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Abstract. Via a special transform and by using the techniques of the Malli-
avin calculus, we analyze the density of the solution to a stochastic differen-
tial equation with unbounded drift.

1 Introduction

Our purpose is to prove the existence and other properties for the density of the
solution to the stochastic differential equation (SDE) in R

d

Xt(x) = x +
∫ t

0
b
(
Xr(x)

)
dr +

∫ t

0
σ

(
Xr(x)

)
dBr, t ∈ [0, T ], x ∈R

d (1)

with unbouded Hölder continuous drift b and smooth diffusion coefficient σ .
The Malliavin calculus is nowadays a widely recognized mathematical theory to

study densities of random variables in general, and of solutions to stochastic (par-
tial) differential equations in particular. On the other hand, the theory works well
when the coefficients of the stochastic equations are smooth enough. For instance,
one can prove the absolute continuity with respect to the Lebesque measure of the
law of solutions to SDEs with coefficients which are globally Lipschitz continuous
and of at most linear growth and with invertible diffusion matrix. For more regu-
lar coefficients, for example, for bounded functions with bounded derivatives, we
can get the existence of a smooth density for the solution to (1). We refer, among
others, to Nualart (2006) or Sanz-Solé (1995) for a more complete exposition.

On the other hand, when the coefficients are less regular, for example, if they
are only Hölder continuous, then much more work is needed in order to obtain
the Malliavin differentiability of the solution or the existence and the smooth-
ness of its density. There already exists a large literature in this direction, see
among others, Baños and Krühner (2017), Kohatsu-Higa (2003), Kohatsu-Higa
and Makhlouf (2013), Romito (2016), Hayashi, Kohatsu-Higa and Yuki (2013),
Bally and Caramellino (2017), Debussche and Fournier (2013), De Marco (2011)
etc. As far as we know, the study of the density for solutions to (1) in the case of
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unbounded Hölder continuous drift b and in general dimension d ≥ 1 is not con-
tained in none of these references. Let us briefly discuss the closest results to our
paper. For d = 1, the absolute continuity of the solution to (1) has been showed in
Fournier and Printems (2010). In Debussche and Fournier (2013), the existence of
the density for the solution to a special one-dimensional SDE with Hölder contin-
uous diffusion and drift with at most linear growth has been considered. Further
improvements have been achieved in Bally and Caramellino (2017) in the general
case d ≥ 1, by weakening the Hölder continuous hypothesis. In De Marco (2011),
the author shows that if there exists some ball in R

d in which both coefficients
are smooth and with bounded partial derivatives, then the density of the solution is
smooth inside a smaller ball. In the case d ≥ 1, Hayashi, Kohatsu-Higa and Yuki
(2013) shows that if there exists some open interval on which b is Hölder con-
tinuous, uniformly elliptic and smooth, then the density is Hölder continuous on
the interval. The case of bounded Hölder continuous diffusion coefficient in di-
mension d ≥ 1 is treated also in Bally, Caramellino and Cont (2016). Stronger, or
different, assumptions on the drift are considered in Baños and Krühner (2017),
Kohatsu-Higa (2003), Kohatsu-Higa and Makhlouf (2013), Romito (2016).

Our purpose is to present a new and easier method to deal with densities of solu-
tions to SDEs with irregular drift, via some special transformations of the drift and
of the diffusion coefficient. The basic ideas is as follows: by using a transformation
defined in Flandoli, Gubinelli and Priola (2010b) (see also Flandoli, Gubinelli and
Priola (2010a) or Kunita (1984) for related works), we can show that the equation
(1) is equivalent to another SDE

Yt (x) = x +
∫ t

0
b̃
(
Yr(x)

)
dr +

∫ t

0
σ̃

(
Yr(x)

