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Influence measures for the Waring regression model
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Abstract. In this paper, we present a regression model where the response
variable is a count data that follows a Waring distribution. The Waring regres-
sion model allows for analysis of phenomena where the Geometric regression
model is inadequate, because the probability of success on each trial, p, is
different for each individual and p has an associated distribution. Estima-
tion is performed by maximum likelihood, through the maximization of the
Q-function using EM algorithm. Diagnostic measures are calculated for this
model. To illustrate the results, an application to real data is presented. Some
specific details are given in the Appendix of the paper.

1 Introduction

It is common that, in diverse statistical applications, the response variable corre-
sponds to count. The possible distributions that can describe the behavior of this
type of data are varied. One of them is the Geometric distribution, which has been
widely studied in fertility applications; for example, Weinberg and Gladen (1986)
consider that the number of menstrual cycles necessary for conception has a Ge-
ometric distribution with parameter p. They mention that, in this situation, this
parameter is not necessarily constant, i.e., it varies from individual to individual.
With this, they have suggested that the Geometric regression model is not suitable
when there is heterogeneity in the study. Furthermore, they assume that the param-
eter p, 0 < p < 1 follows a Beta distribution, thus generating the Beta-Geometric
mixture, known later as the Waring distribution. In this context, p has a very clear
interpretation, since it represents the probability of a conception occurring for any
randomly-chosen couple. This idea was originally designed by Henry (1957). This
model was also previously studied by Miller (1961), who proposes that the number
of vehicles in a traffic jam follows a Geometric distribution, and that the passing
rate has a Beta distribution. Pielou (1962) uses this distribution to analyze the be-
havior of certain plant species, where the parameter p represents the proportion
of segregation between species. Later, Ridout and Morgan (1991) extended the re-
search by Weinberg and Gladen (1986) and used that said model to separate the
sample in women who smoke and who do not smoke, and in women who take birth
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control and those who do not. The main objective was to report expected values
and to conclude that women who smoke reduce their fertility. This conclusion was
concordant to Baird and Wilcox’s (1985) study, who carried out an epidemiologic
study with the same objective. Since the Waring model has one more parameter
than the Geometric model, it is necessary to analyze if this parameter is signif-
icant. With this purpose, Paul (2005) proposed a test that can justify the use of
one or another distribution, jointly with other goodness of fit measures. This test
is based on the statistic of ratio of likelihood.

Recently, Singh, Pudir and Maheshwari (2014) obtained the moment estimators,
of maximum likelihood and the estimators from a bayesian point of view. They
compare them, for which two applications have been presented in the study of
fertility: the first of them in a data set from the government of India regarding
health statistics, and the second of them in a simulated data set. Extensions of the
Waring regression are presented by Rodríguez-Avi et al. (2007, 2009).

An important aspect in the analysis of a data set is the influence diagnostics,
because it allows to identify a lack of adjustment or the presence of influential
observations. Zhu et al. (2001) and Zhu and Lee (2001) proposed a diagnostic
approach based on the Cook proposal (Cook (1986)), but using the Q-function,
this method is called global and local influence. The first approach consists of
the study the change in MLE by eliminating an observation of the data set, while
the second evaluates the effect of small perturbations in the model and/or data
on the parameter estimates. Several authors have studied the Waring regression
model, however, neither of them have referred to the influence analysis for this
model. Thus, the main objective of this work is to develop estimation method and
diagnostics analysis, based on case delation and the local influence approach for
the Waring regression model through the Q-function.

This paper is organized as follows. In Section 2, we present the Waring regres-
sion models and discussed some of their properties. In Section 3, we discussed
the EM algorithm to calculated the maximum likelihood estimators. Diagnostic
measures are discussed in Section 4. Section 5 contains applications of the pro-
posed Waring regression model. Concluding remarks are given in Section 6. Some
technical details are present in the Appendix.

2 The Waring regression model

The Waring regression model with parameters α and β > 0, denoted by Waring(α,

β), is used to describe count data, yi , which assumes nonnegative integer values
and whose probability function has been presented by several authors, who use
different parameterizations. In this paper, we used the proposal by Singh, Pudir
and Maheshwari (2014), which was previously used by Crouchley and Dassios
(1998), but in the context of censored data. Then, the probability function is given
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by

P(yi |α,β) = α�(α + β)�(yi + β)

�(β)�(yi + α + β + 1)
, yi ∈ {0,1,2, . . .}. (2.1)

Singh, Pudir and Maheshwari (2014) also indicate that (2.1) is a parametrization
of the probability function originally proposed by Weinberg and Gladen (1986).

The mean and the variance of the variable yi ∼ Waring(α,β) are, respectively

μi = μ = E(yi) = β

α − 1
, α > 1,

Var(yi) = αβ(α + β − 1)

(α − 2)(α − 1)2 , α > 2.

(2.2)

The model (2.1), in terms of mixture of distributions, can be written as{
yi |pi ∼ Geo(pi),

pi ∼ Beta(α,β),
(2.3)

where Geo(pi) is the Geometric distribution with probability function

P(yi |pi) = pi(1 − pi)
yi , yi ∈ {0,1,2, . . .},

with 0 < pi < 1, and whose density function is given by (Crouchley and Dassios
(1998))

f (pi |α,β) = �(α + β)

�(α)�(β)
pα−1

i (1 − pi)
β−1, α,β > 0.

The moment generating function (MGF) of this distribution is given in the Ap-
pendix.

