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Abstract. Financial returns are known to be nonnormal and tend to have fat-
tailed distribution. Also, the dependence of large values in a stochastic pro-
cess is an important topic in risk, insurance and finance. In the presence of
missing values, we deal with the asymptotic properties of a simple “median”
estimator of the tail index based on random variables with the heavy-tailed
distribution function and certain dependence among the extremes. Weak con-
sistency and asymptotic normality of the proposed estimator are established.
The estimator is a special case of a well-known estimator defined in Bacro
and Brito [Statistics & Decisions 3 (1993) 133–143]. The advantage of the
estimator is its robustness against deviations and compared to Hill’s, it is less
affected by the fluctuations related to the maximum of the sample or by the
presence of outliers. Several examples are analyzed in order to support the
proofs.

1 Introduction and motivation

The last three decades have witnessed rapid expansion of the study of heavy-
tailedness phenomena in economics and finance. Following the initial work by
Mandelbrot (1960, 1963) numerous studies have documented that time series en-
countered in many fields in economics and finance are typically thick-tailed and
can be well approximated using distributions with the tails exhibiting the property:

1 − F(x) = x−αL(x), x > 0, (1.1)

where α > 0 denotes the index of regular variation and L is slowly varying at
infinity, that is:

lim
t→∞

L(tx)

L(t)
→ 1 for x > 0. (1.2)

One of the most important parameters for measuring the thickness of the dis-
tribution tail, attracting the great attention among the statisticians over the past
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20 years is the parameter α, known as Pareto index or the index of regular vari-
ation. Since it is a well-known fact that financial returns tend to have empirical
distributions that exhibit fatter tails than the normal distribution (see Jansen and
de Vries (1991), Koedijk and Kool (1994) and Loretan and Phillips (1994)), the
approximate evaluation of this parameter is of great importance. Therefore, the
tail thickness has been rigorously studied and different estimators of α have been
suggested and analyzed in the case of complete data.

Suppose {Xt } = {Xt : 1 ≤ t ≤ n} is a sample of rv’s equally distributed with the
heavy-tailed distribution function F and X(1) > X(2) > · · · > X(n) are the order
statistics. Probably the most popular estimator of γ = 1/α, based on the extreme
portion of the sample and obtained as the arithmetic mean of certain logarith-
mic differences is by all means the Hill’s estimator Hα,n, defined as follows (Hill
(1975)):

Hk,n = 1

k

k∑
i=1

lnX(i) − lnX(k+1), (1.3)

where k = kn is a sequence of positive integers satisfying

1 ≤ kn < n, lim
n→∞kn = ∞ and lim

n→∞kn/n = 0. (1.4)

Hill’s estimator has been well studied when {Xt } are i.i.d. (independent identi-
cally distributed) (see Davis and Resnick (1984) and Haeusler and Teugels (1985)).
Other estimators of α in i.i.d. settings were also studied in the case of complete
samples: Bacro and Brito (1995) and Csörgó and Viharos (1998). See also Hsing
(1991) and Hill (2010) and the extensive list of citations therein for the estima-
tion of the tail index using a full sample of possibly dependent data. The results
of Hsing (1991) were extended on the incomplete sample of possibly dependent
variables, see Mladenovic and Piterbarg (2008) and Ilic and Mladenovic (2008).
Also see Ilic (2012) for the proof of the asymptotic normality of the Hill’s es-
timator under the assumption of the incompleteness of the sample consisting of
heterogeneous and dependent data.

It is well known that Hk,n is a strong consistent estimator of γ , asymptotically
normally distributed (see, for instance, Haeusler and Teugels (1985)).

