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Unions of random walk and percolation on infinite graphs

Kazuki Okamura
Shinshu University

Abstract. We consider a random object that is associated with both random
walks and random media, specifically, the superposition of a configuration of
subcritical Bernoulli percolation on an infinite connected graph and the trace
of the simple random walk on the same graph. We investigate asymptotics
for the number of vertices of the enlargement of the trace of the walk un-
til a fixed time, when the time tends to infinity. This process is more highly
self-interacting than the range of random walk, which yields difficulties. We
show a law of large numbers on vertex-transitive transient graphs. We com-
pare the process on a vertex-transitive graph with the process on a finitely
modified graph of the original vertex-transitive graph and show their behav-
iors are similar. We show that the process fluctuates almost surely on a certain
non-vertex-transitive graph. On the two-dimensional integer lattice, by inves-
tigating the size of the boundary of the trace, we give an estimate for vari-
ances of the process implying a law of large numbers. We give an example of
a graph with unbounded degrees on which the process behaves in a singular
manner. As by-products, some results for the range and the boundary, which
will be of independent interest, are obtained.
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1 Introduction and main results

Consider Bernoulli bond percolation on an infinite connected graph G. Assume
that each edge of G is open with probability p ∈ [0,1] and closed with probabil-
ity 1 − p. It seems natural to consider the following informal question: if we add
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Bernoulli percolation on G to a subgraph H of G, then how much does H change?
By this motivation, the author (Okamura, 2017) proposed a model in which a con-
figuration of Bernoulli percolation on an infinite connected graph G is added to a
(deterministic or random) subgraph H independently, and then, asked whether the
probability that a property P of H remains to be satisfied for the enlargement of
H is less than 1, as p increases. If H is a single vertex of G and P is the property
that the graph has an infinite number of vertices, we obtain the definition of Ham-
mersley’s critical probability. In Okamura (2017), an important example of such a
subgraph H and a property P is the case that H is the trace of the simple random
walk {Sn}n on G and P is that the (enlarged) graph is recurrent, that is, the simple
random walk on the graph is recurrent.

In this paper, we terminate the simple random walk on an infinite connected
simple graph at a time n, and consider asymptotics for the number of vertices
of the enlargement of the trace until the time n by subcritical Bernoulli percola-
tion on the same graph. The main focus of Okamura (2017) is the case that H is
infinite. On the other hand, we focus on the case that H = Hn is finite, and Fur-
thermore depends on the time n. We denote by Un the number of the vertices of
the union of the simple random walk until time n and Bernoulli percolation (see
Definition 1.1). Our purpose is to investigate asymptotics for {Un}n. We compare
{Un}n with {Rn}n, which is the number of the vertices that are visited by the simple
random walk until time n, and how much the behaviors of {Un}n depend on the pa-
rameter p of Bernoulli percolation. If we add no percolation clusters (i.e., p = 0),
then Un is identical with Rn. If we add non-trivial percolation clusters (i.e., p > 0),
then {Un}n becomes more complicated. {Un}n is more highly self-interacting than
{Rn}n, which is already self-interacting. Such self-interacting nature yields diffi-
culties.

This process is associated with both random walks and random media. Of such
objects, random walk in random environment (RWRE), including random walk
on percolation cluster, is well known and has been intensively studied. Random
walk in random scenery (RWRS) is another known model. It is a random process
such that at each time, both the step taken by the walk and the scenery value at the
site that is visited are registered. To the best of our knowledge, our framework is
different from any known studies on RWRE and on RWRS.

We first show a strong law of large numbers (LLN) for {Un}n on vertex-
transitive graphs. The almost sure limit of Un/n depends on the parameter of the
percolation p and is denoted by cp . We consider properties of cp as a function
of p. Specifically, we show that cp is analytic and has at least linear growth. We
consider how much the behavior of {Un}n changes if we modify G. Long-time
behaviors of {Un/n}n and {E[Un] − cpn}n are stable with respect to finite modifi-
cations of vertex-transitive transient graphs. (See Definition 1.2 for the definition
of finite modification.) It is shown that {Un/n}n fluctuates almost surely on a cer-
tain non-vertex-transitive transient graph. On the two-dimensional integer lattice,
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by investigating the size of the boundary of the trace of random walk, we give up-
per bounds for variances and LLN for {Un}n. We give an example of a recurrent
graph with unbounded degrees on which {Un}n behaves in a “singular” manner. We
consider positive and negative exponentials of {Un}n, and obtain results similar to
Hamana (2001) and Donsker–Varadhan (1979) which studied Laplace transform
of the range of simple random walk. In the Appendix, behaviors of {EPp [Un]}n
are considered. Here EPp is the expectation with respect to percolation. Roughly
speaking, EPp [Un] is the process obtained by eliminating the randomness of per-
colation. It is somewhat easier to analyze than {Un}n.

Many results are similar to those for the range {Rn}n. However, our proofs are
different from those for the corresponding results, because we need to deal with
highly self-interacting nature of {Un}n. In Corollary 1.11 below, we state that a
discontinuity occurs in the ratio of the logarithm of the Laplace transforms of Un

and Rn for Z
3. As by-products of this research, we obtain some results for the

range and the size of the boundary of the trace, which will be of independent
interest.

1.1 Framework and notation

We introduce some notation. The expectation with respect to a probability measure
μ is denoted by Eμ. For two probability measures μ and ν, μ ⊗ ν denotes the
product measure of μ and ν. We let the infimum of an empty set inf∅ be +∞.
For two functions f,g on the integers, f (n) � g(n) means that there are some
constants 0 < c < C < +∞ such that c|g(n)| ≤ |f (n)| ≤ C|g(n)| for any large n.
f (t) ∼ g(t) means that f (t)/g(t) → 1 as either t → 0 or t → ∞. Readers will
immediately see which of the two cases of the limit are considered, case by case.

Let G = (V (G),E(G)) be an infinite connected simple graph. For ease of nota-
tion, we often denote V (G) by G. We assume that it has bounded degrees, unless
stated otherwise. Let �G be the maximal degree of G. If we give a subset H of
V (G) and do not refer the set of edges, then, the graph considered is the induced
subgraph of H . Let d be the graph distance of G and B(x,n) := {y ∈ V (G) :
d(x, y) ≤ n}. For A ⊂ G, denote the cardinality of A by |A|, and the complement
of A by G \ A or Ac. Let diam(A) be the diameter of A, that is, the supremum of
the distance between two points in A. In this paper, if G = Z

d and the set of edges
are not referred, then it is the nearest-neighbor model, that is, the set of edges is
the collection of two adjacent vertices of G. Let | · |∞ be the infinity norm of Zd

and B∞(x, r) be the open ball having center x and radius r with respect to | · |∞.
For disjoint subsets A and B of V (G), the effective resistance Reff(A,B) between
A and B is defined by

Reff(A,B)−1 := inf
{ ∑

{x,y}∈E(G)

(
f (x) − f (y)

)2 : f = 1 on A,f = 0 on B

}
.

Let (Sn)n≥0 be the simple random walk on G. Let P x be the law of (Sn)n
starting at x ∈ G. We say that G is transient or recurrent if the simple random
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walk on G is transient or recurrent, respectively. Denote {Sm, . . . , Sn} by S[m,n].
We call it the trace of random walk. Define the random walk range up to time n by

Rn := ∣∣S[0, n]∣∣ = ∣∣{S0, . . . , Sn}
∣∣.

We define

TA := inf{n ≥ 1 : Sn ∈ A} and HA := inf{n ≥ 0 : Sn ∈ A}, A ⊂ G.

Consider Bernoulli bond percolation on G. Let Pp be the Bernoulli measure
with parameter p. Let Cx be the open cluster containing a vertex x of G. Let
pT (G) be Temperley’s critical probability, that is,

pT (G) := inf
{
p ∈ [0,1] : EPp

[|Co|] = +∞}
.

This value does not depend on the choice of o. We have that pT (G) ≥ 1/(�G −1).
(See Bollobás and Riordan, 2006, Chapter 1, for example.) In all assertions in this
paper, we assume that p < pT (G).

Let o be a vertex of G. Let P̃ o,p be the product measure P o ⊗ Pp of P o and
Pp . Precisely, P x is a probability measure on the path space of random walks on
G, and P̃ o,p is a probability measure on the product space of the path space of
the random walks on G and {0,1}E(G). Let Ẽo,p be EP o⊗Pp , and let Varo,p be the
variance with respect to P o ⊗ Pp .

We say that G is vertex-transitive if the number of the equivalent classes of G is
exactly one, where x and y are equivalent if there is a graph automorphism γ of G

such that γ (x) = y. If G is vertex-transitive, then, the law of P̃ o,p do not depend
on o, and hence we drop the o and write P̃ p = P̃ o,p , Ẽp = Ẽo,p , E = EP o

and
Varp = Varo,p . We clarify the dependence of these on G if needed.

Definition 1.1 (Volumes of unions of random walk and percolation).

Un :=
∣∣∣∣ ⋃
x∈{S0,...,Sn}

Cx

∣∣∣∣, n ≥ 0.

Here, Un is increasing with respect to n. Since x ∈ Cx , it holds that Un ≥ Rn. If
p = 0, then Un = Rn, P̃ o,p-a.s.

Definition 1.2. We say that G′ is a finite modification of G if there exist two finite
subsets D on G and D′ on G′ such that there is an isomorphism (see Diestel, 2010,
Section 1.1, for the definition of this terminology) φ : G \ D → G′ \ D′. We will
see that G′ is roughly isometric to G. (See Woess, 2000, Definition 3.7, for the
definition of being roughly isometric.)
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1.2 Results for transient graphs

Theorem 1.3 (Law of large numbers). Assume that p < pT (G). Let G be a
vertex-transitive graph, and o be a vertex of G. Let

cp = cG,p := EPp
[|Co|P o(TCo = +∞)

]
. (1)

Then, for any 1 ≤ q < +∞,

lim
n→∞

Un

n
= cp, P̃ o,p-a.s. and in Lq(

P̃ o,p)
. (2)

As we see in Theorem 1.6, we cannot define cp for a certain non-vertex-
transitive graph. If G is transient, then, by (2),

cp ≥ c0 = P o(To = +∞) > 0.

On the other hand, if G is recurrent, then cp = 0 for any p.
We will show Theorem 1.3 by applying Liggett’s subadditive ergodic theorem

to

Um,n :=
∣∣∣∣ ⋃
x∈{Sm,...,Sn}

Cx

∣∣∣∣. (3)

Informally speaking, we will show that for each l, U0,l and Ukl,(k+1)l are asymp-
totically independent as k tends to ∞.

If G = Z
d, d ≥ 3, and p = 0, then, this assertion was shown by Dvoretzky–

Erdös (1951, Theorem 4). Spitzer (1964, Section 4) stated that the strong law
of the volume of a discrete analog for the Wiener sausage can be shown, in the
same manner as in the continuous case. We will deal with this process in the Ap-
pendix. However, more delicate arguments would be required for {Un}n, because
it is highly self-interactive. Because of the high self-intersecting nature, it is inter-
esting to establish a central limit theorem for {Un}n on Z

d, d ≥ 3.
We now consider properties for (cp)p∈[0,pT (G)), which is somewhat similar to

those for EPp [|Co|] as function of p.

Theorem 1.4 (Properties of cp). Assume that p < pT (G).

(i) If G is vertex-transitive and transient, then, cp is analytic on p ∈
[0,pT (G)).

(ii) Let G be a Cayley graph of a finitely generated infinite group and assume
it is transient. Then,

d

dp
cp > 0, 0 < p < pT (G). (4)

(iii) If G = Z
d, d ≥ 11, then

lim
p→pT (Zd )

cp = +∞.
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We say that a volume growth condition V (d) holds if there is a positive constant
C such that ∣∣B(x,n)

∣∣ ≥ Cnd, x ∈ G,n ≥ 1.

Theorem 1.5 (Finite modification). Assume that p < pT (G). Assume that G is
a vertex-transitive graph and G′ is a finite modification of G. Then,

(i) For any vertex o of G′,

lim
n→∞

Un

n
= cG,p, P̃

o,p

G′ -a.s. (5)

If G satisfies V (d) for some d > 2,

lim
n→∞

Ẽ
o,p

G′ [Un]
n

= cG,p, (6)

and,

lim
n→∞

Un

n
= cG,p, in L1(

P̃
o,p

G′
)
. (7)

(ii) If G satisfies V (d) for some d > 4, then, for any vertex o of G′,

lim
n→∞ Ẽ

o,p

G′ [Un] − cG,pn

exists. The limit does not take ±∞.

By Woess (2000, Lemma 3.12), any vertex-transitive transient graph G satisfies
V (2), so, we believe that the assumption of assertion (i) is not a large restriction.
Assertions (i) and (ii) are applicable to Cayley graphs of finitely generated group
having polynomial volume growth with degree d ≥ 3, and d ≥ 5, respectively.

We now leave the case that G is vertex-transitive. If a transient graph G is not
vertex-transitive, then (2) can fail in the following sense.