In this paper we propose a new parametrization for (2.1), including a regression
structure, that is„ μ �= μi∀i = 1, . . . , n, then, the probability function reparameter-
ized in terms of μi and φ is

P(yi |μi,φ) = φ1�(φ1 + μiφ2)�(yi + μiφ2)

�(μiφ2)�(yi + φ1 + μiφ2 + 1)
, yi ∈ {0,1,2, . . .},

where φ1 = 2φ
φ−1 and φ2 = φ+1

φ−1 , with μi > 0 and φ > 1. From the latter, we can
write, yi ∼ Waring(μi, φ) whose mean and variance, respectively, are

E(yi) = μi and Var(yi) = φ
(
μ2

i + μi

) = φV (μi),

where V (μi) = μi(μi + 1) denotes the variance function. In this way, μi is the
mean of the response variable, and φ can be interpreted as a dispersion parameter,
that is, for fixed μi , if φ increases the variance of yi also increases. In addition to
allowing the inclusion of the regression structure, it is possible to clarify the role
of each parameter in the model.
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Figure 1 Probability function of Waring distribution for different values of the parameter μ, with
fixed φ.

Figure 1 presents the probability function of the Waring distribution, P(yi |μ,

φ), for different values of parameter μ with fixed φ; we note that when μ increases,
the tail of the distribution is more heavy. This pattern is repeated for the different
values of the parameter φ.

Figure 2 shows the probability function of the Waring distribution when μ is
fixed; we observe that when φ decreases the tail of the distribution is more heavy.
The decrease of the probability values is more drastic when μ increases.

Figure 3(a) shows the probability function of the Geometric distribution,
P(y|p), with parameter p = 1/5, where p = 1/(1 + μ); compared with the War-
ing distribution for μ = 4 and different values of φ, we observe that when φ → 1,
the curve best fits the Geometric distribution. In this way, Figure 3(b), where
p = 1/11. Both in the Figure 3(a) and (b) it can be seen that the Geometric distri-
bution is a particular case of the Waring distribution, when φ → 1.

Let y1, y2, . . . , yn be independent random variables, where yi ∼ Waring(μi, φ).
The model is obtained by assuming that the mean of yi can be written as

g(μi) = xT
i β = ηi, i = 1, . . . , n,

in this paper in particular, we used the link function log, in which case we can
write, μi = exp{xT

i β}.
The log-likelihood function based on a sample of n independent observations is

l = l(θ) =
n∑

i=1

li(μi, φ),
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Figure 2 Probability function of Waring distribution for different values of the parameter φ, with
fixed μ.

Figure 3 Probability function of Geometric distribution, P(y|p), versus the Waring distribution,
P(y|μ,φ).

where θ = (βT ,φ)T is a q-dimensional vector of unknown parameters, and the
contribution of the ith observation to the log-likelihood function is equal to

li(μi, φ) = logφ1 + log�(φ1 + μiφ2) + log�(yi + μiφ2) − log�(μiφ2)

− log�(yi + φ1 + μiφ2 + 1),
(2.4)

for i = 1, . . . , n. In this case, μi = g−1(xT
i β) is a function of β , the vector of

regression parameters.
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On the other hand, from the Beta-Geometric mixture model, the complete-data,
yc = (y0,ym), the complete log-likelihood function can be written as

l(θ |yc) =
n∑

i=1

{
φ1 logpi + (μiφ2 + yi − 1) log(1 − pi)

+ log�(φ1 + μiφ2) − log�(φ1) − log�(μiφ2)
}
,

(2.5)

where yi denote the observation data (y0 = (y1, y2, . . .)) and pi can be treated as
missing data, that is, ym = (p1,p2, . . .).

3 Maximum likelihood estimation

We may easily obtain the maximum likelihood estimation (MLE) of θ based on
the complete-data log-likelihood function and the EM algorithm, presented by
Dempster, Laird and Rubin (1977). A standard EM algorithm consists of two steps:

• E-step (Expectation): Compute the Q-function as

Q
(
θ |θ (m)) = E

{
lc(θ |yc)|y0, θ

(m)}.
In fact, from (2.5) it follows that

Q
(
θ |θ (m)) =

n∑
i=1

{
φ1E

(
logpi |y0, θ

(m)) + (μiφ2 + yi − 1)

· E(
log(1 − pi)|y0, θ

(m)) + log�(φ1 + μiφ2)

− log�(φ1) − log�(μiφ2)
}
.

(3.1)

Since pi ∼ Beta(φ1,μiφ2), then pi |y0, θ ∼ Beta(φ1 + 1, yi + μiφ2), then,
using the properties of the Beta distribution, by Johnson, Kotz and Balakrishnan
(1970), we obtain that

E
(
logpi |y0, θ

(m)) = ei and E
(
log(1 − pi)|y0, θ

(m)) = si,

where ei = ψ(φ
(m)
1 + 1) − ψ(yi + μ

(m)
i φ

(m)
2 + φ

(m)
1 + 1) and si = ψ(yi +

μ
(m)
i φ

(m)
2 ) − ψ(yi + μ

(m)
i φ

(m)
2 + φ

(m)
1 + 1). Substituting in (3.1) we have to

Q
(
θ |θ (m)) =

n∑
i=1

{
φ1ei + (μiφ2 + yi − 1)si + log�(φ1 + μiφ2)

− log�(φ1) − log�(μiφ2)
}
.