More recently, Bacro and Brito (1993) proposed and well studied a simple esti-
mator defined as:

Bp = − 1

lnp
ln

X(�pkn�)
X(�kn�)

, (1.5)

where 0 < p < 1 is a fixed constant and �x� is a ceiling function and denotes the
smallest integer greater than or equal to x and kn is a nondecreasing sequence of
positive real numbers satisfying (1.4). Also, this estimator was proposed in Fraga
Alves (1992, 1995) and the same paper has also been referred in Bacro and Brito
(1998). For the results on strong asymptotic behavior of Bp see Bacro and Brito
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(1993). General conditions which ensure the asymptotic normality of this estimator
are given in Bacro and Brito (1995) and in the same paper, the weak limiting
behavior of the Bp has been analyzed.

In this paper, we investigate an asymptotic behavior of the median estimator
B2,n:

B2,n = 1

ln 2
ln

X(kn)

X(2kn)

, (1.6)

where kn is a sequence of positive integers satisfying (1.4).
Note that as well as Hill’s, this estimator presents an important statistical mea-

sure, i.e. Hill’s estimator may be pointed as a mathematical expectation of certain
sequence of logarithmic differences and B2,n as their median. On the other hand,
it is well known that maximum likelihood estimators are usually sensitive to few
particular observations, known as outliers. These observations do not fit the model
imposed by the majority of the data points. However, in extreme value statistics,
modeling these rare events with low frequency but high impact receives great at-
tention. So, the idea is to investigate the outlier-resistant estimator under certain
additional conditions attractive for the researchers in modeling financial, insur-
ance and economic extreme events. The main motivation for studying B2,n is its
“robustness” against deviations of the slowly varying function L from the constant
(see Csörgo and Viharos (1998)). It doesn’t include the top values of the sample, so
one can expect that B2,n is less affected by the fluctuations related to the maximum
of the sample or by the presence of outliers. The proposed procedure provides es-
timation of α which is still reliable and reasonably efficient under small deviations
from the assumed parametric model.

Robust methods for extreme values have been discussed in recent literature. For
example, Vandewalle et al. (2007) consider a robust estimator of the tail index by
combining a refinement of the Pareto approximation for the conditional distribu-
tion of relative excesses over a large threshold with an integrated squared error
approach on partial density component estimation. Also, Hubert et al. (2013) in-
troduce new robust GLM estimator for alpha, which determines high quantiles,
based on a robust M-estimator proposed by Cantoni and Ronchetti (2001). On
the other hand, the formulation of an estimator robust to outliers, may seem as a
contradiction to estimation of models with the main interest laying in the extreme
values-values that are associated exactly to outliers. Robust methods can help us
identify deviating structure, influential observations and guarantee good statistical
properties over a whole set of underlying distributions. Therefore, they can consid-
erably enhance the data analysis. In this sense there is no “obvious” contradiction
between robustness and EVT. Overall, we find that robust statistical methods can
improve the data analysis process of the skilled analyst and provide useful addi-
tional information.

Under the assumptions of extremal dependence structure and the incomplete-
ness of the sample, we track the weak limiting behavior and provide general con-
ditions which ensure the asymptotic normality of the median estimator B2,n. In
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next sections, we define more accurately the model of the incompleteness and the
notion of extremal dependence.

2 A sample with missing observations

If the condition (1.1) is satisfied one can easily prove that (see Leadbetter et al.
(1983), Theorems 1.5.1 and 1.7.3):

lim
x→∞

1 − F(x)

1 − F(x − 0)
= 1, (2.1)

1 − F

(
F−1

(
1 − 1

t

))
∼ 1

t
as t → ∞, (2.2)

where F−1(y) := inf{x : F(x) ≥ y} is the left continuous inverse of the function
F . Since any inference of α should be made with the tail portion of the empirical
distribution of the sample, without loss of generality, we may assume that F has
support on (0,∞).