Theorem 1.6 (E[Un]/n can fluctuate on a transient graph which is not vertex-
transitive). Assume that p < pT (G). There is a graph G and a vertex o of G such
that for any p ∈ [0,pT (G)), the following holds P̃ o,p-a.s.

lim inf
n→∞

Ẽo,p[Un]
n

= lim inf
n→∞

Un

n
< lim sup

n→∞
Un

n
= lim sup

n→∞
Ẽo,p[Un]

n
. (8)

In this case, we cannot define the value cp in (1). If p = 0, then, this assertion
extends the author’s paper (Okamura, 2014, Theorem 1.3). We use the convergence
result of Theorem 1.5 in order to show this fluctuation result. It is more interesting
to find a necessary and sufficient condition for (8).
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1.3 Results for recurrent graphs

Theorem 1.7. Assume that p < pT (G). If G is recurrent and vertex-transitive,
then,

lim
n→∞

Ẽp[Un]
E[Rn] = 1. (9)

A certain homogeneity assumption of G would be crucial for (9), because we
can give an example of an inhomogeneous graph on which (9) fails. See Re-
mark 7.1(ii).

Theorem 1.8. If G = Z
2, then,

(a) ∣∣∣∣Ẽp[Un] − n

logn
π

∣∣∣∣ = O

(
n

(logn)2

)
. (10)

(b)

Varp(Un) = O

(
n2

(logn)4

)
. (11)

(c) For any 1 ≤ q < +∞,

lim
n→∞

logn

n
Un = π, P̃ p-a.s. and in Lq(

P̃ p)
. (12)

If p = 0, then, (10), (11), and (12) were obtained by Jain–Pruitt (1970, Lemma
3.1, 1972, Theorem 4.2),1 and Dvoretzky and Erdös (1951, Theorem 4), re-
spectively. Le Gall (1986a, Lemme 6.2) also shows (11) for the case of p = 0,
by using the estimate for intersections of two independent random walks. For
n1 < n2 ≤ n3 < n4, Un1,n2 and Un3,n4 are not independent, which will be an obsta-
cle to applying the method of the proof of Le Gall (1986a, Lemme 6.2). We show
(a), (b) and (c) by considering the boundary of the trace of the simple random
walk, specifically, using the phenomenon that on a recurrent graph, the boundary
of the trace is “sufficiently” smaller than the trace. It is also interesting to establish
a central limit theorem for {Un}n on Z

2.
As the following shows, the behaviour of {Un}n on a certain locally-finite recur-

rent graph with unbounded degrees is significantly different from that on vertex
transitive graphs with bounded degrees.

Theorem 1.9 (Recurrent graph with unbounded degrees). There is a graph G

with unbounded degrees and a vertex o of G such that

1They showed (logn)4 Var(Rn)/n2 converges to a positive constant as n → ∞ for a general class
of random walk.
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(a) pT (G) = 1,

and Furthermore the following hold for any p ∈ (0,1):

(b)

lim sup
n→∞

log logUn

logn
≥ 1

2
, P̃ o,p-a.s. (13)

(c)

lim sup
n→∞

log Varo,p(Un)

n
≥ log

1

2p2 . (14)

In (b) and (c) above, the case that p = 0 are excluded. It is also interesting to
find examples of (non vertex transitive) graphs with bounded degrees such that
{Un}n behaves in a singular manner.

1.4 Positive and negative exponentials

We now consider positive exponentials of {Un} in the case that G is vertex-
transitive. For θ > 0 and p ∈ [0,pT (G)), let

�p(θ) = inf
n≥1

logE[exp(θUn−1)]
n

.

We allow to take +∞ as the limit. We have that �p is upper semicontinuous.
Now similarly to Hamana (2001), we consider the behaviour of �p(θ) as

θ → 0. For each p ∈ [0,pT (G)) and a vertex o of G, let

θc(p) := inf
{
θ > 0 : EPp

[
exp

(
θ |Co|)] = +∞}

.

If p > 0, then, for each n,

Pp

(|Co| > n
) ≥ Pp(there exists an open self-avoiding path of length n starting at o)

≥ pn.

Hence, EPp [exp(θ |Co|)] = +∞ for sufficiently large θ . By (19), it holds that

θc(p) = +∞, p = 0,

0 < θc(p) < +∞, 0 < p < pT (G),

θc(p) = 0, p ≥ pT (G).

It holds that �p(θ) < +∞ for θ ∈ [0, θc(p)).
If p = 0, then, by the Markov property,

EP 0[
exp(θRm+n)

] ≤ EP 0[
exp(θRm)

]
EP 0[

exp(θRn)
]
, n,m ≥ 1
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(see Hamana, 2001) and we have that

�0(θ) = lim
n→∞

logEP 0[exp(θRn)]
n

.

By this and the Hölder inequality, �0(θ) is convex with respect to θ , and hence,
continuous on [0,+∞).

Theorem 1.10 (Positive exponentials). Assume that p < pT (G).

(i) If G is vertex-transitive and transient, then,

lim
θ→0

�p(θ)

�0(θ)
= cp

c0
,

where cp is the constant in (1).
(ii) If G = Z

d, d = 1,2, then,

lim
θ→0

�p(θ)

�0(θ)
= 1.

For θ ∈ (−∞, θc(p)) \ {0} and x ∈ Z
d , let

�̃p(θ) := inf
n≥1

log Ẽp[exp(θUn−1)]
logEP x [exp(θRn−1)] , 0 < θ < θc(p),

and,

�̃p(θ) := sup
n≥1

log Ẽp[exp(θUn−1)]
logEP x [exp(θRn−1)] , θ < 0.

Then,

�̃p(θ) ≥ 1, 0 < θ < θc(p),

and,

�̃p(θ) ≤ 1, θ < 0.

If p = 0, then �̃p(θ) = 1 for any θ . Since �p is upper-semicontinuous on
[0, θc(p)), �̃p is so.

By (4) and Theorem 1.10,

Corollary 1.11. Let G = Z
d, d ≥ 3, and 0 < p < pT (G). Then,

lim
θ→0,θ>0

�̃p(θ) = cp

c0
> 1 ≥ sup

θ<0
�̃p(θ).

Hence, there exists a discontinuity of �̃p(θ) at θ = 0.
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Theorem 1.12 (Negative exponentials). Assume that p < pT (G). If G = Z
d ,

then,

lim
n→∞

− log Ẽp[exp(−θUn)]
nd/(d+2)

= lim
n→∞

− logEP 0[exp(−θRn)]
nd/(d+2)

. (15)

We have that

�̃p(θ) = 1, θ < 0.

It is shown in Donsker and Varadhan (1979) that the limit in the right-hand side
of (15) exists and depends only on (d, θ). We will show this by using exponential
decay of sizes of clusters in subcritical phases.

A similar result also holds for graphs other than Z
d . By Gibson (2008), it is easy

to see that if G is a Cayley graph of a finitely generated group with polynomial
volume growth of degree d ≥ 2, then,

− log Ẽp[
exp(−θUn)

] � nd/(d+2).

1.5 Organization of paper

Section 2 is devoted to law of large numbers and Theorem 1.3 is shown. In Sec-
tion 3, we state some auxiliary results for boundary of the trace of random walk,
which are used in the following sections, and then, by using them, Theorem 1.7 is
shown. In Section 4, properties of cp are considered, and Theorem 1.4 is shown.
In Section 5, we deal with finite modification and fluctuations for {Un}n and Theo-
rems 1.5 and 1.6 are shown. Section 6 is devoted to the proof of Theorem 1.8. Sec-
tion 7 is devoted to the proof of Theorem 1.9 and remarks for “one-dimensional”
graphs. Section 8 is devoted to the proofs of Theorems 1.10 and 1.12. In the Ap-
pendix, we consider {EPp [Un]}n, which is a deterministic version of {Un}n.

2 Law of large numbers

In this section, we show Theorem 1.3. We first consider the growth of the mean
Ẽx,p[Un] as n tends to infinity.

Proposition 2.1 (Growth of mean). Assume that p < pT (G). For any y ∈ G and
n ≥ 1,

(1 − p)�G

n∑
i=0

inf
x∈G

P x(Tx > i) ≤ Ẽy,p[Un] ≤ sup
x∈G

EPp
[|Cx |] n∑

i=0

sup
x∈G

P x(Tx > i).

Proof. It holds that

Un = ∑
0≤i≤n

|CSi
|1{CSi

�=CSj
,i<∀j≤n}. (16)
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We remark that CSi
�= CSj

is equivalent to Sj /∈ CSi
. By this, (16) and the Markov

property, it holds that for any x ∈ G,

n∑
k=0

inf
y∈G

EPp
[|Cy |P y(TCy > k)

]

≤ Ẽx,p[Un] ≤
n∑

k=0

sup
y∈G

EPp
[|Cy |P y(TCy > k)

]
.

(17)

It is easy to see that for any y and n,

(1 − p)�G ≤ EPp [|Cy |P y(TCy > n)]
P y(Ty > n)

≤ sup
z∈G

EPp
[|Cz|].

Thus, the assertion follows. �

Now we proceed to the proof of Theorem 1.3. We first show the almost sure
convergence of (2), and then show the Lq convergence of (2) for 1 ≤ q < +∞.

Proof of Theorem 1.3 for the a.s. convergence of (2). Fix a vertex o of G. Since
G is vertex-transitive, it holds that by (17),

lim
n→∞

Ẽp[Un]
n

= EPp
[|Co|P o(TCo = +∞)

]
.

We will check the assumptions of Liggett’s subadditive ergodic theorem
(Liggett, 1985). Recall (3). The subadditivity of {Um,n}m<n is immediately seen.
By the Markov property of {Sn} and the translation invariance of Bernoulli perco-
lation, {Um,m+n}m is stationary. By the assumption, we have that

Ẽp[U0,1] ≤ 2EPp
[|Co|] < +∞.

If the following lemma is shown, then, the almost sure convergence of (2) fol-
lows.

Lemma 2.2. Assume that p < pT (G). {Unl,(n+1)l}n≥0 is strong mixing for any
l ≥ 1. Specifically, for any k1, k2 ≥ 0,

lim
m→∞ P̃ p({U0,l = k1} ∩ {Um,m+l = k2}) = P̃ p(U0,l = k1)P̃

p(U0,l = k2).

For A ⊂ G and k ≥ 0, the k-neighborhood of A is defined by

A(k) := {
z ∈ G : ∃y ∈ A such that d(z, y) ≤ k

}
.

Proof. Informally speaking, we would like to show that U0,l and Um,m+l

are “asymptotically independent” as m → ∞. We first decompose the event
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{U0,l = k1} by possible positions of {Si}li=0, and then approximate each decom-
posed event by an event independent from {Um,m+l = k2}.

Let

B(x0, . . . , xl) := ⋂
0≤i≤l

{Si = xi} ∩
{∣∣∣∣∣

l⋃
i=0

Cxi

∣∣∣∣∣ = k1

}
.

We decompose the event {U0,l = k1} as follows:

{U0,l = k1} = ⋃
x0,...,xl∈G

B(x0, . . . , xl).

Since this union is disjoint,

P̃ p(U0,l = k1) = ∑
x0,...,xl∈G

P̃ p(
B(x0, . . . , xl)

)
,

and,

P̃ p({U0,l = k1}∩ {Um,m+l = k2}) = ∑
x0,...,xl∈G

P̃ p(
B(x0, . . . , xl)∩{Um,m+l = k2}).

Since the number of the possible candidates for (x0, . . . , xl) is finite, it suffices
to show that for a fixed sequence (x0, . . . , xl), B(x0, . . . , xl) and {Um,m+l = k2}
are asymptotically independent as m → ∞, that is,

lim
m→∞ P̃ p(

B(x0, . . . , xl) ∩ {Um,m+l = k2}) = P̃ p(
B(x0, . . . , xl)

)
P̃ p(U0,l = k2).

We now consider events approximating B(x0, . . . , xl). Let Al := {x0, . . . , xl}
and

Em := {
Sm /∈ Al(k1 + k2 + l + 2)

}
.

Since all infinite connected simple graphs have at least linear growth, by Woess
(2000, Corollary 14.6),

P o(Sn = o) ≤ Cn−1/2,

and hence,

lim
m→∞P o(Em) = 1.

Therefore it suffices to show that B(x0, . . . , xl) ∩ Em and {Um,m+l = k2} are
independent, that is,

P̃ p(
B(x0, . . . , xl) ∩ {Um,m+l = k2} ∩ Em

)
= P̃ p(

B(x0, . . . , xl) ∩ Em

)
P̃ p(U0,l = k2).

(18)
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It holds that

P̃ p(
B(x0, . . . , xl) ∩ {Um,m+l = k2} ∩ Em

)
= P̃ p

(
B(x0, . . . , xl) ∩ Em ∩

{∣∣∣∣ ⋃
z∈S[m,m+l]

Cz

∣∣∣∣ = k2

})

= ∑
y0 /∈Al(k1+k2+l+2),y1,...,yl

P̃ p

(
B(x0, . . . , xl) ∩ {Sm+j = yj ,0 ≤ j ≤ l}

∩
{∣∣∣∣∣

l⋃
j=0

Cyj

∣∣∣∣∣ = k2

})

= ∑
y0 /∈Al(k1+k2+l+2),y1,...,yl

P o

( ⋂
0≤i≤l

{Si = xi} ∩ ⋂
0≤j≤l

{Sm+j = yj }
)

× Pp

(∣∣∣∣∣
l⋃

i=0

Cxi

∣∣∣∣∣ = k1,

∣∣∣∣∣
l⋃

j=0

Cyj

∣∣∣∣∣ = k2

)
.