• M-step: Update the parameters θ (m) maximizing Q(θ |θ (m)), i.e.,

θ (m+1) = ArgMaxQ
θ

(
θ |θ (m)).
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Then, θ (m) is updated using the pseudovalues ei and si , where the parameters θ
are estimated through the Newton-Raphson algorithm, where la score function is
given by

Uθ (Q) = ∂Q(θ |θ̂)

∂θ
=

(
UT

β (Q)

Uφ(Q)

)
, (3.2)

with

Uβ(Q) = ∂Q(θ |θ̂)

∂β
= φ2XT R1,

where R1 is a n-dimensional vector, R1i = (si + ψ(φ1 + μiφ2) − ψ(μiφ2))μi ,
i = 1, . . . , n, and

Uφ(Q) = ∂Q(θ |θ̂)

∂φ
= −2

(φ − 1)2 F1,

where F1 = ∑n
i=1[ei + μisi + ψ(φ1 + μiφ2)(1 + μi) − ψ(φ1) − ψ(μiφ2)μi].

Whereas the matrix of second derivatives is given by

Q̈(θ |θ̂) = ∂2Q(θ |θ̂)

∂θ ∂θT
=

(
Iββ(Q) Iβφ(Q)

Iφβ(Q) Iθθ (Q)

)
, (3.3)

where

Iββ(Q) = ∂2Q(θ |θ̂)

∂β ∂βT
= φ2XT Diag(R1)X + φ2XT R2X,

with R2 being a diagonal matrix, R2i = (ψ ′(φ1 + μiφ2) − ψ ′(μiφ2))μi , and
Diag(R1) denotes the diagonal matrix whose elements are precisely the compo-
nents of vector R1.

Iφφ(Q) = ∂2Q(θ |θ̂)

∂φ2

= 4

(φ − 1)3 F1 + 4

(φ − 1)4

n∑
i=1

[
ψ ′(φ1 + μiφ2)(1 + μi)

2 − ψ ′(φ1)

− ψ ′(μiφ2)μ
2
i

]
= 4

(φ − 1)3 F1 + 4

(φ − 1)4 F2,

with F2 = ∑n
i=1[ψ ′(φ1 + μiφ2)(1 + μi)

2 − ψ ′(φ1) − ψ ′(μiφ2)μ
2
i ]; and

Iβφ(Q) = ∂Q(θ |θ̂)

∂β ∂φ
= − 2

(φ − 1)2 XT R1 + φ2XT R3,
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where the elements of vector R3 are, R3i = (ψ ′(φ1 + μiφ2)(1 + μi) −
ψ ′(μiφ2)μi)μi , i = 1, . . . , n.

Then, by substituting into (3.3), we obtain

Q̈(θ |θ̂) =

⎛
⎜⎜⎝

φ2XT Diag(R1)X + φ2XT R2X − 2

(φ − 1)2 XT R1 + φ2XT R3

− 2

(φ − 1)2 RT
1 X + φ2RT

3 X
4

(φ − 1)3 F1 + 4

(φ − 1)4 F2

⎞
⎟⎟⎠ ,

(3.4)
evaluated in θ = θ̂ .

Then, (3.2) and (3.4) are used to estimate the vector of parameters θ . If the
criterion of convergence is satisfied then we can stop iterating, else go back to
E-step. Note that the maximum likelihood estimators of θ are obtained from the
equation Uθ (Q) = 0, and do not have closed-form.

To obtain the asymptotic standard error of the MLEs of θ we use (−Iθ )
−1,

where Iθ is the observed-data information matrix given by

Iθ =
(

Iββ Iβφ

Iφβ Iφφ

)
,

with

Iββ = ∂2l(θ)

∂β ∂βT
= φ2

2XT Diag
(
R∗)X + φ2XT Diag(R)X,

where the elements of the vectors R and R∗ are respectively given by, Ri = (ai −
bi )

1
g′(μi)

, R∗
i = (a∗

i −b∗
i )

1
g′(μi)

2 , with ai = ψ(φ1 +μiφ2)−ψ(yi +φ1 +μiφ2 +1),

bi = ψ(μiφ2) − ψ(yi + μiφ2), a∗
i = ψ ′(φ1 + μiφ2) − ψ ′(yi + φ1 + μiφ2 + 1),

b∗
i = ψ ′(μiφ2) − ψ ′(yi + μiφ2) and ψ ′(·) denote the trigamma function and l(θ)

is given by (2.4)

Iβφ = ∂2l(θ)

∂β ∂φ
= ∂2l(θ)

∂φ ∂βT
= IT

φβ .

Then,

Iβφ = −2

(φ − 1)2 XT J3,

with J3 being a n-dimensional vector with elements given by J3i = [(ai − bi ) +
φ2(a∗

i (1 + μi) − b∗
i μi)] 1

g′(μi)
, and

Iφφ = ∂2l(β, φ)

∂φ2

=
n∑

i=1

(
− 1

φ2 + 1

(φ − 1)2 + 4
(μi + 1)2

(φ − 1)4 a∗
i + 4

μi + 1

(φ − 1)3 ai

− 4
μ2

i

(φ − 1)4 b∗
i − 4

μi

(φ − 1)3 bi

)
.
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To test linear hypotheses of interest we can use the three classic tests based on
the likelihood function, including the Wald test, likelihood-ratio test, and score
test; see, for instance, Boos and Stefanski (2013).