)
dBr, (2)

where the “new coefficients” b̃ and σ̃ are explicitly constructed from b and σ .
The equivalence between the equations (1) and (2) means that if (1) has a so-
lution Xt(x) then (2) has a solution Yt (x) and Xt(x) = �−1(Yt (x)) for every
t ∈ [0, T ], x ∈ R

d with � a smooth and invertible function. On the other hand,
the new coefficients b̃ and σ̃ are smooth and the standard Malliavin techniques can
be applied to (2). This will easily lead to the Malliavin differentiability of the solu-
tion to (1) and to the existence of its probability density. This is the main purpose
of our work, to show that our approach allows, by relatively trivial arguments, to
obtain results that usually demand significant technical work. A similar idea has
been marginally employed in Romito (2017).

Our paper is organized as follows. Section 2 is devoted to the introduction of
some notation and of the basic elements of the Malliavin calculus. In Section 3, we
present the special transform used in our work and we derive some consequences
for the Malliavin differentiability and the density of the solution. In Section 4, we
analyze the existence of the density for functionals of the solution.
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2 Preliminaries

This preliminary section is devoted to the presentation of the basic tools from
Malliavin calculus and to the introduction of some notation needed in the paper.

2.1 Malliavin derivative

Let us present the elements from the Malliavin calculus that will be used in the pa-
per. We refer to Nualart (2006) for a more complete exposition. Consider H a real
separable Hilbert space endowed with the scalar product 〈·, ·〉H and (B(ϕ),ϕ ∈ H)

an isonormal Gaussian process on a probability space (�,A,P), that is, a centred
Gaussian family of random variables such that E(B(ϕ)B(ψ)) = 〈ϕ,ψ〉H.

We denote by D the Malliavin derivative operator that acts on smooth func-
tions of the form F = g(B(ϕ1), . . . ,B(ϕn)) (g is a smooth function with compact
support and ϕi ∈ H, i = 1, . . . , n)

DF =
n∑

i=1

∂g

∂xi

(
B(ϕ1), . . . ,B(ϕn)

)
ϕi.

It can be checked that the operator D is closable from S (the space of smooth
functionals as above) into L2(�;H) and it can be extended to the space D1,p which
is the closure of S with respect to the norm

‖F‖p
1,p = EFp + E‖DF‖p

H.

We denote by D
k,∞ := ⋂

p≥1 D
k,p for every k ≥ 1. In this paper, H will be the

standard Hilbert space L2([0, T ]).
We will use the chain rule for the Malliavin derivative (see Proposition 1.2.4

in Nualart (2006)) which says that if ϕ : R → R is a differentiable function with
bounded derivative and F ∈D

1,2, then ϕ(F ) ∈ D
1,2 and

Dϕ(F) = ϕ′(F )DF. (3)

For a random variable F with values in R, we will say that is Malliavin differen-
tiable if all its components are in D

1,2.
An important role of the Malliavin calculus is that it provides criteria for the

existence of the density of a random variable. This was actually the initial motiva-
tion to construct this mathematical theory. There exists a huge number of formulas
for densities of random variables in terms of the Malliavin operators, see Nualart
(2006) or Nourdin and Peccati (2012) among others. Here we will use the follow-
ing result: if F is a random variable in D

1,2 such that

‖DF‖H > 0
(4)

a.s. then F admits a density with respect to the Lebesque measure
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(see, e.g., Theorem 2.1.3 in Nualart (2006)). This is a classical result in Malliavin
calculus, related to the invertibility of the Malliavin matrix, and it goes back to
Shigekawa (1980). More recently, this link between Malliavin calculus and the
probability densities of random variables has been reinforced and new interest-
ing results have been obtained (see, among others, Bally and Caramellino (2017),
Nourdin and Viens (2009), Nualart and Quer-Sardanyons (2009)).

2.2 Notation

Let us introduce some notation needed throughout the paper.
For any θ ∈ (0,1), we define the set Cθ(Rd;Rk), d, k ≥ 1 of the mappings

f :Rd →R
k such that

[f ]θ := sup
x,y∈Rd ,x 
=y,|x−y|≤1

|f (x) − f (y)|
|x − y|θ < ∞.