Since y0 /∈ Al(k1 + k2 + l + 2), {| ∪i Cxi
| = k1} and {| ∪j Cyj

| = k2} are inde-
pendent. These events are completely determined by configurations in two finite
boxes including {xi}i and {yj }j , respectively. Therefore,

P̃ p(
B(x0, . . . , xl) ∩ {Um,m+l = k2} ∩ Em

)
= ∑

y0;y1,...,yl

P o

( ⋂
0≤i≤l

{Si = xi} ∩ {Sm = y0}
)
P y0

( ⋂
0≤j≤l

{Sm+j = yj }
)

× Pp

(∣∣∣∣⋃
i

Cxi

∣∣∣∣ = k1

)
Pp

(∣∣∣∣⋃
j

Cyj

∣∣∣∣ = k2

)

= ∑
y0

P o

( ⋂
0≤i≤l

{Si = xi} ∩ {Sm = y0}
)
Pp

(∣∣∣∣⋃
i

Cxi

∣∣∣∣ = k1

)

×
{ ∑

y1,...,yl

P y0

( ⋂
0≤j≤l

{Sj = yj }
)
Pp

(∣∣∣∣⋃
j

Cyj

∣∣∣∣ = k2

)}

= ∑
y0 /∈Al(k1+k2+l+2)

P o

( ⋂
0≤i≤l

{Si = xi} ∩ {Sm = y0}
)

× Pp

(∣∣∣∣⋃
i

Cxi

∣∣∣∣ = k1

)
P y0 ⊗ Pp(U0,l = k2)

= P̃ p(U0,l = k2)P̃
p(

B(x0, . . . , xl) ∩ Em

)
.

Thus, we have (18). �
�
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Proof of Theorem 1.3 for the Lq -convergence of (2). It suffices to show that the
following holds for any positive integer q:

sup
n≥1

Ẽp

[(
Un

n

)q]
< +∞.

By Antunović and Veselić (2008, Theorem 3), for each p ∈ [0,pT (G)), there is
a sufficiently small positive θ such that

Ep[
exp

(
θ |Co|)] < +∞ (19)

holds for sufficiently small θ > 0. By using the Hölder inequality,

Ẽp

[(
Un

n

)q]
≤ q!

θq
Ẽp

[
exp

(
θ
Un

n

)]
≤ q!

θq
Ẽp[

exp
(
θ |C0|)] < +∞.

Hence, for any q , {(Un/n)q}n≥1 are uniformly integrable. The Lq -convergence of
(2) follows from this and the a.s. convergence of (2). �

Remark 2.3. We state a second order expansion of Ẽp[Un], which corresponds to
Dvoretzky and Erdös (1951, Theorem 1) and Port (1966, Theorem 3.1) for the case
that G = Z

d , d ≥ 3. By (17) and (1), it is easy to see that if G is vertex-transitive
and transient, then, for a vertex o of G,

(1 − p)�G

n∑
k=1

P o(k < To < +∞)

≤ Ẽp[Un] − cpn ≤ EPp
[|Co|2] n∑

k=1

sup
x,y∈G

P x(k < Ty < +∞).

(20)

We give a proof of these inequalities. By (17), (1) and the fact that G is vertex-
transitive,

Ẽp[Un] − cpn =
n∑

k=1

EPp
[|Cy |P y(k < TCy < +∞)

]

≥ (1 − p)�G

n∑
k=1

P o(k < To < +∞).

Furthermore, by using the fact that

P y(k < TCy < +∞) ≤ P y(∃z ∈ Cy, k < Tz < +∞)

≤ |Cy | sup
z∈Cy

P y(k < Tz < +∞),

Ẽp[Un] − cpn ≤
n∑

k=1

EPp

[
|Cy |2 sup

z∈Cy

P y(k < Tz < +∞)
]

≤ EPp
[|Co|2] n∑

k=1

sup
x,y∈G

P x(k < Ty < +∞).
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Thus, we have (20). In Remark A.5, we give an alternative proof of (20). The
magnitude of growth of

∑n
k=1

∑
i≥k P x(Si = x) as a function of n is O(1) if d ≥ 5,

O(logn) if d = 4, and O(n1/2) if d = 3, respectively.
Furthermore, it is known (see Spitzer, 1976, p. 342, for example) that there is a

positive constant cd such that

cdk1−d/2 ≤ P 0(k < T0 < +∞), k ≥ 1.

Therefore, if G = Z
d, d ≥ 3, then, there are two positive constants cd and Cd such

that for any n ≥ 1,

cd(1 − p)�G ≤ Ẽp[Un] − cpn∑n
k=1 k1−d/2 ≤ CdEPp

[|Co|2]
.

3 Boundary of the trace

This section is devoted to stating some results concerning the inner boundary of the
trace of random walk, which will be used in the following sections. Theorem 1.7
is shown. Okada (2016) and Asselah–Schapira (2017a, 2017b) investigated a law
of large numbers, variances, central limit theorems and tail estimates for random
walks on Z

d . Results we state below are new, unless we refer to the above refer-
ences.

Definition 3.1 (Inner boundary of the trace). Let N (z) be the set of neighbor-
hoods of a vertex z of G, that is,

N (z) := {
y ∈ G : {z, y} ∈ E(G)

}
.

Let ∂Rn be the set of x ∈ {S0, . . . , Sn} such that N (x) �⊂ {S0, . . . , Sn}. Let Ln be
the number of elements of ∂Rn.

We have that for any n,

Rn ≤ Un ≤ Rn + ∑
x∈∂Rn

|Cx |. (21)

Let ∂eRn be the set of x /∈ {S0, . . . , Sn} such that N (x) ∩ {S0, . . . , Sn} �= ∅.
Then, it holds that

Ln ≤ �G

∣∣∂eRn

∣∣,
and

EPp [Un] − Rn ≥ p
∣∣∂eRn

∣∣ ≥ p

�G

Ln.

By this and (21),
p

�G

EP o[Ln] ≤ Ẽp[Un] − EP o[Rn] ≤ sup
x∈G

EPp
[|Cx |]EP o[Ln]. (22)
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Lemma 3.2. If G is recurrent and vertex-transitive, then, for any vertex x of G,

lim
n→∞

EP x [Ln]
EP x [Rn] = 0.

Proof. Let {S′
n}n be a simple random walk on G which is independent from {Sn}n,

let T ′
z be the first hitting time of z by {S′

n} and let P x,y be the joint law of {Sn}n
which starts at x and {S′

n}n which starts at y. Then, by using the fact that G is
vertex-transitive, it holds that

EP x [Ln] =
n∑

k=1

P x,x(
Tx > k,∃y ∈ N (x) such that Ty > k and T ′

y > n − k
)
. (23)

Let ε > 0. Then, by noting that G is recurrent and vertex-transitive, there is a large
number M such that

max
y∈N (x)

P x,x(
T ′

y > M
) ≤ ε.

By this and (23), it holds that

EP x [Ln] ≤ M +
n−M∑
k=1

∑
y∈N (x)

P x,x(
Tx > k,Ty > k,T ′

y > n − k
)

≤ M + ε�G

n−M∑
k=1

P x(Tx > k).

Since G is vertex-transitive,

EP x [Rn] =
n∑

k=0

P x(Tx > k).

Hence,

EP x [Ln]
EP x [Rn] ≤ M

EP x [Rn] + ε�G.

By using the monotone convergence theorem and the assumption that G is re-
current,

lim
n→∞EP x [Rn] = lim

n→∞
∑

y∈V (G)

P x(Ty ≤ n) = ∑
y∈V (G)

P x(Ty < +∞) = +∞.

Therefore,

lim sup
n→∞

EP x [Ln]
EP x [Rn] ≤ ε�G.

Since ε is taken arbitrarily, the assertion follows. �
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By Lemma 3.2 and (22), we have Theorem 1.7.
We have that

P x,x(
Tx > k,∃y ∈ N (x) such that Ty > k and T ′

y > n − k
)

≥ P x,x(
Tx > k,∃y ∈ N (x) such that Ty = +∞ and T ′

y = +∞)
.

By this and (23), we have that if G is vertex-transitive,

lim
n→∞

EP o[Ln]
n

≥ P o,o

(
{To = +∞} ∩ ⋃

y∈N (o)

{
Ty = T ′

y = +∞})
,

o ∈ V (G).

(24)

Remark 3.3. By Woess (2000, Theorems 5.12 and 5.13), any vertex-transitive re-
current graph is a d-dimensional generalized lattice, d = 1 or 2, that is, a graph
whose automorphism group contains the free group Z

d as a quasi-transitive sub-
group.

Lemma 3.4. Let G = Z
2. Then,

(i) (Okada 2016, Theorem 2.4) There is a constant c ∈ [π2/2,2π2] such that

lim
n→∞

(logn)2

n
EP 0[Ln] = c. (25)

(ii)

lim sup
n→∞

(logn)4

n2 EP 0[
L2

n

]
< +∞. (26)

(iii)

lim
n→∞

Ln

Rn

= 0, P 0-a.s. (27)

Proof. See Okada (2016) for the proof of (i).
(ii) Let un = exp(n2/3) and an = u

1/4
n . If exp(n2/3) or u

1/4
n is not an integer, we

take the integer part of it. Let

Vn := ∣∣{x ∈ S[0, un] : N (x) �⊂ S[Tx, Tx + an]}∣∣.
Then

max
k∈[un−1,un]Lk ≤ Vn + an. (28)

For k ∈ (an, un − an), let

Ak := {
Sk /∈ S[k − an − 1, k − 1],N (Sk) �⊂ S[TSk

, TSk
+ an]}.
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Then if |k1 − k2| > an then Ak1 and Ak2 are independent. Therefore,

EP 0[
V 2

n

] ≤ ∣∣{(k1, k2) : |k1 − k2| ≤ an or k1 /∈ (an, un − an) or k2 /∈ (an, un − an)
}∣∣

+ ∑
ki∈(an,un−an)

P 0(Ak1)P
0(Ak2).

By Kesten and Spitzer2 (1963, Theorem 4a),

P 0(Ak) ≤ P 0(T0 > an)P
0(
N (0) �⊂ S[0, an]) ≤ O

(
(logan)

−2)
.

By using this and∣∣{(k1, k2) : |k1 − k2| ≤ an or k1 /∈ (an, un −an) or k2 /∈ (an, un −an)
}∣∣ = O(anun),

it holds that

EP 0[
V 2

n

] = O

(
u2

n

(logun)4

)
. (29)

Recall un = exp(n2/3), and an = o(un/(logun)
2). Now (26) follows from (28)

and (29).
(iii) We now show (27). Since an = o(un/ logun) and

lim
n→∞

un/ logun

un−1/ logun−1
= 1,

it suffices to show that

lim
n→0

logun

un

Vn = 0, P 0-a.s. (30)

By (29),

P 0
(
Vn >

un

logun log logun

)
≤

(
logun log logun

un

)2
E

[
V 2

n

] = O

((
log logun

logun

)2)
.

By using the Borel–Cantelli lemma, we have (30). �

4 Properties of cp

This section is devoted to investigating properties of the limit cp as a function of p.

2In Kesten and Spitzer (1963) it is stated that Kesten and Spitzer (1963, Theorem 4a) holds for
aperiodic random walk, but the definition of aperiodicity in Kesten and Spitzer (1963) is different
from the usual definition of it. The usual definition of aperiodicity is that the infimum of n such that
Px(Sn = x) is positive. We can apply this result to the simple random walk.
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Proof of Theorem 1.4(i). Fix a vertex o of G. The following proof for the analyt-
icity of cp is almost identical to the proof of Grimmett (1999, Theorem 6.108), so
we give a sketch only. Fix a vertex o of G. We have

cp = ∑
n≥1

n
∑

A⊂G,o∈A,|A|=n

P o(TA = +∞)Pp(Co = A).

Let an,m,b be the number of A ⊂ G such that o ∈ A, |A| = n, and
Pp(Co = A) = pm(1 − p)b. Let

a′
n,m,b := ∑

A⊂G,o∈A,|A|=n,Pp(Co=A)=pm(1−p)b

P o(TA = +∞).

Then it holds that a′
n,m,b ≤ an,m,b and

cp = ∑
n≥1,m,b≥0

na′
n,m,bp

m(1 − p)b.

If a′
n,m,b > 0, then m ≤ �Gn and b ≤ �Gn. By replacing an,m,b with a′

n,m,b in the
proof of Grimmett (1999, Theorem 6.108), we have the analyticity of cp if p is
small.

Let

K(z) := ∑
n≥1

n

�Gn∑
m,b=0

a′
n,m,bz

m(1 − z)b.