4 Influence measures

Xie and Wei (2008) obtained the MLE of the parameters for the Poisson inverse
Gaussian regression model employing the EM algorithm, and analyzed the pres-
ence of influential observations using the generalized Cook’s distance, the Q-
distance, and under different perturbation schemes of the original model: pertur-
bations of case weights and of the response and the explanatory variables, respec-
tively. Barreto-Souza and Simas (2015) propose the use of the EM algorithm for
the estimation of the parameters of the Poisson mixture regression models. They
also derive some expressions of global influence analysis, as are the generalized
Cook’s distance and the Q-distance. They also make corrections to the work of
Xie and Wei (2008), since the discrete nature of the response variable makes its
perturbation infeasible.

In this section, we present the expressions that allow us to detect possible influ-
ential observations both for global and local influence for the Waring regression
model using the Q-function.

4.1 Global influence

Let l(θ |yc) and l(θ |yc[i]), be the log-likelihood function of the q-dimensional vec-
tor of parameters θ for the complete-data and for the data with the deletion of the
ith case, respectively, where a subscript [i] means the original quantity with the
ith case deleted.

Then, the function Q(•) for the data set without the ith observation is given by

Q[i](θ |θ̂) = E
{
l(θ |yc[i])|y0[i], θ̂

}
,

whose maximum is denoted by θ̂ [i], i = 1, . . . , n and θ̂ is the MLE of θ .
Zhu et al. (2001) have proposed the use of the generalized Cook’s distance from

the Q-function. In this case distance between θ̂ and θ̂ [i] is given by

GDi = (θ̂ − θ̂ [i])T {−Q̈(θ̂ |θ̂)}(θ̂ − θ̂ [i])
q

, ∀i = 1, . . . , n. (4.1)

Using one-step linear approximations θ̂
(1)

[i] of θ̂ [i] given by Pregibon (1981), we
get

θ̂
(1)

[i] = θ̂ + {−Q̈(θ̂ |θ̂)
}−1

Q̇[i](θ̂ |θ̂), (4.2)
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where Q̇[i](θ̂ |θ̂) = ∂Q[i](θ |θ̂)

∂θ |θ=θ̂
and Q̈[i](θ |θ̂)|θ=θ̂

of the estimation algorithm is

replaced by Q̈(θ̂ |θ̂).
By substituting (4.2) in (4.1), the one-step approximation of the GDi is obtained

in the context of EM

GD
(1)
i = (Q̇[i](θ̂ |θ̂))T {−Q̈(θ̂ |θ̂)}−1(Q̇[i](θ̂ |θ̂))

q

≈ (
Q̇[i](θ̂ |θ̂)

)T {−Q̈(θ̂ |θ̂)
}−1(

Q̇[i](θ̂ |θ̂)
)
.

(4.3)

Then, large values of GD
(1)
i have a great impact on the MLEs. This proposal is

later used by Pan, Fei and Foster (2014), who analyze the detection of influential
observation in the mixed linear models.

Zhu et al. (2001) define the Q-distance as

QDi = 2
{
Q(θ̂ |θ̂) − Q(θ̂ [i]|θ̂)

};
by (4.2) one obtains the one-step approximation of QDi

QD
(1)
i = 2

{
Q(θ̂ |θ̂) − Q

(
θ̂

(1)

[i] |θ̂
)}

. (4.4)

Zhu et al. (2001) prove that, under certain regularity conditions, GD
(1)
i ≈

QD
(1)
i . For the mixed Beta-Geometric model we have that

Q̇[i](θ̂ |θ̂) =
⎛
⎜⎝ φ2XT[i]R[i]

−2

(φ − 1)2 D

⎞
⎟⎠
∣∣∣∣∣∣∣
θ=θ̂

(4.5)

is a q-dimensional vector, where R[i] is a (n − 1)-dimensional vector whose ele-
ments are given by R[i] = (sj + ψ(φ1 + μjφ2) − ψ(μjφ2))μj , with ∀j �= i and
D = ∑

i �=j [ej + μjsj + ψ(φ1 + μjφ2)(1 + μj) − ψ(φ1) − ψ(μjφ2)μj ]. The ex-
pressions (3.4) and (4.5) allow to obtain the estimates at one-step from θ [i] as in
(4.2), and thus the one-step generalized Cook’s distance, given in (4.3).

The one-step Q-distance is calculated from (4.4) using one-step estimates of the
parameters without the ith observation.

4.2 Local influence

Let ω be a perturbation vector, l0(θ |ω,y0) and lc(θ |ω,yc) the log-likelihood func-
tion of the observed data and of complete-data perturbed by ω, respectively,
where θ is a q-dimensional vector of parameters and the perturbed statistical
model M = {P(yc, θ,ω) : ω ∈ 	}. Let θ̂ and θ̂ω be the MLE which maximize
Q(θ |θ̂) = E(lc(θ |yc)|y0, θ̂) and Q(θ |ω, θ̂) = E(lc(θ |ω,yc)|y0, θ̂), respectively.
Zhu et al. (2001) and Zhu and Lee (2001) propose the displacement of the Q-
function to measure the difference between θ̂ and θ̂ω, given by

fQ(ω) = 2
[
Q(θ̂ |θ̂) − Q(θ̂ω|θ̂)

]
,
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where Q(θ̂ |θ̂) = Q(θ̂ |ω0, θ̂) and Q(θ̂ω|θ̂) = Q(θ̂ω|ω0, θ̂). Note that fQ(ω) ≥ 0
∀ω ∈ 	 and fQ(ω0) = 0.

Zhu and Lee (2001) define the influence graph of the Q-displacement function
as α(ω) = (ωT , fQ(ω))T .