By | · |, 〈·, ·〉 we denote the Euclidean norm and scalar product in R
k respectively.

The space Cθ(Rd;Rk) is a Banach space with respect to the norm

‖f ‖θ = ∥∥(
1 + | · |)−1

f
∥∥∞ + [f ]θ ,

where ‖ · ‖∞ denotes the supremum norm. It is also called in Flandoli, Gubinelli
and Priola (2010b) as the space of “locally uniformly θ -Hölder functions”.

We will say that f ∈ Cn+θ (Rd;Rd) (n ≥ 1 integer) if f ∈ Cθ(Rd;Rd) and
moreover the Fréchet derivatives Dif (i = 1, . . . , n) are bounded and Hölder con-
tinuous of order θ ∈ (0,1).

3 The special transformation and the density of the solution

Assume k, d ≥ 1 and let (Bt )t∈[0,T ] be a standard k-dimensional Brownian motion
(B = (B1, . . . ,Bk)) on a probability space (�,F,P ) with respect to its natural
filtration (Ft )t≥0. Consider the following stochastic differential equation in R

d

Xt(x) = x +
∫ t

0
b
(
Xs(x)

)
ds +

∫ t

0
σ

(
Xs(x)

)
dBs, t ∈ [0, T ] (5)

or equivalently

Xt(x) = x +
∫ t

0
b
(
Xs(x)

)
ds +

k∑
i=1

∫ t

0
σi

(
Xs(x)

)
dBi

s,

where x ∈ R
d and the stochastic integral in (5) is understood in the Itô sense.

As in Flandoli, Gubinelli and Priola (2010b), we shall assume throughout our
work that the vector fields b and σ satisfy the following conditions

b ∈ Cθ (
R

d;Rd)
, (6)
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and for every i = 1, . . . , k,

σi ∈ C3
b

(
R

d;Rd)
, (7)

and a = σσ	 (σ	 denotes the adjoint matrix of σ ) is invertible and satisfies

‖a‖0 = sup
x∈Rd

∥∥a−1(x)
∥∥ < ∞, (8)

where for every x ∈ R
d , ‖a−1(x)‖ denotes the Hilbert–Schmidt norm of the d × d

matrix a−1(x).

3.1 The auxiliary elliptic system

Fix λ > 0 and fix 0 < α < θ (recall that θ is fixed by condition (6)). We introduce
the auxiliary elliptic systems

λψλ − Lψλ = b, (9)

where L is the Kolmogorov operator associated to (5) defined by

L = 1

2
T r

(
σσ	D2) + b(x)D. (10)

We also introduce the function

φλ(x) = x + ψλ(x), (11)

where ψλ is the unique classical solution in C2+α(Rd;Rd) of the equation (9)
(which exists due to Theorem 5 in Flandoli, Gubinelli and Priola (2010b)).

The following lemmas are due to Flandoli, Gubinelli and Priola (2010b) (see
Theorem 5 and Lemma 8 in this reference) and they are key points for our method.
Notice that we need to have σ of class C3 in order to have the second point below.

Lemma 1. For λ > 0, let φλ be given by (11). Then the function φλ has the fol-
lowing properties when λ is large enough:

1. There exists C > 0 such that ‖Dφλ‖0 < C.
2. φλ is a C2-diffeomorphism.
3. φ−1

λ has bounded first and second derivatives.

In the rest of the paper, we will consider λ large enough in order that the points
1–3 in Lemma 1 above hold. The following special transform allows to remove the
irregular drift in (5).

