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Abstract. Variable dimensional problems, where not only the parameters,
but also the number of parameters are random variables, pose serious chal-
lenge to Bayesians. Although in principle the Reversible Jump Markov Chain
Monte Carlo (RJMCMC) methodology is a response to such challenges, the
dimension-hopping strategies need not be always convenient for practical im-
plementation, particularly because efficient “move-types” having reasonable
acceptance rates are often difficult to devise.

In this article, we propose and develop a novel and general dimension-
hopping MCMC methodology that can update all the parameters as well as
the number of parameters simultaneously using simple deterministic transfor-
mations of some low-dimensional (often one-dimensional) random variable.
This methodology, which has been inspired by Transformation based MCMC
(TMCMC) of (Stat. Mehodol. (2014) 16 100–116), facilitates great speed
in terms of computation time and provides reasonable acceptance rates and
mixing properties. Quite importantly, our approach provides a natural way
to automate the move-types in variable dimensional problems. We refer to
this methodology as Transdimensional Transformation based Markov Chain
Monte Carlo (TTMCMC). Comparisons with RJMCMC in gamma and nor-
mal mixture examples demonstrate far superior performance of TTMCMC in
terms of mixing, acceptance rate, computational speed and automation. Fur-
thermore, we demonstrate good performance of TTMCMC in multivariate
normal mixtures, even for dimension as large as 20. To our knowledge, there
exists no application of RJMCMC for such high-dimensional mixtures.

As by-products of our effort on the development of TTMCMC, we pro-
pose a novel methodology to summarize the posterior distributions of the
mixture densities, providing a way to obtain the mode of the posterior distri-
bution of the densities and the associated highest posterior density credible
regions. Based on our method, we also propose a criterion to assess conver-
gence of variable-dimensional algorithms. These methods of summarization
and convergence assessment are applicable to general problems, not just to
mixtures.

1 Introduction

Markov chain Monte Carlo (MCMC) is known to have revolutionized Bayesian
computation. In modern times, it is often required to analyze high-dimensional,
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complex data, and the Bayesian paradigm, with the MCMC machinery, provides
an ideal package to the statistical scientist for the purpose. As is to be anticipated,
to simulate from complex Bayesian posteriors, development of quite sophisticated
MCMC methods were necessary, and various approaches based on component-
wise and joint updating of the parameters, such as the adaptive direction sampling
(Gilks, Roberts and George (1994)), the multiple-try Metropolis method (Liu,
Liang and Wong (2000)), the auxiliary variable approach (Storvik (2011)), par-
allel MCMC methods (Martino et al. (2016)), have emerged in response to the
needs of the modern Bayesian.

However, the above methods are appropriate when the number of parameters is
known in advance. When one of the unknown parameters is the number of param-
eters itself, then none of the traditional MCMC methods are applicable, irrespec-
tive of how sophisticated they are. Indeed, simultaneous inference on both model
and parameter space is an issue that is fundamental to modern statistical practice
(Sisson (2005)). Examples of such problems arise in mixture analysis where the
parameters associated with the mixture components as well as the number of mix-
ture components are unknown (see, for example, Richardson and Green (1997));
in change point analysis where the locations and the number of change points are
unknown (see, for example, Green (1995)); in variable selection problems where
the number of covariates and the associated coefficients are unknown (Dellaportas,
Forster and Ntzoufras (2002), Dellaportas and Forster (1999)); in spline smoothing
where the location and the number of knots are unknown (see Denison, Mallick
and Smith (1998) for instance); in continuous wavelet representation of unknown
functions with a finite, but unknown number of wavelet basis functions and the
corresponding parameters (Chu, Clyde and Liang (2009)); in autoregressive time
series models where the order of the autoregression and the associated parameters
are unknown (Vermaak et al. (2004)); in factor analysis where the dimension of
the latent factor loading matrix and the associated parameters are unknown (Lopes
and West (2004)); in spatial point processes where the locations and the number of
points are random (see Møller and Waagepetersen (2004)); to name only a few.

A general MCMC strategy which can explore variable dimensional spaces by
jumping between different dimensions has been proposed by Green (1995), and
is well known as Reversible Jump MCMC (RJMCMC). The versatility of the
methodology is well-reflected in the large varieties of variable-dimensional prob-
lems to which it has been applied; indeed, all the aforementioned examples make
use of RJMCMC. However, one difficulty is frequently encountered when design-
ing reversible jump algorithms is the construction of efficient proposals. Typically,
dimension jumping moves in reversible jump samplers exhibit much lower accep-
tance rate than in fixed-dimensional moves. Al-Awadhi and Jennison (2004) ob-
served that models with multimodal distributions yield particularly low acceptance
rates. There have been many attempts of creating automatic RJMCMC samplers
which also maintain high acceptance rates; see, for example, Brooks, Giudici and
Roberts (2003), Robert (2003), Green (2003), Godsill (2003), Robert and Casella
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(2004), Sisson (2005), Fan and Sisson (2011) and the references therein. However,
in spite of the commendable attempts, these ideas are perhaps relevant in quite spe-
cific models with several restrictive assumptions; see Robert and Casella (2004),
Sisson (2005), Fan and Sisson (2011).