Then, CQ,h(θ) denotes the normal curvature of the surface α(ω) in ω0, in the
direction of unitary vector h (‖h‖ = 1), which is given by

CQ,h(θ) = 2
∣∣hT Q̈ω0h

∣∣,
where Q̈ω0 = 
T

ω0
{−Q̈(θ |θ̂)}−1
ω0 , Q̈(θ |θ̂) = ∂2Q(θ |θ̂)

∂θ ∂θT |
θ=θ̂

and 
ω =
∂2Q(θ ,ω|θ̂)

∂θ ∂ωT |
θ=θ̂ and ω=ω0

.

4.2.1 Selection of the perturbation scheme. Zhu et al. (2007) and Chen, Zhu and
Lee (2009) discuss the need to be rigorous in the selection of perturbation schemes,
based in the work of Cook (1986) on the use the normal curvature as a tool to eval-
uate the local influence of small perturbations of a statistical model. The proposal
of Zhu et al. (2007) is based on the expected Fisher information matrix with respect
to the perturbation vector, given by

G(ω) = (
Gir(ω)

) = Eω
(
Uθ (ω)UT

θ (ω)
) = −Eω

(
∂2lc(θ |ω,yc)

∂ω ∂ωT

)
,

where Eω denotes the expectation regarding the density of the perturbed model,
P(yc, θ,ω), and Uθ (ω) corresponds to the score function of the perturbed model.

For Zhu et al. (2007), an appropriate perturbation to a statistical model should
satisfy the following conditions: G(ω) is positive definite in a small neighborhood
of ω0 and the off-diagonal elements of G(ω), evaluated in ω0 should be as small
as possible.

Then, a perturbation ω is appropriate if, when evaluating the expected Fisher
information matrix at ω0, one has that G(ω0) = cIn, where c = Eω(∂ logP(yic, θ,

ωi)/∂ωi)
2 > 0 evaluated in ω = ω0, which warrants that the elements of ω are

asymptotically independent. Moreover, if the matrix G(ω0) = Diag(G11(ω0), . . . ,

Gnn(ω0)), it is always possible to choose another perturbation vector ω̃ defined as
follows:

ω̃ = ω0 + c−1/2G(ω0)
1/2(ω − ω0),

such that G(ω̃) evaluated in ω0 is equal to cIn. For more details, see Rivas (2017).
Zhu et al. (2007) present various examples to find the appropriate perturbation

under different schemes. Giménez and Galea (2013) analyze three schemes of per-
turbation from the comparative calibration model, such as: case weight, additive
perturbation of the referent and an alternative instrument.

In this paper, the predictor additive perturbation is considered. Then, the log-
likelihood function of the complete-data, under this scheme of perturbation, is
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given by

lc(θ |ω,yc) =
n∑

i=1

{
logpiω + yi log(1 − piω) + log�(φ1 + μiφ2)

+ (φ1 − 1) logpi + (μiφ2 − 1) log(1 − pi) − log�(φ1)

− log�(μiφ2)
}
,

(4.6)

where piω = 1
1+μiω

, with μiω = exp{xT β + Siωiβ
∗
j }, for i = 1, . . . , n and j∗ rep-

resenting the perturbed predictor. First, Si is determined so that the proposed per-
turbation is appropriate. From (4.6), one has that

∂lc(θ |ω,yc)

∂ωi

= −(yi + 1)

(
μiω

1 + μiω

)
Siβ

∗
j + yiSiβ

∗
j ,

∂l2
c (θ |ω,yc)

∂ω2
i

= −(yi + 1)

(
μiω

(1 + μiω)2

)
S2

i β∗2
j ,

∂2lc(θ |ω,yc)

∂ωi ∂ωr

= 0, i �= r.

Then, the elements of G matrix are given by

Gii(ω) = −E

(
∂2lc(θ |ω,yc)

∂ω2
i

)
=

(
2 + μiω

1 + μiω

)
μiω

(1 + μiω)2 S2
i β∗2

j ,

Gir(ω) = E

(
∂lc(θ |ω,yc)

∂ωi

∂l(θ |ω,yc)

∂ωr

)
= 0.

(4.7)

Evaluating each element of (4.7) in ω0, we obtain

G(ω0) = β∗2
j Diag

(
2 + μ1

(1 + μ1)3 S2
1 , . . . ,

2 + μn

(1 + μn)3 S2
n

)
�= cIn.

Therefore, for the perturbation to be adequate, Si is defined as

Si =
(

2 + μi

(1 + μi)3

)−1/2
, for i = 1, . . . , n.

Rewriting μiω, one has that

μiω = exp
{

xT
i β +

(
2 + μi

(1 + μi)3

)−1/2
ωiβ

∗
j

}
.

Therefore, the elements in the matrix 
 are given by, τφi
= 0, i = 1, . . . , n,

while τβij
for j = j∗ are given by

τβij
= − (yi + 1)

(1 + μiω)2 μiω

[
β∗

j Si

(
xij + Siβj

ωiβ
∗
j + Siωi

) + β∗
j Siβj

(1 + μiω + yi)

+ Si(1 + μiω + yi)
]
.
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And for j �= j∗,

τβij
= − (yi + 1)

(1 + μiω)2 μiω

[
β∗

j Si

(
xij + Siβj

ωiβ
∗
j

) + β∗
j Siβj

(1 + μiω)
] + β∗

j yiSiβj
.

Note that in this context, Siβj
is given by

Siβj
= ∂Si

∂βj

= −1

2
S3

i

(−2μ2
i xij − 5μixij

(1 + μi)4

)
, ∀i = 1, . . . , n, and j = 0, . . . , k.