Lemma 2. We define the “new” coefficients b̃ and σ̃ from b and σ by

b̃(x) = λψλ

(
φ−1

λ (x)
)

and σ̃ (x) = Dφλ

(
φ−1

λ (x)
)
σ

(
φ−1

λ (x)
)

(12)

for every x ∈ R
d . Then

1. b̃ ∈ C1+α(Rd;Rd) and σ̃ ∈ C1+α(Rd;Rd×k).
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2. Consider the SDE

Yt (x) = y +
∫ t

0
b̃
(
Ys(x)

)
ds +

∫ t

0
σ̃

(
Ys(x)

)
dBs, t ∈ [0, T ]. (13)

Then the SDE (13) is equivalent to (5) in the following sense: if X solves (5),
then Y defined by

Yt (x) = φλ

(
Xt(x)

)
(14)

solves (13) with y = φλ(x). The converse implication is also true.

The above two lemmas easily lead to the following result. Recall that a random
variable in R

d is Malliavin differentiable if all its components are in D
1,2.

Theorem 1. Assume (6), (7) and (8). Then, for every t ∈ [0, T ] and for every
x ∈ R

d , we have :

1. The random variable Xt(x) is Malliavin differentiable.
2. The random variable Xt(x) admits a density ρXt (x) with respect to the Lebesgue

measure.

Proof. Recall that Y solves the SDE (13) which is a SDE with smooth coefficients
since b̃, σ̃ ∈ C1+α , see Lemma 2. By standard arguments based on Malliavin cal-
culus (see Chapter 2 in Nualart (2006)) it follows that for every t, x, the random
variable Yt (x) is Malliavin differentiable. Since φ−1

λ is differentiable with bounded
derivative by Lemma 1, we obtain the Malliavin differentiability of Xt(x) for every
t, x. Moreover, by applying the chain rule (3), for every r ∈ (0, T ]

DrXt(x) =Dφ−1
λ (Yt )DrYt (x). (15)

To show point 2, we note that Yt (x) admits a density with respect to the
Lebesque measure. This can be argued by using Theorem 2.3.1 in Nualart (2006),
based on the fact that the diffusion matrix of Y is non-singular, see Lemma 4 be-
low. Denote by ρYt (x) the density of the random variable Yt (x).

Next, for every continuous bounded function ϕ : Rd → R, we can write, since
φλ is a C2-diffeomorphism,

Eϕ
(
Xt(x)

) = Eϕ
(
φ−1

λ

(
Yt (x)

))
=

∫
Rd

ϕ
(
φ−1

λ (u)
)
ρYt (x)(u) du

=
∫
Rd

ϕ(u)
(
detJφλ(u)

)
ρYt (x)

(
φλ(u)

)
du,

where J denotes the Jacobian (with respect to x). It follows from the last equality
that for every t > 0 and for every x ∈ R

d the random variable Xt(x) admits a
density ρXt (x) with respect to Lebesgue and the following formula holds true

ρXt (x) = (detJφλ) · ρYt (x)(φλ). (16)

�
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Remark 1. Let us point out that in general (see e.g. Kohatsu-Higa and Tanaka
(2012), Kohatsu-Higa and Makhlouf (2013), Zhang (2014)), proving the Malliavin
differentiability of solutions to SDE with irregular drift demands pretty technical
work.

It is also possible to give, in dimension 1, a representation of the density in the
spirit of Nourdin and Viens (2009). If F ∈ D

1,2 is a centered random variable, let

gF (z) =
∫ ∞

0
dθe−θE

[
E′(〈DF, D̃F 〉H|F = z

)]
, (17)

where for any random variable X, we denoted X̃(ω,ω′) = X(e−θw +√
1 − e−2θω′) which is defined on the product probability space. The following

result is a consequence of Theorem 3.1 in Nourdin and Viens (2009).

Corollary 1. Assume d = 1 and let the assumptions in Theorem 1. Then, for every
t ∈ [0, T ] and x ∈ R

d , the density of the random variable Xt(x) can be expressed
as

ρXt (x)(z) = E|Xt(x)|
2gXt (x)(z)

e
− ∫ z

0
u

gXt (x)(u)
du

.