Now, assume that only observations at certain points are available. Denote the
observed random variables among {X1, . . . ,Xn} with X̃1, . . . , X̃Sn . Here the ran-
dom variable Sn presents the number of observed rv’s among first n terms of the
sequence {Xt }t∈N . We shall assume that observed random variables are determined
by a general point process and only conditions on Sn will be imposed. This model
was considered in Mladenovic and Piterbarg (2008), where consistency of Hill’s
estimator was proved. Finally, through out this paper we used specific model which
defines a structure of the incompleteness of data, a common problem in modern
statistical analysis.

Assumption A. The sequence X1, X2, . . . does not depend on Sn and

Sn

n

p−→ ν > 0 as n → +∞.

Suppose βn is a sequence of real numbers such that

lim
n→∞βn = ∞ and lim

n→∞
βn

n
= 0. (2.3)

Let

Mn =
[
Sn

βn

]
and P {Mn = k} = pk, (2.4)

where the floor function [·] denotes the largest previous integer.

Remark 2.1. Let ξk be the indicator of the event that random variable Xk is ob-
served. Assume that (ξn)n∈N is an i.i.d. sequence, independent of (Xn)n∈N sat-
isfying that P {ξk = 1} = p and P {ξk = 0} = 1 − p, where 0 < p < 1. Then
Sn ∈ B(n,p), i.e. Sn = ξ1 + ξ2 + · · · + ξn is a binomial random variable with pa-
rameters n and p. In this case, the Assumption A is satisfied.
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We are interested in the estimation of α, using some portion of the sample. Let
X̃(1) ≥ X̃(2) ≥ · · · ≥ X̃(Sn) be the order statistics from Sn observed variables.

Median estimator is now defined as:

B̃2,Sn = 1

ln 2
(ln X̃(Mn) − ln X̃(2Mn)).

3 Extremal dependence

Using the above model, we prove the consistency and asymptotic normality of
B2,n estimator by using processes with extremes that are NED (near epoch depen-
dent) on some arbitrary mixing functional. This property has substantial practical
advantages because it only requires computation of conditional expectation and
it is easy to verify. It indicates a possible dependence among the extremes. This
assumption is particularly convenient since it covers wide variety of processes and
it is suitable for applications. We do not require stationarity in general and our
results cover, for example, processes satisfying Hsing’s mixing condition, non-
linear distributed lag processes, strong mixing GARCH, explosive GARCH, and
much more. See Hill (2010) who expedites the theory by analyzing the processes
whose extremal support is NED and proves a broad class of processes have this
property.

In order to demonstrate the asymptotic properties of B̃2,Sn we appeal to the
concept in Hill (2010, Theorem 1). He imposes new tail dependence proper-
ties on {I (Xt > bkne

u)}, (bkn := F−1(1 − kn

n
) and I is a notation for an indi-

cator function) that cover and generalize Hsing’s mixing condition (see Hsing,
1991).

Let 
t := σ(ετ : τ ≤ t) be a σ -field induced by some α-mixing base εt . Let
qn be an arbitrary sequence of integers satisfying 1 ≤ qn < n, and qn → ∞. For
example, we may assume εt = I (Xt > bkne

u) and impose a mixing condition on
εt as in Hsing (1991).

Lp-Extremal-Near Epoch Dependence (Lp-E-NED) property. {Xt } is Lp-E-
NED on {
t }, p > 0, with size λ > 0 if∥∥I (

Xt > bkne
u) − P

(
Xt > bkne

u|
t+qn
t−qn

)∥∥
p ≤ fnt (u) × ψqn,

where ψqn = o(q−λ
n ), fnt : R+ → R+ is Lebesgue measurable,

sup1≤t≤n supu≥0 fnt (u) = O((kn/n)1/p) and Fs+t
s := σ (̃ετ : s ≤ τ ≤ s + t), where

ε̃s is some functional of X̃s . See Hill (2010, p. 1402).