Let 0 < α < β < pT (G). We will show that K is uniformly convergent on a do-
main in the complex plane containing [α,β] in its interior. Let p ∈ [α,β]. Let
δ > 0. Assume that |z − p| < δ. Then,∣∣∣∣∣n

�Gn∑
m,b=0

a′
n,m,bz

m(1 − z)b

∣∣∣∣∣ ≤ n

�Gn∑
m,b=0

an,m,b(p + δ)m(1 − p + δ)b

≤ n

(
p + δ

p
· 1 − p + δ

1 − p

)�Gn �Gn∑
m,b=0

an,m,bp
m(1 − p)b

= n

(
p + δ

p
· 1 − p + δ

1 − p

)�Gn

Pp

(|C| = n
)
.

By Antunović–Veselić (2008, Theorem 3), we have the exponential decay of
sizes of clusters of subcritical percolations on G. That is, there exist two positive
constants c1(β), c2(β) > 0 such that

Pp

(|C| = n
) ≤ Pβ

(|C| ≥ n
) ≤ c1(β) exp

(−c2(β)n
)
.

If we take sufficiently small δ > 0, then,

lim
n→∞n

(
p + δ

p
· 1 − p + δ

1 − p

)�Gn

c1(β) exp
(−c2(β)n

) = 0.
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Hence, K is analytic on a domain in the complex plane containing [α,β] in its
interior, and the analyticity of cp on p ∈ [0,pT (G)) now holds. �

Definition 4.1. We define the capacity for subsets of V (G) in terms of the effective
resistance. If A is finite, then, we let

Cap(A) := lim
n→∞

(
Reff

(
A,B(x,n)c

))−1
. (31)

Then,

Cap(A) ≤ Cap(B), A ⊂ B ⊂ G. (32)

By the argument following Kumagai (2014, Theorem 2.2.5),

Cap(A) = ∑
x∈A

P x(TA = +∞), A ⊂ G. (33)

Lemma 4.2. If V (G) has a structure of group and any left multiplication induces
a graph homomorphism, then,

cp = EPp
[
Cap(Cx)

]
, x ∈ V (G). (34)

We write x ↔ y if x and y are connected by an open path.

Proof. Let o be the unit element of V (G) as group. −x denotes the inverse ele-
ment of an element x as group. By (33), it holds that

EPp
[
Cap(Co)

] = ∑
x∈G

EPp
[
P x(TCo = +∞), o ↔ x

]
= ∑

x∈G

EPp
[
P x(TCx = +∞), o ↔ x

]
= ∑

x∈G

EPp
[
P o(TCo = +∞), o ↔ −x

] = cp.
�

Proof of Theorem 1.4(ii). Let p1 < p2. Let p3 > 0 such that

p1 + p3 − p1p3 = p2. (35)

We regard the percolation with parameter p2 as the independent union of percola-
tion with parameter p1 and percolation with parameter p3.

Let Ci
o, i = 1,2,3, be the open clusters containing o. Then,

EPp2
[
Cap

(
C2

o

)] = EPp1
[
EPp3

[
Cap

(
C1

o ∪ C3
o

)]]
.

By this, (32), (34), and Pp1(C
1
o = {o}) = (1 − p1)

�G , we have that

cp2 − cp1 = EPp1
[
EPp3

[
Cap

(
C1

o ∪ C3
o

)] − Cap
(
C1

o

)]
≥ EPp1

[
EPp3

[
Cap

(
C1

o ∪ C3
o

)] − Cap
(
C1

o

)
,C1

o = {o}]
≥ (1 − p1)

�G(cp3 − c0).

(36)
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On the other hand, by (22),

EP̃ o,p [Un] − EP o[Rn]
n

≥ δ

�G

EP o[Ln]
n

.

By (24) and Theorem 1.3,

cδ − c0 = lim
n→∞

δ

�G

P o,o

(
{To = +∞} ∩ ⋃

y∈N (o)

{
Ty = T ′

y = +∞})
.

By the assumption that G is transient,

lim inf
δ→0

cδ − c0

δ
≥ 1

�G

P o,o

(
{To = +∞} ∩ ⋃

y∈N (o)

{
Ty = T ′

y = +∞})
> 0.

Now (4) follows from (36) and (35). �

Proof of Theorem 1.4(iii). This is obtained by a combination of two results.
By the proof of Lawler (1996, Proposition 2.5.1), there exists a constant cd such

that for every non-empty subset A of Zd ,

Cap(A) ≥ cd |A|1−2/d .

By (34) and this,

cp ≥ cdEPp
[|C0|1−2/d]

.

By Fitzner–van der Hofstad (2017, Corollary 1.3 and (1.8)), if d ≥ 11,

Ppc(Zd )

(|C0| > n
) � n−1/2,

EPp
[|C0|1−2/d] = d − 2

d

∑
n≥1

n−2/d
Pp

(|C0| > n
)
.

By the monotone convergence theorem,

lim
p→pc

EPp
[|C0|1−2/d] = d − 2

d

∑
n≥1

n−2/d
Ppc

(|C0| > n
)
.

Since n−2/d
Ppc(|C0| > n) � n−(1/2+2/d) and 1/2 + 2/d < 1,∑

n≥1

n−2/d
Ppc

(|C0| > n
) = +∞.

Thus, we have the assertion. �

Remark 4.3. Two random variables −|Co| and P o(TCo = +∞) are both decreas-
ing random variables under Pp . Then, by the FKG inequality,

EPp
[(−|Co|)P o(TCo = +∞)

] ≥ EPp
[(−|Co|)]P̃ o,p(TCo = +∞).

Hence, we have the following upper bound for cp:

cp ≤ EPp
[|Co|]P̃ o,p(TCo = +∞) < EPp

[|Co|]P o(To = +∞).
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5 Finite modification and fluctuation

In this section, Theorems 1.5 and 1.6 are shown. We first deal with finite modifi-
cations of graphs.

Let the Hammmersley critical probability

pH(G) := inf
{
p ∈ [0,1] : Pp

(|Cx | = +∞)
> 0

}
, x ∈ V (G).

This value does not depend on the choice of x.

Lemma 5.1.

(i) There are two positive constants C and c such that for any vertex x of G′
and n ≥ 1,

P
G′
p

(|Cx | > n
) ≤ C exp(−cn).

(ii)

pH(G) = pT (G) = pH

(
G′) = pT

(
G′).

Proof. Let φ : G \ D → G′ \ D′ be a graph isomorphism.
(i) There is nothing to show if p = 0. So we assume that p > 0. Let

E(G \ D) := {{x, y} ∈ E(G) : x, y ∈ G \ D
}

and

E
(
G′ \ D′) := {{x, y} ∈ E

(
G′) : x, y ∈ G′ \ D′}.

Now we can decompose {|Cx | > n} as follows:{|Cx | > n
} = ⋃

ω∈{0,1}E(G′)\E(G′\D′)
{ω} × A(ω),

where A(ω) ⊂ {0,1}E(G′\D′). Hence,

P
G′
p

(|Cx | > n
) ≤ (

max{p,1 − p})|E(G′)\E(G′\D′)|

× ∑
ω∈{0,1}E(G′)\E(G′\D′)

P
G′\D′
p

(
A(ω)

)
,

where we denote the Bernoulli measure with parameter p on {0,1}E(G′\D′) by

P
G′\D′
p .
Let O1 be the event that all edges of E(G) \ E(G \ D) are open. By identifying

G \ D and G′ \ D′,

P
G′\D′
p

(
A(ω)

) = P
G
p (O1 × A(ω))

p|E(G)\E(G\D)| .
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Fix a vertex z of D. Then,

O1 × A(ω) ⊂ {|Cz| > n − ∣∣D′∣∣}.
Hence,

P
G′
p

(|Cx | > n
) ≤ (max{p,1 − p})|E(G′)\E(G′\D′)|

p|E(G)\E(G\D)| P
G
p

(|Cz| > n − ∣∣D′∣∣).
By this and Antunović and Veselić (2008), we have the assertion.

(ii) By (i), pH(G) ≤ pH(G′) = pT (G′). By Antunović and Veselić (2008), we
also have pH(G) = pT (G). Assume p > pH(G) = pT (G). Then, by using the fact
that the exterior boundary of D′ is finite and classifying any infinite self-avoiding
paths of G by the last exit point from D, we have that for some x in the exterior
boundary of D′,

P
G′
p

(|Cx | = +∞) ≥ P
G
p

(
there is an infinite path from φ−1(x) in G \ D

)
> 0.

Hence, p > pH(G′) = pT (G′). Since p is taken arbitrarily, pH(G) ≥ pH(G′). �

Proof of Theorem 1.5. Let G′ be a finite modification of G. Let φ : G \ D →
G′ \ D′ be a graph isomorphism. In this proof, constants (denoted by C, c etc.)
depend only on G and G′.

Let o be a vertex of G′. Here D(k) and D′(k) denotes the k-neighborhoods of
D in G, and D′ in G′, respectively.

(i) First, we give a rough idea of proof. If the random walk exits a large ball con-
taining D′, then, with high probability it does not return D′ again and the behavior
of the random walk is identical with the behavior of the simple random walk on G.

Let

T
(n)
D′ := inf

{
i > TBG′ (o,n)c : Si ∈ D′}.

Fix m > 4N0. Let x be a vertex of G′ such that dG′(x, o) > 2m + diam(D′).
Then, by Theorem 1.3,

lim
n→∞

Un

n
= cG,p, P

φ−1(x)
G ⊗ P

G
p -a.s.

This implies that

lim
n→∞

Un

n
= cG,p, P

φ−1(x)
G ⊗ P

G
p -a.s. on {TD = +∞} × {

D � G \ D(m)
}
.

By this and the definition of G,

lim
n→∞

Un

n
= cG,p, P x

G′ ⊗ P
G′
p -a.s. on {TD′ = +∞} × {

D′
�G′ \ D′(m)

}
.
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By this and the strong Markov property,

lim
n→∞

UTB
G′ (o,3m)c ,n

n − TBG′ (o,3m)c
= cG,p,

P o
G′ ⊗ P

G′
p -a.s. on

{
T

(3m)
D′ = +∞} × {

D′
� G′ \ D′(m)

}
.

Here and henceforth, we let

UTB
G′ (o,3m)c ,n

n − TBG′ (o,3m)c
:= 0, if n ≤ TBG′ (o,3m)c .

It holds that

Un = U0,m + Um,n −
∣∣∣∣( ⋃

i∈[0,m]
CSi

)
∩

( ⋃
i∈[m,n]

CSi

)∣∣∣∣, 0 ≤ m ≤ n.

By using the transience of G′,

P
G′
p (TBG′ (o,3m)c < +∞) = 1.

Therefore, for each m,

lim
n→∞

∣∣∣∣Un

n
−

UTB
G′ (o,3m)c ,n

n − TBG′ (o,3m)c

∣∣∣∣ = 0, P o
G′ ⊗ P

G′
p -a.s.

Therefore,

lim
n→∞

Un

n
= cG,p, P o

G′ ⊗ P
G′
p -a.s. on

{
T

(3m)
D′ = +∞} × {

D′
�G′ \ D′(m)

}
.

By using the transience of G′, we have that

lim
m→∞P o

G′
(
T

(3m)
D′ = +∞) = 1.

By noting that p < pT (G) = pT (G′) and the finiteness of D and D′,

lim
m→∞P

G′
p

(
D′

�G′ \ D′(m)
) = lim

m→∞P
G
p

(
D � G \ D(m)

) = 1.

Since the event {T (3m)
D′ = +∞} × {D′

� G′ \ D′(m)} is increasing with respect to
m, we have (5).

Now we show (6).

Lemma 5.2. Assume that G′ satisfies

lim
k→∞ sup

x,y∈G′
P x

G′(k < Ty < +∞) = 0, (37)

and {|Cx | : x ∈ G′} are uniformly integrable with respect to Pp . Then,

lim
n→∞ sup

x∈G′
E

Pp

G′
[|Cx |P x

G′(n < TCx < +∞)
] = 0.
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The assumption of uniform integrability above is satisfied due to Lemma 5.1.
Since G is vertex-transitive and satisfies V (d) for some d > 2, by noting Woess
(2000, Corollary 14.5), the heat kernel of G satisfies the Nash inequality of order
d/2 > 1. By using the fact that G′ is roughly isometric to G and the stability of the
Nash inequality under rough isometries, the heat kernel of G′ satisfies the Nash
inequality of order d/2. Hence, (37) holds.

Proof. It follows that for each x ∈ G′,

E
Pp

G′
[|Cx |P x

G′(n < TCx < +∞)
]

≤ sup
x∈G′

E
(
G′Pp)

[|Cx |2]
sup
x∈G′

E
Pp

G′
[|Cx |P x

G′(n < TCx < +∞)
]
.