4 Density of functions of the solution

In this paragraph our aim is to prove the existence of densities for functions of the
solution to SDEs with unbounded drift. Although the main idea comes from the
special transformation (14), other auxiliary results are also neeeded.

We will first prove some auxiliary lemmas.

Lemma 3. Let φλ be given by (11). Then for every x ∈ R
d and for λ large enough∣∣Dφλ(x)

∣∣ ≥ C > 0. (18)

Proof. From (11), we have for every x ∈ R
d

Dφλ(x) = Id +Dψλ(x), (19)

where Id denoted the d-dimensional identity matrix. On the other hand, it follows
from formula (18) in Flandoli, Gubinelli and Priola (2010b) that for every x ∈ R

d∣∣Dψλ(x)
∣∣ ≤ c(λ), (20)

where c(λ) → 0 as λ → ∞. From (19), (20) and the triangle inequality, we get∣∣Dφλ(x)
∣∣ = ∣∣Id +Dψλ(x)

∣∣
≥ 1 − ∣∣Dψλ(x)

∣∣ ≥ C > 0

for λ large enough. �
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Lemma 4. Let σ̃ be given by (12). Then the diffusion matrix of the SDE (13)
B = σ̃ σ̃ ∗ is uniformly elliptic.

Proof. From the definition of the coefficient σ̃ (12), we can write (recall that a =
σσ ∗) for every x ∈ R

d

B(x) = (Dφλ)
(
φ−1

λ

)
a
(
φ−1

λ

)(
(Dφλ)

(
φ−1

λ

))∗
and this implies that the inverse matrix of B satisfies

B−1(x) = [(
(Dφλ)

(
φ−1

λ

))∗]−1
a−1(

φ−1
λ

)(
(Dφλ)

(
φ−1

λ

))−1
.

Notice that, since a−1 is bounded from (8) and by using the properties of φλ in
Lemma 1, we immediately obtain the existence of a strictly positive constant C

such that ∣∣B−1(x)
∣∣ ≤ C

for every x.
Denote by ‖A‖ the operator norm of the matrix A and recall that if A = A∗ then

‖A‖ = sup
λ∈Spec(A)

|λ|,

where Spec(A) is the spectrum of A. The above formula implies that

λi,B−1(x) ≤ C

for every i ∈ I where Spec(B−1) = {λi,B−1, i ∈ I }. Consequently,

λj,B(x) ≥ C (21)

for every j ∈ J where we denoted the spectrum of B by Spec(B) = {λj,B, j ∈ J }.
The above inequality (21) clearly gives〈

B(x)ξ, ξ
〉 ≥ C|ξ |2 for every ξ ∈ R

d .

The converse inequality follows easily since B is uniformly bounded and then〈
B(x)ξ, ξ

〉 ≤ ∣∣B(x)ξ
∣∣|ξ | ≤ C|ξ |2. �

Lemma 5. Let Y be the solution to (13). Then for every t ∈ [0, T ], x ∈R
d

JYt (x) = e
∫ t

0 (Dσ̃ )(Ys(x)) dBs+∫ t
0 [(Db̃)(Ys(x))− 1

2 (Dσ̃ )2(Ys(x))]

and

JY−1
t (x) = e− ∫ t

0 (Dσ̃ )(Ys(x)) dBs−∫ t
0 [(Db̃)(Ys(x))− 1

2 (Dσ̃ )2(Ys(x))]
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Proof. Notice that the Jacobian of Y satisfies the equation

JYt (x) = 1 +
∫ t

0
(Db̃)

(
Ys(x)

)
Ys(x) ds +

∫ t

0
(Dσ̃ )

(
Ys(x)

)
Ys(x) dBs

while its inverse solves (see Nualart (2006), page 126, formula (2.58)), for r ∈
[0, T ], x ∈ R

d ,

JY−1
r (x) = 1 −

∫ r

0
(Dσ̃ )

(
Ys(x)

)(
JY−1

s (x)
)
dBs

−
∫ t

0

[
Db̃)

(
Ys(x)

) − (Dσ̃ )2(
Ys(x)

)](
Y−1

s (x)
)
ds.