Assumption B. {Xt } is L2-E-NED on {
t }, with coefficients ψqn of size
1/2 and constants fnt (u) where fnt : R+ → R+ is Lebesgue measurable,
sup1≤t≤n

∫ ∞
0 fnt (u) du = O((kn/n)1/2).
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Remark 3.1. Note that, if the sequence {Xt } is α-mixing, then so is {X̃t } because

sup
s∈Z

sup
A∈Fs−∞,B∈F+∞

s+d

∣∣P(A ∩ B) − P(A)(B)
∣∣

≤ sup
t∈Z

sup
A∈
t−∞,B∈
+∞

t+d

∣∣P(A ∩ B) − P(A)(B)
∣∣.

4 Main results

Lemma 4.1. Let kn = k be fixed. Suppose that Assumptions A, B and (1.1) hold.

Then B̃2,Sn

P−→ γ , as n → ∞.

Lemma 4.2. Assume that Assumptions A and B hold. Then: E(B̃2,Sn) → γ and
Var(B̃2,Sn) ∼ γ 2 1

ln2 2
E( 1

Mn
), as n → ∞.

Assumption C. There exists positive measurable function g on (0,∞) such that
for any λ > 0,

L(λx)/L(x) − 1 = O
(
g(x)

)
,

as x → ∞. Also, there exist D > 0, z0 < ∞ and τ ≤ 0, such that g(λz)/g(z) ≤
Dλτ , for some λ ≥ 1 and z ≥ z0. We require kn and g to satisfy k

1/2
n g(F−1(1 −

kn

n
)) → 0, as n → ∞.

Theorem 4.3. Let Assumptions A, B and C hold. Then

ln 2E
(
M1/2

n

)
(B̃2,Sn − γ )

d−→ N
(
0, γ 2)

,

as n → ∞.

Example 4.4. Let us consider a model with missing observations such that the
number of observed variables in the sample is described with the random variable
Sn with the probability distribution given by:

P

{
Sn = n

2

}
= 1

n
, P

{
Sn = n

2
− 1

}
= 1 − 1

n
,

(4.1)

E(Sn) = n

2
· 1

n
+

(
n

2
− 1

)
·
(

1 − 1

n

)
= n2 − 2n + 2

2n
.

We conclude straightforward that the Assumption A holds. Let us consider the
finite moving average processes

Xj =
m∑

i=0

ciZi+j , j = 1,2, . . . ,
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where ci ∈ R+, i = 0, . . . ,m and Zk are independent identically distributed ran-
dom variables with P {Zk > z} = z−αL(x) and L(x) is slowly varying function at
infinity defined as:

L(x) = B
(
1 + O(logx)−β)

, (4.2)

as x → ∞ and B,β > 0. Since this kind of processes is covered with the L2-E-
NED property (see for example Hill (2010) for more details) we have that the As-
sumption B holds. Finally, L(x) satisfies the Assumption C with g(x) = (logx)−β

and kn = o((logn)2β). For more details, please see Haeusler and Teugels (1985).
So the conclusion of Theorem 4.3 holds for this type of processes, where certain
portion of the data is missing.

Example 4.5. Volatility of financial time series plays a key role in both risk man-
agement and option pricing. The Generalized Autoregressive Conditional Het-
eroscedasticity (GARCH) model introduced by Bollerslev (1986) is designed
to capture the volatility clustering feature by modeling the dynamic of volatil-
ity. When considering the volatility dynamic with only one lagged period, the
GARCH(1,1) model has become a valuable tool in practice due to its simplicity
and intuitive interpretation. Under very general conditions on the noise sequence
(Zt ) the GARCH(1,1) process has Pareto-like marginal distribution with the spe-
cific slowly varying function defined as:

L(x) = C1
(
1 + C2x

−β + o
(
x−β))

, (4.3)

as x → ∞, C2 �= 0, C1, β > 0 and it represents very attractive tool to model the
heavier-then-normal tails of the financial data. It is defined, specifying σt , as fol-
lows:

σ 2
t = α0 + β1σ

2
t−1 + α1X

2
t−1 = α0 + σ 2

t−1
(
β1 + α1Z

2
t−1

)
,

t ∈ Z and the parameters α0, α1 and β1 are nonnegative. The GARCH(1,1) pro-
cess is L2-E-NED if certain conditions on this parameters are satisfied (see Hill

(2005)). Finally, for g(x) = x−β and kn = o(n
2β

2β+α ) the Assumption C holds (see
Bacro and Brito (1995)).