Now the assertion follows from this and the assumption of uniform integrability. �

Let ε > 0. Then, by Lemma 5.2, there is m0 such that for some (or equivalently
any) x ∈ G,

E
Pp

G

[|Cx |P x
G(m0 < TCx < +∞)

] + sup
y∈G′

E
Pp

G′
[|Cy |P y

G′(m0 < TCy < +∞)
]

≤ ε,

(38)

and,

E
Pp

G

[|Cx |, |Cx | ≥ m0/2
] + sup

y∈G′
E

Pp

G′
[|Cy |, |Cy | ≥ m0/2

] ≤ ε. (39)

Furthermore, the structure of G′ \ B(o,m0) is the same as a subgraph of G.
By Kumagai (2014, Proposition 4.3.2), there is n0 > 2m0 such that for any

k ≥ n0

P o
G′

(
Sk ∈ BG′(o,2m0)

) ≤ ε.

Then, for any n > n0,∣∣∣∣∣Ẽo,p

G′ [Un] −
n∑

k=0

E
Pp

G

[|Cx |P x
G(k < TCx )

]∣∣∣∣∣
≤

n∑
k=0

∑
y

P o
G′(Sk = y)

× ∣∣EPp

G′
[|Cy |P y

G′(TCy > n − k)
] − E

Pp

G

[|Cx |P x
G(TCx > n − k)

]∣∣
≤ (

n0 + (n − n0)ε + m0
)(

sup
y∈G′

E
Pp

G′
[|Cy |] + E

Pp

G

[|Cx |]) (40)
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+
n−m0∑
k=n0

∑
y /∈BG′ (o,2m0)

P o
G′(Sn = y)

× ∣∣EPp

G′
[|Cy |P y

G′(n − k < TCy )
] − E

Pp

G

[|Cx |P x
G(n − k < TCx )

]∣∣.
By (38), it follows that for any y /∈ B(o,2m0) and l > m0,∣∣EPp

G′
[|Cy |P y

G′(l < TCy )
] − E

Pp

G

[|Cx |P x
G(l < TCx )

]∣∣
≤ 2ε + ∣∣EPp

G′
[|Cy |P y

G′(m0 < TCy )
] − E

Pp

G

[|Cx |P x
G(m0 < TCx )

]∣∣. (41)

By the assumption of finite modification, If y /∈ BG′(o,2m0) and a connected
subset A such that y ∈ A and |A| ≤ m0/2, then,

P
y

G′(m0 < TA) = P
y
G(m0 < TA).

Here we have identified vertices on G′ \ BG′(o,2m0) and G. Hence,

E
Pp

G′
[|Cy |P y

G(m0 < TCy ), |Cy | ≤ m0/2
] = E

Pp

G

[|Cx |P y
G(m0 < TCx ), |Cx | ≤ m0/2

]
.

By this and (39), it holds that∣∣EPp

G′
[|Cy |P y

G(m0 < TCy )
] − E

Pp

G

[|Cx |P x
G(m0 < TCx )

]∣∣ ≤ 2ε. (42)

By (40), (41) and (42), for some constant C,

lim sup
n→∞

1

n

∣∣∣∣∣Ẽo,p

G′ [Un] −
n−1∑
k=0

E
Pp

G

[|Cx |P x
G(k < TCx )

]∣∣∣∣∣ ≤ Cε.

Since ε > 0 has been taken arbitrarily,

lim sup
n→∞

1

n

∣∣∣∣∣Ẽo,p

G′ [Un] −
n−1∑
k=0

E
Pp

G

[|Cx |P x
G(k < TCx )

]∣∣∣∣∣ = 0.

Since

lim
k→∞E

Pp

G

[|Cx |P x
G(k < TCx < +∞)

] = 0,

we have (6).
Now we recall the following result by Brézis–Lieb (1983).

Theorem 5.3. Let (X,B,μ) be a measure space and (fn)n≥1, f be Lp-integrable
functions on X for some p ≥ 1. Assume that fn → f μ-a.e. and ‖fn‖p → ‖f ‖p .
Then, ‖fn − f ‖p → 0.

(7) follows from this, (5) and (6).
(ii) Let θ = d/2 > 2. Assume that D′ is contained in BG′(o,N0).
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By (16),

Ẽ
o,p

G′ [Un] = ∑
k≤n

∑
y

P o
G′(Sk = y)E

Pp

G′
[|Cy |P y

G′(TCy > n − k)
]
.

Hence,

Ẽ
o,p

G′ [Un − Un−1]
= Ẽ

o,p

G′
[|CSn |

] − ∑
y∈G′

∑
k≤n−1

P o
G′(Sk = y)E

Pp

G′
[|Cy |P y(TCy = n − k)

]
.

We compare Ẽ
o,p

G′ [Un − Un−1] with E
Pp

G [|Cx |P x(TCx = +∞)]. Our strategy is

to compare Ẽ
o,p

G′ [|CSn |] with E
Pp

G [|Cx |] first and compare∑
y∈G′

∑
k≤n−1

P o
G′(Sk = y)E

Pp

G′
[|Cy |P y(TCy = n − k)

]
with E

Pp

G [|Cx |P x(TCx < +∞)] second.
We first show that∣∣Ẽo,p

G′
[|CSn |

] − E
Pp

G

[|Cx |]∣∣ ≤ O
(
n−(θ−1)). (43)

It holds that

Ẽ
o,p

G′
[|CSn |

] − E
Pp

G

[|Cx |] = ∑
y∈G′

P o
G′(Sn = y)

(
E

Pp

G′
[|Cy |] − E

Pp

G

[|Cx |]).
If y ∈ G′ \ BG′(o,N0 + k), then, by the assumption that G \ D and G′ \ D′ are

isomorphic,

E
Pp

G′
[|Cy |, |Cy | < k

] = E
Pp

G

[|Cx |, |Cx | < k
]
,

and,

P
G′
p

(|Cy | ≥ k
) = P

G
p

(|Cx | ≥ k
)
.

Hence, by using Antunović and Veselić (2008) again,

sup
y∈G′\BG′ (o,N0+k)

∣∣EPp

G′
[|Cy |] − E

Pp

G

[|Cx |]∣∣ ≤ CP
G
p

(|Cx | ≥ k
) ≤ C exp(−ck).

Hence,∣∣Ẽo,p

G′
[|CSn |

] − E
Pp

G

[|Cx |]∣∣
≤

(
sup
y∈G′

E
Pp

G′
[|Cy |] + E

Pp

G

[|Cx |])P o
G′

(
Sn ∈ BG′(o,N0 + k)

)
+ ∑

y∈G′\BG′ (o,N0+k)

P o
G′(Sn = y)

∣∣EPp

G′
[|Cy |] − E

Pp

G

[|Cx |]∣∣
≤ c

(∣∣BG′(o,N0 + k)
∣∣n−θ + exp(−ck)

)
.

If we let k = (logn)2, then, (43) follows.
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We then compare E
Pp

G [|Cx |P x(TCx < +∞)] with∑
k≤n−1

P o
G′(Sk = y)E

Pp

G′
[|Cy |P y(TCy = n − k)

]
.

We will show they tend to be arbitrarily close to each other as n → ∞.
By Woess (2000, Theorem 14.12), the Gaussian heat kernel upper bound holds,

that is,

P x
G′(Sn = y) + P x

G′(Sn+1 = y) ≤ c

nd/2 exp
(
−c

dG′(x, y)2

n

)
.

By this and Lemma 5.1, it holds that for any y ∈ G′ and n > k ≥ 1,∣∣EPp

G′
[|Cy |P y(TCy = n − k)

] − E
Pp

G

[|Cx |P x(TCx = n − k)
]∣∣ ≤ C(n − k)−θ ,

and,

P o
G′(Sk = y) ≤ C

kθ
exp

(
−c

dG′(o, y)2

k

)
.

Hence, by using the fact that

n−1∑
k=1

(
1

k(n − k)

)θ

= O
(
n−(θ−1)),

we have that ∑
y∈BG′ (o,N0+(logn)2)

∑
k≤n−1

P o
G′(Sk = y)

× ∣∣EPp

G′
[|Cy |P y(TCy = n − k)

] − E
Pp

G

[|Cx |P x(TCx = n − k)
]∣∣

≤ C
|BG′(o,N0 + (logn)2)|

nθ−1 .

If y ∈ G′ \ BG′(o,N0 + (logn)2) and k ≥ n − dG′(o, y) + N0, then, by the
exponential decay of the size of the open cluster,∣∣EPp

G′
[|Cy |P y(TCy = n−k)

]−E
Pp

G

[|Cx |P x(TCx = n−k)
]∣∣ ≤ 2C exp

(−c(logn)2)
.

Hence,∑
y∈G′\BG′ (o,N0+(logn)2)

∑
n−dG′ (o,y)+N0≤k≤n−1

P o
G′(Sk = y)

× ∣∣EPp

G′
[|Cy |P y(TCy = n − k)

] − E
Pp

G

[|Cx |P x(TCx = n − k)
]∣∣

≤ C exp
(−c(logn)2) ∑

y∈G′\BG′ (o,N0+(logn)2)

∑
n−dG′ (o,y)+N0≤k≤n−1

P o
G′(Sk = y)

≤ Cn exp
(−c(logn)2)

.
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Finally, we take the sum over k less than n − dG′(o, y) + N0.∑
y∈G′\BG′ (o,N0+(logn)2)

∑
k≤n−dG′ (o,y)+N0

P o
G′(Sk = y)

× ∣∣EPp

G′
[|Cy |P y(TCy = n − k)

] − E
Pp

G

[|Cx |P x(TCx = n − k)
]∣∣

≤ ∑
y∈BG′ (o,N0+n)\BG′ (o,N0+(logn)2)

∑
1≤k≤n−dG′ (o,y)+N0

(
k(n − k)

)−θ

× exp
(
−c

dG′(o, y)2

k

)
.

≤ ∑
y∈BG′ (o,N0+n)\BG′ (o,N0+(logn)2)

n−(θ−1) exp
(
−c

dG′(o, y)2

n − dG′(o, y) + N0

)

≤ Cn−(θ−1)
∫ N0+(logn)2

N0+n
td exp

(
−c

t2

n + N0 − t

)
dt = Cn−(θ−1).

Thus, it holds that∣∣∣∣EPp

G

[|Cx |P x(TCx < +∞)
] − ∑

y∈G′

∑
k≤n−1

P o
G′(Sk = y)E

Pp

G′
[|Cy |P y(TCy = n − k)

]∣∣∣∣
= O

(
n−(θ−1)).

By this and (43),∣∣Ẽo,p

G′ [Un − Un−1] − E
Pp

G

[|Cx |P x(TCx = +∞)
]∣∣ ≤ O

(
n−(θ−1)).

Hence, ∣∣Ẽo,p

G′ [Un] − cG,pn
∣∣ = O

(
n2−θ )

.

Recall θ = d/2 > 2. Now we have assertion (ii). �

Remark 5.4.

(i) We do not yet know about the value of limn→∞ Ẽ
x,p

G′ [Un] − Ẽ
x,p
G [Un].

(ii) In Okamura (2018), there is an analog of Theorem 1.5 in a continuous
framework. The corresponding proof in Okamura (2018) is different from here.
It does not use the last exit decomposition as in (16).

We now consider fluctuation of {Ẽp[Un]}n. Let Z̃d = (Zd,E(Z̃d)) be the graph
whose vertices and edges are Z

d and {{x, y} : |x − y|∞ = 1}. Z̃d is roughly iso-
metric to Z

d .
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Lemma 5.5. For any non-empty finite subset A ⊂ Z
3,

CapZ3(A) < Cap
Z̃3(A). (44)

Proof. Let

E
(
Z

3′) := E
(
Z̃

3) \ E
(
Z

3) = {{x, y} : |x − y|∞ = 1 < |x − y|}.
Then, Z3′ := (Z3,E(Z3′

)) is an infinite connected vertex-transitive graph and sat-
isfies V (d) for some d > 2. Hence, by Woess (2000, Corollary 4.16), (Z3,E(Z3′

))

is transient. Hence,

inf
{ ∑

{x,y}∈E(Z3′
)

(
f (x) − f (y)

)2 : f = 1 on A, supp(f ) is compact
}

> 0.

By using this and (31),

Cap
Z̃3(A) = inf

{ ∑
{x,y}∈E(Z̃3)

(
f (x) − f (y)

)2 : f = 1 on A, supp(f ) is compact
}

≥ inf
{ ∑

{x,y}∈E(Z3)

(
f (x) − f (y)

)2 : f = 1 on A, supp(f ) is compact
}

+ inf
{ ∑

{x,y}∈E(Z3′
)

(
f (x) − f (y)

)2 : f = 1 on A, supp(f ) is compact
}

> inf
{ ∑

{x,y}∈E(Z3)

(
f (x) − f (y)

)2 : f = 1 on A, supp(f ) is compact
}

= CapZ3(A). �

Lemma 5.6. For any p ∈ [0,pT (Z̃3)),

cZ3,p < c
Z̃3,p.

Proof. Z̃
d also has a structure of a Cayley graph of Zd with a generating set dif-

ferent from the nearest-neighbor Zd . By (34), it suffices to show that

E
Pp

Z3

[
Cap(C0)

]
< E

Pp

Z̃3

[
Cap(C0)

]
.