All the expressions must be evaluated in MLEs of θ and in ω = ω0 =
(0, . . . ,0)T .

5 Application

In this section, we illustrate the methodology developed in the paper using simu-
lated data and a real data set. For comparative purposes, we also fit the geometric
regression model.

5.1 Simulated data

We present the results of a Monte Carlo simulation experiment in order to in-
vestigate the finite-sample performance of the MLEs. This experiment consid-
ers the Waring regression model, that is, yi ∼ Waring(μi, φ), where φ = 2.5 and
μi = exp(β0 + β1xi), whose covariate xi ∼ Uniforme(0,1) and β = (β0, β1)

T =
(2,1)T . We choose five different sample size specifically n = 50,100,500,800,
and 1000. For each sample size R = 1000, Monte Carlo replications were gener-
ated.

In order to analyze the results, we computed the average (AVE), the stan-
dard deviation (sd), the Bias and the root mean squared error (

√
MSE) of

the estimates. The mean and the standard deviation of any estimate from
θ = (β0, β1, φ)T , namely θ̂ , are estimated as AVE = R−1∑R

r=1 θ̂ r and sd =√
(R − 1)−1∑R

r=1(θ̂
r − AVE)2, respectively, with θ̂ r being the estimate of θ in

the r th replication, for r = 1, . . . ,R. The Bias and mean squared error is estimated
as Bias = AVE − θ and MSE = sd2 + Bias2.

Table 1 presents simulation results, for the smallest sample size considered (n =
50,100), the estimation algorithm failed to converge en 3%, and 1%, respectively.
For large sample sizes the algorithm converged for all the samples.

For all the sample size considered, the β’s MLE are very close to the real values
and for φ it approaches a 2.5 (real value) as the sample size increases. Also and as
expected, the sd, Bias and

√
MSE decrease when the sample size increases.
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Table 1 Results from simulations, including average parameter estimates (AVE), standard devia-
tion (sd), Bias and root mean squared error (

√
MSE)

n Parameter AVE sd Bias
√

MSE

50 β0 1.9691 0.4090 −0.0309 0.4101
β1 0.9945 0.6815 −0.0054 0.6815
φ 3.5156 3.9162 1.0156 4.0457

100 β0 1.9726 0.2887 −0.0274 0.2900
β1 1.0163 0.4706 0.0163 0.4709
φ 3.4078 3.4978 0.9078 3.6137

500 β0 1.9931 0.1272 −0.0069 0.1274
β1 1.0078 0.2085 0.0078 0.2086
φ 2.6864 1.2000 0.1864 1.2139

800 β0 2.0021 0.1034 0.0021 0.1034
β1 0.9958 0.1670 −0.0042 0.1671
φ 2.6112 0.7748 0.1112 0.7827

1000 β0 1.9996 0.0920 −0.0004 0.0920
β1 0.9977 0.1510 −0.0023 0.1510
φ 2.5868 0.6731 0.0868 0.6786

5.2 Visits to the doctor data

Next, as illustration, we consider the data set given in Hilbe (2011), called rwm5yr
and available in the COUNT library of the packages of the same name in the R
software. In that book, this data set was used for to compare the Negative Binomial
regression model with the Generalized Waring regression models, but considering
all the years in which they were measured. In our case, for simplicity, we only use
the data for the year 1987.

The response variable (yi) are the number of visits to the doctor of 1755 German
women between 25 and 64 years old, during 1987, and the regressors variables are
annual household income divided in 10 (in Marks) INC, the age (in years) AGE,
and education (in years) ED. Figure 4 shows the behavior of the yi per individual.
There it can be observed the high number of women who did not go to the doctor
during that year and how the frequency is reduced when the number of visits in-
creases. Note that there are two patients that went to the doctor 82 and 90 times
during 1987. These patients have the number 37 and 291, respectively.

Figure 5 shows the behavior of the response variable with respect to each of the
covariates, from which is concluded that there are three observations away from
the point cloud. Patients 37 and 291 correspond to observations with a high number
of visit to the doctor and low family income, while the third observation, patient
285, corresponds to a woman with high family income and high number of visits.
It can also be noted that patients 37 and 291 are over 50 years old and only has 9
years of education.
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Figure 4 Histogram number of visits to the doctor of 1755 German woman during 1987.

Figure 5 Scatter plot of the number the visits to the doctor versus Income (a), Age (b) and Educa-
tion (c).

Table 2 presents the parameter estimates and their respective standard deviations
(sd) for data on doctor visits obtained from the fitted Geometric and Waring regres-
sion models. It is observed that, although the estimates of the parameters are not
very different in both models, the value of the log-likelihood function increases,
while the AIC is reduced in the Waring regression model, giving indications that
this model is more suitable than the Geometric regression model to describe the
behavior of this data set. In addition, when performing the likelihood ratio test on
the models to be compared, a value of LRc = 166.0824 is obtained, with an associ-
ated p-value < 0.05, considering that the statistic corresponding to the test follows
a distribution χ2 with one degree of freedom, since the Geometric model is nested
in the Waring model. This supports the foregoing conclusion. In the context of the
problem, it becomes relevant that the it is probability, p, that each of these women
go to the doctor change from individual to individual, as is natural to think, thus
justifying the use of the Waring regression. Note that parameters β1 and β3, as-
sociated with INC and ED, respectively, are not significant. The expected Fisher
information matrix was used to calculate the asymptotic standard deviations.
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Table 2 Summary of Geometric and Waring regression models
adjustments for visits to doctor data