We may conclude that in this particular case:

ln 2E
(
M1/2

n

)
(B̃2,Sn − γ )

d−→ N
(
0, γ 2)

.

5 Proofs

In order to prove Lemma 4.1 and Lemma 4.2 and to study further asymptotic
properties of B̃2,Sn it is more convenient to formulate the model (1.1) in the terms
of quantile function. Let us denote by F−1(t) the left continuous inverse of F ,
i.e. F−1(t) = inf{x : F(x) ≥ t}. According to De Haan (1970), the model (1.1) is
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equivalent to F−1(1 − 1
t
) = t

1
α L̃(t), where L̃ satisfies (1.2). Moreover, we may

choose Xi = F−1(
�n−i+1
�n+1

), where �i = E1 + E2 + · · · + Ei and {Et }, 1 ≤ t ≤ n is
the sequence of identically independent exponential random variables with mean
one. The above is obtained by Renyi’s representation for the order statistics from
the exponential sample.

Proof of Lemma 4.1. According to the above, we may write:

X̃(Mn)

X̃(2Mn)

=
F−1(

�Sn−Mn+1
�Sn+1

)

F−1(
�Sn−2Mn+1

�Sn+1
)

=
(

�Sn+1 − �Sn−2Mn+1

�Sn+1 − �Sn−Mn+1

)γ L(
�Sn+1

�Sn+1−�Sn−Mn+1
)

L(
�Sn+1

�Sn+1−�Sn−2Mn+1
)
.

Since the Assumption A holds, we may apply the law of large numbers. Because
of the fact that kn = k is fixed, we obtain:

A = �Sn+1 − �Sn−2Mn+1

�Sn+1 − �Sn−Mn+1
→ 2 a.s., (5.1)

�Sn+1

�Sn+1 − �Sn−Mn+1
→ ∞ a.s. (5.2)

and
�Sn+1

�Sn+1 − �Sn−2Mn+1
→ ∞ a.s., (5.3)

as n → ∞.
Now, from (5.1), (5.2) and (5.3) we have that:

L(
�Sn+1

�Sn+1−�Sn−Mn+1
)

L(
�Sn+1

�Sn+1−�Sn−2Mn+1
)

=
L(A

�Sn+1
�Sn+1−�Sn−2Mn+1

)

L(
�Sn+1

�Sn+1−�Sn−2Mn+1
)

→ 1 a.s. (5.4)

We conclude from the above that B̃2,Sn

p→ γ . �

Proof of Lemma 4.2. Since (1.1) holds, we may write, according to the above and
to David (1981):

ln
X̃(Mn)

X̃(2Mn)

= E∗
Mn

+ E∗
Mn+1 + · · · + E∗

2Mn−1,

where E∗
i = Ẽi − Ẽi−1 may be considered as independent exponentially dis-

tributed rv’s with the corresponding mathematical expectations 1
α
E(1

i
), i =

Mn, . . . ,2Mn − 1. Note that we assumed that Assumption B holds, meaning that,
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without loss of generality, X̃(Mn) and X̃(2Mn) may be considered independent. Now
we have:

E

(
ln

X̃(Mn)

X̃(2Mn)

)
= E

(2Mn−1∑
i=Mn

E∗
i

)

=
n∑

k=1

E

(2Mn−1∑
i=Mn

E∗
i

∣∣∣Mn = k

)
P {Mn = k}

=
n∑

k=1

E

(2k−1∑
i=k

E∗
i

)
P {Mn = k}

=
n∑

k=1

2k−1∑
i=k

E
(
E∗

i

)
pk

= γ

n∑
k=1

pk

(
1

k
+ 1

k + 1
+ · · · + 1

2k − 1

)

∼ γ

n∑
k=1

pk ln 2

= γ ln 2
n∑

k=1

pk = γ ln 2.