We regard Bernoulli bond percolation on Z
3 as Bernoulli bond percolation on Z̃

3

such that all of edges {{x, y} : |x −y|∞ = 1 < |x −y|} declared to be closed. Then,
by (44),

E
Pp

Z3

[
CapZ3(C0)

]
< E

Pp

Z3

[
Cap

Z̃3
(C0)

] ≤ E
Pp

Z̃3

[
Cap

Z̃3(C0)
]
. �
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Proof of Theorem 1.6. As an outline level, we follow the proof of Okamura
(2014, Theorem 1.3), but here we need to deal with unboundedness of

⋃
i≤n CSi

.
Let p < pT (Z̃3). Let G1 := Z

3. For a strictly increasing sequence of natural
numbers (Mk)k , let Gk+1 := G(M1, . . . ,Mk) be the graph such that Mi ≤ |x|∞ ≤
Mi+1 has the structure of Z̃3 if i < k is odd, and, has the structure of Z3 if i < k is
even, and, Mk ≤ |x|∞ has the structure of Z̃3 if k is odd, and, has the structure of
Z

3 if k is even. Here M0 := 0. Let G∞ be the graph such that Mi ≤ |x|∞ ≤ Mi+1
has the structure of Z̃3 if i is odd, and, has the structure of Z3 if i is even. The set
of vertices of G∞ is Z3, and, it is a subgraph of Z̃3. All Gk, k ≤ +∞, are roughly
isometric to Z

3.
We now specify (Mk)k . We define a strictly increasing sequence (nk)k . Let

n0 := 1. Let nk > exp(nk−1) such that∣∣∣∣ Ẽ0,p
Gk

[Unk
]

nk

− c

∣∣∣∣ ≤ exp(−nk−1). (45)

In the above, c = cZ3,p if k is odd, and, c = c
Z̃3,p if k is even. We assume that

Mk > nk + exp(nk) for each k.
If k is sufficiently large, then, by the exponential decay of the size of the cluster,

P
Gk
p

(( ⋂
x∈B∞(0,nk)

{|Cx | ≤ exp(nk)
})c)

≤ exp(−nk).

Let i > k. Since the event
⋂

x∈BGk,∞(0,nk)
{|Cx | ≤ exp(nk)} is determined only by

the state of edges in BGi,∞(0, nk)(= BGk,∞(0, nk)), we have that

E
Pp

Gk

[
Unk

,
⋂

x∈BGk,∞(0,nk)

{|Cx | ≤ exp(nk)
}]

= E
Pp

Gi

[
Unk

,
⋂

x∈BGi,∞(0,nk)

{|Cx | ≤ exp(nk)
}]

.

Hence, if i ≥ k, then,∣∣Ẽ0,p
Gi

[Unk
] − Ẽ

0,p
Gi+1

[Unk
]∣∣ = ∣∣Ẽ0,p

Gi

[
Unk

,
⋃

x∈B∞(0,nk)

{|Cx | > exp(nk)
}]

− Ẽ
0,p
Gi+1

[
Unk

,
⋃

x∈B∞(0,nk)

{|Cx | > exp(nk)
}]∣∣

≤ nk exp(−ni).

It holds that for each fixed k,

lim
i→∞ Ẽ

0,p
Gi

[Unk
] = Ẽ

0,p
G∞[Unk

].
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Hence, ∣∣Ẽ0,p
Gk

[Unk
] − Ẽ

0,p
G∞[Unk

]∣∣ ≤ nk

∑
i≥k

exp(−ni).

By this and (45), ∣∣∣∣ Ẽ0,p
G∞[Unk

]
nk

− c

∣∣∣∣ ≤ ∑
i≥k−1

exp(−ni).

In the above, c = cZ3,p if k is odd, and, c = c
Z̃3,p if k is even. Thus,

lim inf
n→∞

Ẽo,p[Un]
n

< lim sup
n→∞

Ẽo,p[Un]
n

(46)

holds for G = G∞, x = 0 and p < pT (Z̃3).
We then replace pT (Z̃3) above with pT (G). We will show that for a (Mk)k

suitably chosen, pT (G∞) = pT (Z̃3). Since G∞ is a subgraph of Z̃3, pT (G∞) ≥
pT (Z̃3). Now it suffices to show

pT (G∞) ≤ pT

(
Z̃

3)
. (47)

Let p > pT (Z̃3). Since, it holds that pT (Z̃3) = pH(Z̃3) by Antunović and
Veselić (2008), it holds that for each k, there exists a vertex xk such that |x|∞ =
M2k−1 + 1, and furthermore, with positive probability under PG2k

p , there exists an
infinite path which does not hit any vertex of B∞(0,M2k−1).

Denote by G2k \ B∞(0,M2k−1) the graph obtained by delating all edges of
B∞(0,M2k−1) from G2k . It is an infinite connected simple graph. It holds that

E
Pp

G2k\B∞(0,M2k−1)

[|Cxk
|] = +∞.

Hence, if M2k is sufficiently large, then, it holds that

E
Pp

G2k∩B∞(0,M2k)

[|Cxk
|] ≥ E

Pp

G2k∩B∞(0,M2k)\B∞(0,M2k−1)

[|Cxk
|]

≥
M2k−M2k−1∑

l=M2k−1

P
G2k\B∞(0,M2k−1)
p

(|Cxk
| > l

)
≥ p−2d(1+M2k−1).

By repeating this argument, and by noting

G2k ∩ B∞(0,M2k) = Gi ∩ B∞(0,M2k), i ≥ 2k,

E
Pp

G∞
[|Cxk

|] = +∞.

Hence, pT (G∞) ≤ p and hence (47) holds. Thus (46) holds for G = G∞, x = 0
and p < pT (G).
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Finally, we show the almost sure equalities of (8). By (5), for each k, there exists
lk such that

P̃
0,p
Gk

(∣∣∣∣Ulk

lk
− lim

n→∞
Ẽ

0,p
Gk

[Un]
n

∣∣∣∣ ≥ 1

2k

)
≤ 1

4k
.

If we take a sufficiently large Mk > lk for each k, then,

P
Gk
p

(
B∞(0, lk) ↔ B∞(0,Mk)

c) ≤ 1

4k
.

It holds that

P̃
0,p
G∞

(∣∣∣∣Ul2k

l2k

− c
Z̃3,p

∣∣∣∣ >
1

2k

)
≤ 1

4k
,

and,

P̃
0,p
G∞

(∣∣∣∣Ul2k+1

l2k+1
− cZ3,p

∣∣∣∣ >
1

2k+1

)
≤ 1

4k+1 .

Hence,

lim
k→∞

Ul2k

l2k

= c
Z̃3,p > cZ3,p = lim

k→∞
Ul2k+1

l2k1

, P̃
0,p
G∞ -a.s.

Thus, the proof of (8) is completed. �

Remark 5.7. As in the proof of Okamura (2014, Theorem 1.3), we can replace
Z

3 and Z̃
3 with the regular trees of degrees 3 and 4, respectively.

6 Two-dimensional lattice

This section is devoted to consider the case that G = Z
2.

Proof of Theorem 1.8(a)–(c). (a) Jain and Pruitt (1970, Lemma 3.1) and
Dvoretzky and Erdös (1951, (2.15)) imply that

EP 0[Rn] = n

logn
π + O

(
n

(logn)2

)
.

By (25) and (22),

Ẽ0,p[Un − Rn] = O

(
n

(logn)2

)
.

Now (10) follows from these estimates.
(b)

Varx,p(Un) ≤ 2
(
Varx(Rn) + Varx,p(Un − Rn)

)
. (48)
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By (21), the Cauchy–Schwarz inequality, and (26),

Varp(Un − Rn) ≤ EP 0[
L2

n

]
EPp

[|C0|2] = O

(
n2

(logn)4

)
. (49)

By Jain and Pruitt (1972, Theorem 4.2),

Var(Rn) = O

(
n2

(logn)4

)
. (50)

(11) follows from (48) (49), and (50).
(c) By applying an interpolation argument for Un as in the proof of Jain and

Pruitt (1972, Theorem 3.1), the almost sure convergence of (12) follows from (11)
and (10).

Now we show the Lq -convergence for 1 ≤ q < +∞. We can assume that q is
an integer without loss of generality. If we show that for any q ,

lim
n→∞

(
logn

n

)q

Ẽp[
Uq

n

] = πq, (51)

then, {((logn)Un/n)q}n are uniformly integrable for any q . Now for each q , the
Lq -convergence follows from this, the P̃ p-a.s. convergence of (logn)Un/n to π ,
and the fact that Un ≥ 0.

The rest of this proof are devoted to show (51). First, we show the following:

Lemma 6.1. We have that3

lim
n→∞

(
logn

n

)q

EP 0[
Rq

n

] = πq. (52)

Proof. By Dvoretzky and Erdös (1951, Theorem 4),

lim
n→∞

logn

n
Rn = π, P 0-a.s. (53)

By this and Fatou’s lemma,

lim inf
n→∞

(
logn

n

)q

EP 0[
Rq

n

] ≥ πq.

Hence, it suffices to show that

lim sup
n→∞

(
logn

n

)q

EP 0[
Rq

n

] ≤ πq.

Since

EP 0[
Rq

n

] = ∑
x1,...,xq∈[−n,n]2

P 0
( ⋂

1≤i≤q

{Hxi
≤ n}

)
,

3The corresponding result for the volume of the Wiener sausage follows from Le Gall (1986b,
Corollarie 2-2).
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it suffices to show that

lim sup
n→∞

(
logn

n

)q q∑
r=1

∑
x1,...,xr∈[−n,n]2;distinct

P 0
( ⋂

1≤i≤r

{Hxi
≤ n}

)
≤ πq. (54)

Let 1 ≤ r ≤ q . Let �r be the permutation group on {1,2, . . . , r}. By the Markov
property and the translation invariance, if x1, . . . , xr are distinctive,

P 0
( ⋂

1≤i≤r

{Hxi
≤ n}

)
= ∑

k1,...kr∈[0,n];distinct

P 0
( ⋂

1≤i≤r

{Hxi
= ki}

)

= ∑
σ∈�r

∑
1≤kσ(1)<···<kσ(r)≤n

P 0
( ⋂

1≤i≤r

{Hxi
= ki}

)
.

Let σ(0) = 0 and k0 = 0. By the Markov property,∑
σ∈�r

∑
1≤kσ(1)<···<kσ(r)≤n

P 0
( ⋂

1≤i≤r

{Hxi
= ki}

)

≤ ∑
σ∈�r

∑
1≤kσ(1)<···<kσ(r)≤n

q∏
i=1

P 0(Hxσ(i)−xσ(i−1)
= kσ(i) − kσ(i−1)).

Hence,∑
x1,...,xr∈[−n,n]2;distinct

P 0
( ⋂

1≤i≤r

{Hxi
≤ n}

)

≤ ∑
σ∈�r

∑
1≤kσ(1)<···<kσ(r)≤n

∑
x1,...,xr∈[−n,n]2

q∏
i=1

P 0(Hxσ(i)−xσ(i−1)
= kσ(i) − kσ(i−1))

≤ ∑
σ∈�r

∑
1≤kσ(1)<···<kσ(r)≤n

q∏
i=1

∑
x∈Z2\{0}

P 0(Hx = kσ(i) − kσ(i−1))

= ∑
k1,...kr∈[1,n];k1+···+kr≤n

r∏
i=1

∑
x∈Z2\{0}

P 0(Hx = ki).

Let

f (k) = ∑
x∈Z2\{0}

P 0(Hx = k)

and

g(k) = ∑
x∈Z2

P 0(Hx = k).
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If k ≥ 1, then, f (k) = g(k). We have that f (0) = 0 and g(0) = 1. By taking sum
over r ,

q∑
r=1

∑
k1,...kr∈[1,n];k1+···+kr≤n

r∏
i=1

f (ki) ≤ ∑
k1,...kq∈[0,n];k1+···+kq≤n

q∏
i=1

g(ki)

≤
( ∑

x∈Z2

P 0(Hx ≤ n)

)q

= EP 0[Rn]q .

By Dvoretzky and Erdös (1951, Theorem 1),

lim
n→∞

logn

n
EP 0[Rn] = π.

Now (54) holds. �

Now we return to the proof of part (c) of Theorem 1.8. By Lemma 6.1, in order
to show (51), it suffices to show that

lim
n→∞

(
logn

n

)q

Ẽ0,p[
(Un − Rn)

q] = 0. (55)

By (21) and the Hölder inequality,

Ẽ0,p[
(Un − Rn)

q]
(56)

≤ EP 0
[
EPp

[( ∑
x∈∂Rn

|Cx |
)q]]

(57)

≤ EP 0[
Lq

n

]
EPp

[|C0|q]
≤ EPp

[|C0|q]
EP 0

[(
Ln

Rn

)2q]1/2
EP 0[

R2q
n

]1/2
. (58)

By (27) and the dominated convergence theorem,

lim
n→∞EP 0

[(
Ln

Rn

)2q]
= 0.