By solving the above two equations, we get the conclusion. �

For simplicity, we will assume in the sequel that d = k = 1. Consider a function
G : [0, T ] ×R →R such that G(t, ·) ∈ C1

b(R) and∣∣∂xG(t, x)
∣∣ ≥ C > 0 (22)

for every t ∈ [0, T ] and for every x ∈ R, where ∂x denote the derivative with re-
spect to the variable x.

The main result of this section states as follows.

Proposition 1. We assume (6), (7) and (8). Then, for every t ∈ [0, T ] and for every
x ∈R, we have :

1. The random variable G(t,Xt(x)) is Malliavin differentiable.
2. The random variable G(t,Xt(x)) admits a density ρt,x with respect to the

Lebesgue measure.

Proof. Fix t ∈ [0, T ], x ∈ R. We have seen in Proposition 1 that the random vari-
able Xt(x) belongs to D

1,2. Since G is of class C1
b with respect to x, we get that

G(t,Xt(x)) ∈ D
1,2.

Moreover, for every r > 0,

DrG
(
t,Xt (x)

) = ∂xG
(
t,Xt (x)

)
DrXt(x)

= ∂xG
(
t,Xt (x)

)
Dφ−1

λ

(
Yt (x)

)
Dr

(
Yt (x)

)
,

where we used relation (14) and we used twice the chain rule (3) for the Malliavin
derivative.

On the other hand, from Nualart (2006), formula (2.59) on page 126, we have

DrYt (x) = JYt (x)
(
JYr(x)

)−1
σ̃

(
Yr(x)

)
,

where (JYt (x))−1 represents the inverse of JYt (x) (recall that Y generates a C1

flow of diffeomorphism, see Flandoli, Gubinelli and Priola (2010b)). We thus get
for r ∈ (0, T ]

DrG
(
t,Xt (x)

) = ∂xG
(
t,Xt (x)

)
Dφ−1

λ

(
Yt (x)

)
JYt (x)

(
JYr(x)

)−1
σ̃

(
Yr(t)

)
(23)
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and ∥∥DrG
(
t,Xt (x)

)∥∥2
L2([0,T ])

=
∫ T

0

∣∣∂xG
(
t,Xt (x)

)
Dφ−1

λ

(
Yt (x)

)
JYt (x)

(
JYr(x)

)−1
σ̃

(
Yr(t)

)∣∣2 dr

≥ C
∣∣JYt (x)

∣∣2 ∫ T

0

∣∣(JYr(x)
)−1∣∣2 dr,

where we used condition (22), Lemma 3 and Lemma 4 to bound from below
∂xG(t,Xt(x)), Dφ−1

λ (Yt (x)) and σ̃ (Yr(t)) respectively. The result follows easily
from Lemma 5 and the criterion (4). �

Remark 2. If d ≥ 1, and the partial derivatives of G : [0, T ] × R
d → R with

respect to x ∈ R
d are bounded (above and below) by strictly positive constants,

then the above result can be also obtained. The formula (23) will become

DrG
(
t,Xt (x)

)

=
d∑

i=1

∂G

∂xi

(
t,Xt (x)

) ∂

∂xj

(
φ−1

λ

)i(
Yt (x)

)(
JYt (x)

)
j,l

((
JYr(x)

)−1)
lkσ̃

k(Yr(x)
)
,

where the superscript means the components of functions and the subscripts are
the elements of matrices. By using the boundedness of the partial derivatives of
G and Lemmas 3, 4 and 5, the strict positivity of ‖DrG(t,Xt(x))‖2

L2([0,T ]) can be
proven.
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