridge sampling estimators for small values of K .
However, with increasing K and for overfitting models, importance sampling es-
timators tend to be less accurate, even if they are based on the perfectly balanced
importance density qF

K(ϑ), as thinner tails of the importance density compared to
the posterior in one mode will be replicated in all other K! − 1 modes. As a result,
the full permutation bridge sampling estimator is recommended as a default choice
for marginal likelihood estimation for finite mixtures as well as Markov switching
and mixture of experts models for values of K up to 7.
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