Now (55) follows from this, (52) and (56). �

Remark 6.2. We can give an alternative proof of the a.s. convergence part of
part (c) of Theorem 1.8 as follows. Since ∂Rn surrounds the origin and Ln =
O(n/(logn)2), by using the isoperimetric inequality for subsets of Z2, there is a
path from the origin to ∂Rn whose length is of order O(n1/2/ logn). Hence, we
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can apply Fontes–Newman (1983, Theorem 4),4

1

Ln

∑
x∈∂Rn

|Cx | < +∞, Pp-a.s.

Therefore, by using this, (21) and (53),

lim
n→∞

Un

Rn

= 1, Pp-a.s.

Hence, we have the a.s. convergence part of (12).

Proposition 6.3 (Volume of intersections). Let S1 and S2 be two independent
simple random walks on Z

2 starting at 0. Let

In :=
∣∣∣∣( ⋃

i∈[0,n]
CS1

i

)
∩

( ⋃
i∈[0,n]

CS2
i

)∣∣∣∣.
Let

fp(n) := EP 0,0⊗Pp [In], 0 ≤ p < pT

(
Z

2)
.

Then,

lim
n→∞

(logn)2

n

(
fp(n) − f0(n)

) = 0. (59)

Remark 6.4. The fact that Un1,n2 and Un3,n4 are not independent for n1 < n2 ≤
n3 < n4 will be an obstacle also for the proof of the estimate corresponding to Le
Gall (1986a, (6.u)). However, the situation is different in the deterministic case.
In the case, we can show the statement corresponding to Theorem 1.8(c) by using
the statement corresponding to Proposition 6.3, as in the proof of Le Gall (1986a,
Lemme 6.2). See the Appendix for details.

Proof. In this proof, if we consider P z for z ∈ R
2, then we take the integer part of

z (i.e. y ∈ Z
2 such that z ∈ y+[0,1)2). By the translation invariance of percolation,

EP x,y⊗Pp [In − I0,n] = ∑
z∈Z2

EPp
[
P 0(TCz ≤ n)2 − P 0(Tz ≤ n)2]

= ∑
z∈Z2

EPp
[
P z(TC0 ≤ n < T0)P

z(TC0 ≤ n)

+ P z(T0 ≤ n)P z(TC0 ≤ n < T0)
]

≤ 2EPp

[ ∑
z∈Z2

∑
x,y∈C0

P z(Tx ≤ n < T0)P
z(Ty ≤ n)

]
.

4Fontes and Newman (1983, Theorem 4) is stated for site percolation, but, as in the proof of
Grimmett–Piza (1997, Lemma 6), it holds for the case of bond percolation.
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Using the Cauchy–Schwarz inequality repeatedly,

(logn)2

n
EPp

[ ∑
z∈Z2

∑
x,y∈C0

P z(Tx ≤ n < T0)P
z(Ty ≤ n)

]

≤
(
EPp

[ ∑
x∈C0

∑
z∈Z2

(logn)2

n
P z(Tx ≤ n < T0)

2
]

× EPp
[|C0|] ∑

z∈Z2

(logn)2

n
P z(T0 ≤ n)2

)1/2
.

(60)

By change of variables,∑
z∈Z2

(logn)2

n
P z(Tx ≤ n < T0)

2 =
∫
R2

(logn)2P x+n1/2z(Tx ≤ n < T0)
2 dz.

Here dz denotes the Lebesgue measure on R
2. As in Le Gall (1986a, Theo-

reme 3.5), let

f2(r) := max{0,− log r} + r−21{r≥1/2}.
Let δ > 0. Then, by the Gaussian heat kernel estimates for the simple random walk
on Z

2,

lim sup
n→∞

(logn)P x+n1/2z(n < T0 ≤ n(1 + δ)
) ≤ log(1 + δ),

lim sup
n→∞

(logn)P n1/2z(T0 ≤ n)P x(T0 ≥ nδ) ≤ f2
(|z|) lim sup

n→∞
P x(T0 ≥ nδ) = 0.

Since δ > 0 is taken arbitrarily, it holds that for each z �= 0,

lim
n→∞(logn)P x+n1/2z(Tx ≤ n < T0) = 0.

We remark that for each z ∈R
2,

(logn)P x+n1/2z(Tx ≤ n < T0) ≤ (logn)P x+n1/2z(Tx ≤ n)

= (logn)P n1/2z(T0 ≤ n) ≤ f2
(|z|)2

.

Now by the dominated convergence theorem, for each x ∈ Z
2,

lim
n→∞

∑
z∈Z2

(logn)2

n
P z(Tx ≤ n < T0)

2 = 0.

By this and p < pT (Z2), we have∑
x∈C0

∑
z∈Z2

(logn)2

n
P z(Tx ≤ n < T0)

2 → 0, Pp-a.s.
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It holds that∑
x∈C0

∑
z∈Z2

(logn)2

n
P z(Tx ≤ n < T0)

2 ≤ |C0|
∫
R2

f2
(|z|)2

dz.

By the dominated convergence theorem,

lim
n→∞EPp

[ ∑
x∈C0

∑
z∈Z2

(logn)2

n
P z(Tx ≤ n < T0)

2
]

= 0. (61)

On the other hand,

(logn)2

n
P z(Tx ≤ n)2 ≤ 1

n

∑
y∈Z2

f2
(|y|/√n

)2 ≤ C

∫
R2

f2
(|z|)2

dz.

Here C is a positive constant. Hence,

EPp

[ ∑
x∈C0

∑
z∈Z2

(logn)2

n
P z(Tx ≤ n)2

]
≤ CEPp

[|C0|] ∫
R2

f2
(|z|)2

dz < +∞.

By this, (60), and (61), we have (59). �

7 One-dimensional graphs

In this section, we deal with one-dimensional graphs.

Proof of Theorem 1.9. Figure 1 after this proof would facilitate understanding
the following construction.

Construct G = G({an, bn}n) as follows. First, prepare the line graph
(N, {{n,n + 1} : n ∈ N}), and then attach bn new vertices each of which is con-
nected by an edge to each of the vertices an for each n. (Here we assume that N
contains 0.) Suitable choices of values of an and bn will lead the desired result. It
holds that Tan ≥ an → ∞, n → ∞, P 0-a.s. By Woess (2000, Theorem 2.12), G is
recurrent. Hence, Tan < +∞, P 0-a.s.

We define an and bn by induction on n. Assume that ai, bi,1 ≤ i ≤ n − 1, are
given. Let c0 := 0 and ck := ∑

i≤k(ai + bi), 1 ≤ k ≤ n − 1. Then we define an and
bn satisfying that

an > exp
(( ∑

i≤n−1

(ai + bi)

)2)
, (62)

and

bn = the integer part of n−4p−2an. (63)
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(a) It suffices to show that

EPp
[|C0|] < +∞ for any p < 1.

We have that

Pp

(|C0| > cn−1 + l
) ≤ pan−1+l , 0 ≤ l < an,

Pp

(|C0| > cn−1 + l
) ≤ pan, an ≤ l ≤ an + bn.

(63) imply that bnp
an = O(n−2). By this and (62),

EPp
[|C0|] = ∑

n

an+bn∑
l=0

Pp

(|C0| > cn−1 + l
)
< +∞.

(b) Let Vn be the number of open edges adjacent to an. Then,
n∑

i=1

Vi ≥ UTan
− RTan

≥ Vn.

By a large deviation estimate for the sum of the Bernoulli trials,

P̃ 0,p(UTan
> pbn/2) ≥ Pp(Vn > pbn/2)

≥ 1 − exp(−cbnp/2).

By the Borel–Cantelli lemma,

lim inf
n→∞

UTan

bn

≥ p

2
> 0, P̃ 0,p-a.s. (64)

By Kumagai (2014, Lemma 4.1.1(v)) and (62),∑
n

P 0
G

(
Tan > a2

n logan

) ≤ ∑
n

a−2
n (logan)

−1EP 0

G [Tan]

≤ ∑
n

2a−1
n (logan)

−1RG
eff

(
0,G \ [0, an])

= ∑
n

2(logan)
−1 < +∞.

By using this, (63) and the Borel–Cantelli lemma,

P 0(
Tan < Cp(logbn)

2 log logbn infinitely many n
) = 1.

Now (13) follows from this and (64).
(c) Recall (62). By considering the random walk which goes only in the right di-

rection at every time and calculating the probability, we have that for some positive
constant c the following holds for any n:

P 0(Tan = an) ≥
(

2an−(n−1)
∏

i≤n−1

(bi + 2)

)−1
≥ ca−1

n 2−an. (65)
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Using

EPp
[(

Vn − EPp [Vn])2] = p(1 − p)bn,

Ẽ0,p[
(UTan

− RTan
− Vn)

2] ≤
(

1 + ∑
i≤n−1

bi

)2
,

(63) and the Minkowski inequality, we have that the following holds P 0-a.s.:

EPp
[(

UTan
− EPp [UTan

])2]1/2

= EPp
[(

UTan
− RTan

− EPp [UTan
− RTan

])2]1/2

≥ EPp
[(

Vn − EPp [Vn])2]1/2 − Ẽ0,p[
(UTan

− RTan
− Vn)

2]1/2

≥ (
p(1 − p)bn

)1/2 − 1 − ∑
i≤n−1

bi

≥ 1

2

(
p(1 − p)bn

)1/2
.

By this and (65),

Var0,p(Uan) ≥ 1

4
EPp

[(
Vn − EPp [Vn])2]

P 0(Tan = an)

= 1

2
p(1 − p)b2

nP
0(Tan = an)

≥ cn−3p−2an2−an ≥ c
(
2p2)−an.

(14) follows from this. �

Remark 7.1. For the graph G in the above proof, we have the following:

(i)

sup
x∈G

EPp
[|Cx |] = +∞, p > 0.

On the other hand,

EPp
[|Cx |] < +∞, x ∈ G,p ∈ [

0,pT (G)
)
.

an

an+1

Figure 1 Rough figure of the graph G.
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(ii) If p ∈ (0,1/2), then (9) fails for G. Indeed, by (65),

Ẽ0,p[Uan] ≥ Ẽ0,p[UTan
, Tan = an] ≥ EPp [Vn]P 0(Tan = an) ≥ cp

bn

an2an
.

Hence,

(2p)E
P 0 [Ran ]Ẽ0,p[Uan] ≥ c

pan+1

an

bn.

By this, 0 < p < 1/2, (62) and (63),

lim
n→∞(2p)E

P 0 [Ran ]Ẽ0,p[Uan] = +∞.

7.1 Remarks

Theorem 7.2 (One-dimensional case). Assume that p < pT (G). If G = Z, then,
the laws of Un/

√
n under P̃ p converges to the law of max0≤t≤1 Bt − min0≤t≤1 Bt

as n → ∞, where (Bt )t denotes Brownian motion.

If p = 0, then, this follows from Jain and Pruitt (1972, Theorem 6.1).

Proof. By using (21) and ∂Rn = {mini≤n Si,maxi≤n Si}, we have

0 ≤ Un − Rn ≤ |Cmaxi≤n Si
| + |Cmini≤n Si

|. (66)

By the translation invariance of percolation, it holds that

P̃ p(|Cmaxi≤n Si
| > n1/4) = P̃ p(|Cmini≤n Si

| > n1/4) = Pp

(|C0| > n1/4) ≤ 2pn1/4/2.

Hence, by the Borel–Cantelli lemma,

Un − Rn

n1/2 → 0, n → ∞, P̃ p-a.s.

By Jain and Pruitt (1972, Theorem 6.1),

Rn√
n

⇒ max
0≤t≤1

Bt − min
0≤t≤1

Bt, n → ∞, in the law of P 0. �

Remark 7.3. Assume that

sup
x∈G

EPp
[|Cx |] < +∞, (67)

and for any vertex x,

lim
n→∞

logRn

logn
= lim

n→∞
logEP x [Rn]

logn
= α ∈ (0,1), P x -a.s. (68)
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Then, we can show that for any vertex x,

lim
n→∞

logUn

logn
= lim

n→∞
log Ẽx,p[Un]

logn
= α, P̃ x,p-a.s.

By using (22) and (67),

lim
n→∞

log Ẽx,p[Un]
logn

= α.

Now we show that

lim
n→∞

logUn

logn
= α, P̃ x,p-a.s.

In order to show this, it suffices to show that

lim sup
n→∞

logUn

logn
≤ α, P̃ x,p-a.s. (69)

Let ε > 0. Then, by (68), three exists a constant C depending on x such that for
any n ≥ 1,

P̃ x,p(
Un ≥ nα+ε) ≤ sup

z∈G

EPp
[|Cz|]EP x [Rn]

nα+ε
≤ sup

z∈G

EPp
[|Cz|] C

nε/2 .

Hence for sufficiently large integer k,∑
n≥1

P̃ x,p(
Unk ≥ nk(α+ε)) < +∞.

By the Borel–Cantelli lemma,

lim sup
n→∞

Unk

nk(α+ε)
≤ 1, P̃ x,p-a.s.

Since Un is non-decreasing with respect to n,

lim sup
n→∞

Un

nα+ε
≤ 1, P̃ x,p-a.s.