Model Estimation

Geometric β̂0 = 1.4142 (0.3017) lgeo = −4345.632
β̂1 = −0.0364 (0.0246) AIC = 8699.263
β̂2 = 0.0099 (0.0035)
β̂3 = −0.0352 (0.0198)

Waring β̂0 = 1.1092 (0.2662) lWaring = −4265.269
β̂1 = −0.0258 (0.0216) AIC = 8540.538
β̂2 = 0.0130 (0.0031)
β̂3 = −0.0225 (0.0174)
φ̂ = 2.3701 (0.3552)

LRc = 2(lWaring − lgeo) = 166.0824, p-value < 0.05

Figure 6 Simulated envelope for the Pearson Residual in the Geometric model (a) and Waring
model (b).

Figure 6 presents the envelope simulations for the Pearson residuals, for both
the Geometric regression model (a) and the Waring regression model (b), one can
observed that the latter shows a better fit, as explained before, in the sense that the
Waring regression model is more adequate to describe these data than the Geomet-
ric regression model.

Figure 7 shows the behavior of the Q-distance to one-step for θ̂ , QD
(1)
i . It is

clearly observed that observation 285 is the one that has the greatest influence on
the estimation of the parameters. Note that the graph of GD

(1)
i is not included,

since QD
(1)
i ≈ GD

(1)
i .

Figure 8 shows that under the additive perturbation scheme of the variable INC
the observations 37 and 291 are the most influential in the MLE of the parame-
ters, in both graphs, |hmax | (a) and total local curvature Ci (b). The corresponding
graphs for the variables AGE and ED were not included, since they present a sim-
ilar behavior.
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Figure 7 Index plot of the generalized Cook’s distance one-step for θ̂ .

Figure 8 Index plot of |hmax| (a) and total local curvature Ci (b) under additive perturbation of
covariable INC.

Table 3 shows the rate of change (RC) of the MLEs, given by RCj = | θ̂j−θ̂j (I )

θ̂j
| ∗

100, ∀j for the Waring regression model, since the possible influential observa-
tions detected in the previous graphs and their combinations are deleted (37, 285
and 291). From the above table it can be concluded that β2 in all cases proved to
be significant and β3 always remained non-significant for the model. However, β1
changed its significance when the observation 285 was involved.

Similarly, it can be seen from Table 3 that the rates of changes of the MLEs with
respect to β1 are greater when a subset containing observation 285 is deleted from
the data set. In addition, when this observation is deleted, it causes a change in the
significance of parameter β1, i.e., when this observation is included in the data set
the hypothesis H0 : β1 = 0 is not rejected. However, when it is eliminated, and the
hypothesis is contrasted again, it is rejected with a level of significance of 5%. In
the remaining cases involving the elimination of observation 285, there is also a
change in the significance of the parameter, but with a significance level of 10%.

It should be noted that the analysis was repeated only with the variables income
and age, since the parameter associated with the variable education was never sig-
nificant. The conclusions are analogous to what is presented in Table 3, therefore,
the ED variable can be extracted from the model.
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Table 3 Rate of change of the MLEs by eliminating subset of observations in the Beta-Geometric
regression model

Observations RC

deleted β0 β1 β2 β3 φ Significance

– – – – – – β2 significant
37 1.21 1.55 0.77 4.44 4.34 β2 significant
285 1.13 60.85 0.00 14.22 1.79 β1, β2 significant
291 0.15 6.20 3.08 1.78 4.13 β2 significant
37,285 0.06 63.95 1.54 19.11 6.07 β∗

1 , β2 significant
37,291 1.34 4.26 3.85 6.22 8.32 β2 significant
285,291 0.99 55.04 3.08 16.00 5.74 β∗

1 , β2 significant
37,285,291 0.17 57.75 3.85 20.89 9.88 β∗

1 , β2 significant

From Table 3, it can be seen that observation 285 exerts changes in the MLE of
the parameters, which corresponds to a woman with high income, 42 years of age
and with only 9 years of education.

It can be stated that, for this application, it is justified to choose the Waring
model over the Geometric model, since it is natural that the probability associated
with going to the doctor of any person is individual. Therefore, it is logical to
think that this varies from subject to subject and, as such, the probability can have
an associated distribution, in this case a Beta distributions.

Since observation 285 is detected as a potential influential observation, it is
advisable to study its nature and/or apply a robust estimation method.

6 Conclusions

Evaluating the sensitivity (robustness) of the results obtained with the available
data set is an important step in any statistical analysis, since outlying cases can
distort estimators and test statistics, leading to, in some cases, wrong decisions.
The aim of influence diagnostic methods is to identify outlying observations that
may affect the values of statistics of interest under the proposed model. Thus, the
goal of this paper was to propose influence measures to detect outlying observa-
tions that may distort some statistics of interest in the Waring regression model, a
statistical model for count data, which is useful in many areas of knowledge.

We derive in closed-form expression the Fisher information matrix for the full
parameter vector and a iterative process based on the Newton-Raphson algorithm
is developed for maximum likelihood estimation.

Using the Q-function we calculated expressions for global influence as gener-
alized Cook’s distance and Q-distance; closed form expressions were obtained for
local influence measures under the additive perturbation scheme of an explicatory
variable and we defined an appropriate perturbation vector.
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Empirical results show that the influence measures developed in the paper are
useful for evaluating the effect of the observations in the estimation process and in
hypothesis testing.