Further, without loss of generality and under the assumption of the indepen-
dency of E∗

i , Mn ≤ i ≤ 2Mn − 1, we have that:

Var
(

ln
X̃(Mn)

X̃(2Mn)

)
= Var

(2Mn−1∑
i=Mn

E∗
i

)

= E

(2Mn−1∑
i=Mn

E∗
i

)2

=
n∑

k=1

E

{(2Mn−1∑
i=Mn

E∗
i

)2∣∣∣Mn = k

}
P {Mn = k}

=
n∑

k=1

E

(2k−1∑
i=k

E∗
i

)2

P {Mn = k}

=
n∑

k=1

2k−1∑
i=k

E
(
E∗

i

)2
pk
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=
n∑

k=1

pkγ
2
(

1

k2 + 1

(k + 1)2 + · · · + 1

(2k − 1)2

)

∼ γ 2
n∑

k=1

pk

1

k
= γ 2E

(
1

Mn

)
.

We conclude that:

E(B̃2,Sn) → γ (5.5)

and

Var(B̃2,Sn) ∼ γ 2 1

ln2 2
E

(
1

Mn

)
, (5.6)

as n → ∞. �

Before we give the prove of the Theorem 4.3, let us formulate the Lindeberg
condition in case of a sequence {E∗

i }, i = Mn, . . . ,2Mn − 1. Please see Rychlik
(1979) for the definition of this condition in the general case and the prove of cen-
tral limit theorem for sums of a random number of independent random variables.

Random Lindeberg condition for the sequence {E∗
i }. A sequence {E∗

i }, i =
Mn, . . . ,2Mn − 1 of independent random variables with the corresponding mathe-
matical expectations mi = E(E∗

i ) and σ 2
i = Var(E∗

i ) is said to satisfy the Random
Lindeberg condition if, for every ε > 0:

1

D2
Mn

E

{2Mn−1∑
i=Mn

∫
|x−mi |≥ε

√
D2

Mn

(x − mi)
2 dFi(x)

}
→ 0, (5.7)

as n → ∞, where

D2
Mn

= Var

(2Mn−1∑
i=Mn

E∗
i

)

and Fi are distribution functions of E∗
i , for i = Mn, . . . ,2Mn − 1.

Proof of Theorem 4.3. By using similar arguments as in the proof of Lemma 4.2,
we conclude that:

E

(2Mn−1∑
i=Mn

γ 3

i3

)
= γ 3E

(2Mn−1∑
i=Mn

1

i3

)
= γ 3

∞∑
j=1

pj

2j−1∑
i=j

1

i3 . (5.8)

The last sum
∑2j−1

i=j
1
i3 may be easily transformed and then approximated into

1
j2

∫ 1
0

1
(1+x)3 dx. Therefore, we obtain:

E

(2Mn−1∑
i=Mn

γ 3

i3

)
∼ 3γ 3

8

∞∑
j=1

pj

1

j2 = 3γ 3

8
E

(
1

M2
n

)
. (5.9)
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Finally, by using (5.6), one can see that:

1

D2
Mn

E

{2Mn−1∑
i=Mn

∫
|x|≥ε

√
D2

Mn

x2 dFi(x)

}
∼

3γE( 1
M2

n
)

4E( 1
Mn

)
→ 0,

when n → ∞.
Now, by following all the steps from above and by applying the regularity As-

sumption C (see Bacro and Brito (1995), Corollary 2), we conclude straightfor-
ward that:

ln 2E
(
M1/2

n

)
(B̃2,Sn − γ )

d−→ N
(
0, γ 2)

. �
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