Since ε is taken arbitrarily, we have (69).

It is known that (68) holds for a large class of recurrent fractal graphs. See
Barlow et al. (2008), Kozma and Nachmias (2009), Kumagai and Misumi (2008),
Heydenreich, van der Hofstad and Hulshof (2014). It would be interesting to de-
termine whether (67) holds on any p ∈ [0,pT (G)). This fails for some “singular”
graph G. See Remark 7.1. Let G be a d ≥ 2-dimensional Sierpinski gasket graph,
or, 2-dimensional Sierpinski carpet graph. Bernoulli percolation on such graphs
has been considered by Shinoda (1996, 2002, 2003), Kumagai (1997), Higuchi–
Wu (2008). We conjecture that (67) holds for such fractal graphs.
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8 Positive and negative exponentials

Proof of Theorem 1.10. Since exp(x) ≤ 1 + x + x2 exp(x)/2 holds for x ≥ 0, as
in Hamana (2001, (3.1)), it holds that for each n ≥ 1,

�p(θ) ≤ θ

n
Ẽp[Un] + θ2

2n
Ẽp[

U2
n exp(θUn)

]
. (70)

(i) By (70), for each fixed n ≥ 1,

lim sup
θ→0

�p(θ)

θ
≤ Ẽp[Un]

n
.

Hence,

lim sup
θ→0

�p(θ)

θ
≤ cp.

By Jensen’s inequality, �p(θ) ≥ θcp . Thus, it holds that

lim
θ→0

�p(θ)

θ
= cp.

(ii) Assume G = Z
2. By the Cauchy–Schwarz inequality,

U2
n exp(θUn) ≤ Rn

( ∑
x∈S[0,n]

|Cx |2
) ∏

y∈S[0,n]
exp

(
θ |Cy |).

By the Cauchy–Schwarz inequality and the translation invariance,

EPp

[
|Cx |2

∏
y∈S[0,n]

exp
(
θ |Cy |)] ≤ E

[|C0|4]1/2
EPp

[ ∏
y∈S[0,n]

exp
(
2θ |Cy |)]1/2

≤ EPp
[|C0|4]1/2

EPp
[
exp

(
2θRn|C0|)]1/2

.

Hence,

Ẽp[
U2

n exp(θUn)
] ≤ EPp

[|C0|4]1/2
EP 0[

R2
nE

Pp
[
exp

(
2θRn|C0|)]1/2]

. (71)

Let

n(θ) := θE[R1/θ ]2 and fp(θ) := n(θ)

Ẽp[Un(θ)] .

Then, by recalling (10), we have that as θ → 0

n(θ) ∼ π2

θ(log(1/θ))2 ,

and

f0(θ) ∼ 1

π
logn(θ) ∼ log(1/θ) − 2 log log(1/θ).
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By using (70), (71), (22) and the fact that Rn ≤ n, it holds that

fp(θ)

θ
�p(θ) ≤ 1 + θEPp [|C0|4]1/2

2Ẽp[Un(θ)] EP 0[
R2

n(θ)E
Pp

[
exp

(
2θRn(θ)|C0|)]1/2]

≤ 1 + θEPp [|C0|4]1/2

2Ẽp[Un(θ)] EP 0[Rn(θ)]n(θ)EPp
[
exp

(
2θn(θ)|C0|)]1/2

≤ 1 + 1

2
EPp

[|C0|4]1/2
θn(θ)EPp

[
exp

(
2θn(θ)|C0|)]1/2

.

By this and limθ→0 θn(θ) = 0, it holds that

lim sup
θ→0

fp(θ)

θ
�p(θ) ≤ 1. (72)

By (9) and limθ→0 n(θ) = +∞, it holds that

lim
θ→0

fp(θ)

f0(θ)
= lim

θ→0

Ẽp[Un(θ)]
EP 0[Rn(θ)]

= 1. (73)

By Hamana (2001),

lim
θ→0

f0(θ)

θ
�0(θ) = 1. (74)

By using (72), (73), (74) and the fact that �p(θ) ≥ �0(θ), we have the desired
result.

If G = Z, then, by (66), it is easy to see that

�p(θ) = �0(θ), 0 < θ < θc(p).

Thus, we have assertion (ii). �

Proof of Theorem 1.12. As in Donsker and Varadhan (1979, (1.2)), let

k(θ, d) := θ2/(d+2) d + 2

2

(
2γd

d

)d/(d+2)

> 0,

where γd is the lowest eigenvalue of the Laplacian −(1/2)� for B(0,1) with zero
boundary values. We let bn := n1/(d+2).

Let O be the set of bounded open subsets of Rd . Let

dist(A1,A2) := inf
{‖x − y‖ : x ∈ A1, y ∈ A2

}
, A1,A2 ⊂ R

d .

For each H ∈ O, let λ(H) be the smallest eigenvalue of the Laplacian with zero
boundary conditions for H .
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For any Hi ∈O, i = 0,1,2, satisfying that H0 ⊂ H0 ⊂ H1 ⊂ H1 ⊂ H2,

Ẽp[
exp(−θUn)

] ≥ exp
(−θbd

n |H2|)P̃ p

( ⋃
x∈S[0,n]

Cx ⊂ bnH2

)

≥ exp
(−θbd

n |H2|)P 0(
S[0, n] ⊂ bnH1

)
×

(
1 − ∑

x∈bnH1

Pp(Cx �⊂ bnH2)

)
.

Using the exponential decay of sizes of clusters of subcritical percolations on
Z

d and H1 ⊂ H2,

1

bd
n

log
(
1 − bd

n |H1|Pp

(
diam(Cx) > bndist

(
H1,H

c
2
))) → 0, n → ∞.

Therefore,

lim inf
n→∞

log Ẽp[exp(−θUn)]
bd
n

≥ −θ |H2| + lim inf
n→∞

logP 0(S[0, n] ⊂ bnH1)

bd
n

.

By Donsker and Varadhan (1979, Lemma 5.1),

lim inf
n→∞

logP 0(S[0, n] ⊂ bnH1)

bd
n

≥ −λ(H0).

Since we can make |H2 \ H0| arbitrarily small,

lim inf
n→∞

log Ẽp[exp(−θUn)]
bd
n

≥ −θ |H2| − λ(H0)

≥ − inf
H∈O θ |H | + λ(H).

By Donsker and Varadhan (1979, (5.5) and arguments after Theorem 1),

k(θ, d) = θ2/(d+2) d + 2

2

(
2

d
inf

O∈O,|O|=1
λ(O)

)d/(d+2)

= − inf
H∈O θ |H | + λ(H).

Hence,

lim inf
n→∞

log Ẽp[exp(−θUn)]
bd
n

≥ k(θ, d) = lim
n→∞

logEP 0[exp(−θRn)]
bd
n

.

(15) follows from this and the fact that Rn ≤ Un. �

Appendix: A discrete analog of the Wiener sausage

In this section, we consider extensions of results concerning the range of random
walk, which was stated by Spitzer (1964, Section 4). We assume that G is Z

d ,



632 K. Okamura

d ≥ 3 and A is a finite subset of Zd containing the origin. Here we let {Si}i be the
simple random walk. We omit most proofs of results in this section and refer the
readers to suitable references.

Definition A.1. For A ⊂ Z
d and n ≥ m ≥ 0, let

Wm,n(A) := ⋃
i∈[m,n]

(Si + A) and Um,n(A) := ∣∣Wm,n(A)
∣∣.

Let Wn(A) := W0,n(A) and Un(A) := U0,n(A).

If A = {0}, then, Un(A) = Rn. The process {Un(A)}n is also a natural analog
of the Wiener sausage. Spitzer (1964, Section 4) states that the strong law holds
for d ≥ 3. Port (1965, 1966), Port–Stone (1968, 1969) considered asymptotics for
means of the volumes in connection with interacting particle systems.

Theorem A.2 (Spitzer (1964, Section 4, 1976, Problem 14, Chapter 6)). If G =
Z

d, d ≥ 3, then,

lim
n→∞

Un(A)

n
= Cap(A), P -a.s.

As was noted in Spitzer (1976, Problem 14, Chapter 6), this gives an alternative
definition of the capacity of a set. By using this, in the same manner as in the proof
of (2), we can also show that for any q < +∞,

lim
n→∞

Un(A)

n
= Cap(A), in Lq .

The last exit decomposition as in (16) may not work well in this case in a direct
manner.

Theorem A.3. If d ≥ 4, then,

(i)

cvar(A) := lim
n→∞

Var(Un(A))

n

exists and is positive.
(ii)

Un(A) − E[Un(A)]√
cvar(A)n

⇒ N(0,1), n → ∞, in law.

Here and henceforth N(0,1) is the normal distribution with mean zero and covari-
ance one.
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We are not sure whether the value of cvar(A) differs depending on the choice
of A. We can show this by imitating the proof of Le Gall (1988, Lemma 4.2) with
some alterations.

Theorem A.4. Let d = 2. Let γ be the renormalized self-intersection local time of
two-dimensional Brownian motion given in Le Gall (1986a, Theoreme 6.1). For-
mally,

γ :=
∫ 1

0

∫ t

0
δ0(Bt − Bs)ds dt − E

[∫ 1

0

∫ t

0
δ0(Bt − Bs)ds dt

]
,

where (Bt )t is the standard 2-dimensional Brownian motion and δ0 be the delta
function. More precisely,

γ := lim
ε→0

[∫ 1

0

∫ t

0
ϕε(Bt − Bs)ds dt − E

[∫ 1

0

∫ t

0
ϕε(Bt − Bs)ds dt

]]
,

where ϕε(x) = ε−2ϕ(x/ε) is a suitable approximation of the identity, where ϕ is a
smooth nonnegative function in the Schwarz class whose integration is one. Then,
the following weak convergence holds:

(logn)2

n

(
Un(A) − E

[
Un(A)

]) ⇒ −2π2γ, n → ∞, in law.

We can show this assertion in the same manner as in the proof of Le Gall (1986a,
Theoreme 6.1).

Remark A.5. We can give an alternative proof of (20). By the translation invari-
ance,

Ẽp[Un] = EPp
[
EP 0[

Un(C0)
]]

.

By the proof of Port (1966, Theorem 3.1),

E
[
Un(A)

] − nCap(A) =
n∑

k=1

∑
x∈A

P x(k < TA < +∞).

Hence, by noting p < pT (Zd) and (34),

Ẽp[Un] − ncp =
n∑

k=1

∑
A⊂Zd , finite

Pp(C0 = A)
∑
x∈A

P x(k < TA < +∞).

(20) follows from this.
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A.1 Intermediate process

Let U
(p)

m,n := EPp [Um,n],m ≤ n, and let U
(p)

n := U
(p)

0,n. {U(p)

n }n is more similar to
{Un(A)}n than {Un}n. Contrary to the case of {Un(A)}n, we can consider this on
general graphs which do not possess a group structure. An application of Theorem
1.3 is the following corollary.

Corollary A.6 (SLLN). Let G be a vertex-transitive graph, o be a vertex of G,
and cp be as in (1). Then,

(i)

lim
n→∞

U
(p)

n

n
= cp, P o-a.s.

(ii)

lim
n→∞

EP o[Un]
n

= cp, Pp-a.s.

Proof. We show (i). Applying Liggett’s theorem (Liggett, 1985) to
{EPp [Um,n]}m,n, there is a random variable Y such that

EPp [Un]
n

→ Y, n → ∞,P o-a.s.

By Theorem 1.3(i),

lim
n→∞

Un

n
= cp, in L1(

P̃ o,p)
.

By Fubini’s theorem,

EPp

[∣∣∣∣Un

n
− cp

∣∣∣∣] → 0, n → ∞, in L1(
P o).

By taking a subsequence (nk)k ,

EPp [Unk
]

nk

→ cp, k → ∞, P o-a.s.

Hence, we obtain cp = Y , P o-a.s. We can show (ii) in the same manner. �

It holds that for n1 < n2 ≤ n3 < n4, U
(p)

n1,n2
and U

(p)

n3,n4
are independent,

therefore Le Gall’s approach (Le Gall, 1986a, 1988) is adaptable. Recall Re-
mark 6.4.

Now we have the following CLTs for {U(p)

n }n.

Theorem A.7 (Variances and CLT). Let d ≥ 4. Then,
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(i)

cvar,p := lim
n→∞

Var(U
(p)

n )

n

exists and is positive.
(ii)

U
(p)

n − E[U(p)

n ]√
cvar,pn

⇒ N(0,1), n → ∞, in law.

We can show this by imitating the proof of Le Gall (1988, Lemma 4.2) with
some alterations.

Theorem A.8. Let d = 2. Let γ be the self-intersection local time of two-
dimensional Brownian motion. Then,

(logn)2

n

(
U

(p)

n − E
[
U

(p)

n

]) ⇒ −2π2γ, n → ∞, in law.

We can show this assertion in the same manner as in the proof of Le Gall (1986a,
Theoreme 6.1).

Remark A.9.

(i) Varp(Un) ≥ Var(U
(p)

n ).
(ii) We are not sure properties for cvar,p as a function of p.
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