The codes used were written in R and are available and can be requested from
the author via email.

Appendix

In this appendix, we obtain the moment generating function (MGF) of the Waring
distribution (α,β) and the mean and variance. The MGF is given by

My(t) = E
(
ety) =

∞∑
y=0

etyP (y|α,β),

where P(y|α,β) is the probability function of the Waring distribution, which is
obtained from the mixture given in (2.3), that is,

P(y|α,β) =
∫ 1

0
p(1 − p)y

�(α + β)

�(α)�(β)
pα−1(1 − p)β−1 dp,

then, the MGF is given by

My(t) =
∞∑

y=0

ety
∫ 1

0
p(1 − p)y

�(α + β)

�(α)�(β)
pα−1(1 − p)β−1 dp,

from where

My(t) = lim
n→∞

n∑
y=0

ety
∫ 1

0
p(1 − p)y

�(α + β)

�(α)�(β)
pα−1(1 − p)β−1 dp

=
∫ 1

0
lim

n→∞
n∑

y=0

etyp(1 − p)y
�(α + β)

�(α)�(β)
pα−1(1 − p)β−1 dp.

Given that

etyp(1 − p)y
�(α + β)

�(α)�(β)
pα−1(1 − p)β−1 ≥ 0,

it is possible to define an increasing sequence, such that

An =
n∑

y=0

etyp(1 − p)y
�(α + β)

�(α)�(β)
pα−1(1 − p)β−1,

then we have that 0 ≤ An ≤ An+1, therefore, by monotone convergence theorem

My(t) =
∫ 1

0

∞∑
y=0

etyp(1 − p)y
�(α + β)

�(α)�(β)
pα−1(1 − p)β−1 dp.
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Then,

My(t) =
∫ 1

0

�(α + β)

�(α)�(β)
pα−1(1 − p)β−1

( ∞∑
y=0

etyp(1 − p)y

)
dp

=
∫ 1

0

�(α + β)

�(α)�(β)
pα−1(1 − p)β−1 p

1 − (1 − p)et
dp,

given that

My|p(t) = p

1 − (1 − p)et
, as y|p ∼ Geo(p).

Finally,

My(t) = �(α + β)

�(α)�(β)

∫ 1

0

pα(1 − p)β−1

1 − (1 − p)et
dp. (A.1)

From (A.1), it is possible to attain mean and variance of the Waring distribution,
given in (2.2). One can notice that∫ 1

0

∂

∂t

pα(1 − p)β−1

1 − (1 − p)et

∣∣∣∣
t=0

dp =
∫ 1

0

pα(1 − p)βet

(1 − (1 − p)et )2

∣∣∣∣
t=0

dp

=
∫ 1

0
pα−2(1 − p)β dp

= �(α − 1)�(β + 1)

�(α + β)
T1

= �(α − 1)�(β + 1)

�(α + β)
,

where T1 = ∫ 1
0

�(α+β)
�(α−1)�(β+1)

pα−2(1 − p)β dp is Beta(α − 1, β + 1).

Therefore, ∂
∂t

pα(1−p)β−1

1−(1−p)et |t=0 is integrable. Then,

E(y) = ∂My(t)

∂t

∣∣∣∣
t=0

= �(α + β)

�(α)�(β)

∫ 1

0

∂

∂t

pα(1 − p)β−1

1 − (1 − p)et

∣∣∣∣
t=0

dp = β

α − 1
. (A.2)

In a similar way, we can show that ∂2

∂t2
pα(1−p)β−1

1−(1−p)et |t=0 is integrable, and therefore
the second moment is given by

E
(
y2) = ∂2My(t)

∂t2

∣∣∣∣
t=0

= �(α + β)

�(α)�(β)

∫ 1

0

∂2

∂t2

pα(1 − p)β−1

1 − (1 − p)et

∣∣∣∣
t=0

dp

= �(α + β)

�(α)�(β)

∫ 1

0

[
pα(1 − p)βet (1 − (1 − p)et )2

(1 − (1 − p)et )4
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+ 2pα(1 − p)β+1(1 − (1 − p)et )e2t

(1 − (1 − p)et )4

]∣∣∣∣
t=0

dp

= �(α + β)

�(α)�(β)

∫ 1

0

pα+2(1 − p)β + 2pα+1(1 − p)β+1

p4 dp

= �(α + β)

�(α)�(β)

∫ 1

0

(
pα−2(1 − p)β + 2pα−3(1 − p)β+1)dp (A.3)

= �(α + β)

�(α)�(β)

[
�(α − 1)�(β + 1)

�(α + β)

·
∫ 1

0

�(α + β)

�(α − 1)�(β + 1)
pα−2(1 − p)β dp︸ ︷︷ ︸

∼Beta(α−1,β+1)

+ 2�(α − 2)�(β + 2)

�(α + β)

·
∫ 1

0

�(α + β)

�(α − 2)�(β + 2)
pα−3(1 − p)β+1 dp︸ ︷︷ ︸

∼Beta(α−2,β+2)

]

= β

α − 1
+ 2(β + 1)β

(α − 1)(α − 2)
.

From (A.2) and (A.3), it is possible to attain the variance of the distribution,

Var(y) = E
(
y2) − E2(y) = β

α − 1
+ 2(β + 1)β

(α − 1)(α − 2)
− β2

(α − 1)2

= αβ(α + β − 1)

(α − 1)2(α − 2)
,

(A.4)

where (A.2) and (A.4) coincide with (2.2).
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