The issues discussed above point towards the need to develop general and nat-
ural move types that can change dimensions as well as update the other (within
model) parameters simultaneously, while maintaining reasonable acceptance rates
and mixing properties. In this regard, the transformation based MCMC (TMCMC)
approach of Dutta and Bhattacharya (2014) in the fixed dimensional set-up pro-
vides the necessary motivation. The key concept of TMCMC is to propose a move-
type from a set of available move-types, simulate a single, one-dimensional ran-
dom variable from some arbitrary distribution and propose simple deterministic
transformations to all the parameters using the one-dimensional random variable,
within the proposed move-type. In this article, we show that the same concept
of deterministic transformations of a single random variable can be exploited to
construct, for any general variable dimensional problem, a generic and effective
dimension-hopping sampler which can change dimensions and update all the pa-
rameters of the proposed model in a single block while maintaining reasonable
acceptance rates and mixing properties. We refer to this general variable dimen-
sional MCMC sampler as Transdimensional Transformation based Markov Chain
Monte Carlo (TTMCMC).

1.1 Overview of contributions and organisation of this paper

Before a formal introduction of TTMCMC, it is necessary to provide a brief
overview of the basic concept of TMCMC. We do this in Section 2.

We introduce TTMCMC in Section 3, and in Section 4 we extend our proposed
methodology to more general situations where one wishes to jump more than one
dimension at a time. That TTMCMC thus developed closely qualifies as an auto-
matic variable dimensional sampler, is argued in Section 5.

Although our proposed sampler is quite general and readily applicable to all
transdimensional sampling frameworks, for the purpose of illustration and compar-
ison with RJMCMC we restrict ourselves to gamma and normal mixture problems
with unknown number of components. In this regard, in Section 6 we first conduct
four simulation experiments with gamma mixtures with true number of compo-
nents being 1, 2, 3 and 4, respectively. In Section 7, we provide details regarding
applications of our methods to analyse three well-studied real data sets, namely,
the enzyme, acidity and the galaxy data (see Richardson and Green (1997), for in-
stance). In Section 8, we demonstrate the application of TTMCMC in mixtures of
multivariate normal densities. In particular, we consider three simulation studies
for dimensions 3, 10 and 20.

We show that the simplest possible TTMCMC algorithm, which is based on ad-
ditive transformations, puts up excellent performance in all the examples, even in
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all the multivariate scenarios, providing ample support to our claim of automation.
Also interestingly, the TTMCMC applications are able to capture very precise in-
formation regarding the number of mixture components, for both simulated and
real data sets. None of the previous methods (see Richardson and Green (1997)
and the references therein) were able to capture so precise information as TTM-
CMC. Moreover, there possibly does not exist any RJMCMC algorithm that works
for multivariate mixtures with dimension as high as 20. Hence, from the high-
dimensional perspective, TTMCMC is clearly far ahead of RJMCMC.

For the gamma mixtures and the normal mixtures associated with the real data
applications we compare additive TTMCMC with the closest RJMCMC analogue
of additive TTMCMC, based on random walk proposals. This RJMCMC algorithm
seems to be the more natural, intuitive and computationally far simpler alterna-
tive to the random walk-motivated “automatic generic transdimensional RJMCMC
sampler” proposed in Green (2003). Indeed, the approach of Green (2003) is ap-
propriate only when a small set of models is considered in the variable-dimensional
problem, and as such not a viable option for our normal mixtures with maximum
of 30 components; see Section 6.6 for details.

Unfortunately, the random walk RJMCMC algorithm analogue of additive
TTMCMC fails to produce satisfactory results in a way that even convergence
is not assured in any of the examples. In particular, with the same scales of ad-
ditive TTMCMC, random walk RJMCMC yields extremely poor acceptance rate
in general. Moreover, the RJMCMC-based posterior of the number of components
tends to assign higher posterior probabilities to implausibly large values, clearly
indicating lack of convergence. We argue that the same issue persists with gen-
eral RJMCMC algorithms. This suggests that complex and difficult-to-implement
algorithms with extremely large convergence time are required for RJMCMC to
yield sensible results, and that there is no default choice of such algorithms. On
the other hand, the potentiality of additive TTMCMC in conjunction with the re-
sults of our experiments demonstrate that additive TTMCMC is close to qualifying
as the default variable-dimensional algorithm, even for large dimensions.

We summarize our work and make concluding remarks in Section 9. Additional
details are provided in the supplement (Das and Bhattacharya (2017)), whose sec-
tions have the prefix “S-” when referred to in this paper.

2 A brief overview of the key idea of TMCMC

In order to obtain a valid algorithm based on transformations, Dutta and Bhat-
tacharya (2014) design appropriate move types so that detailed balance and irre-
ducibility hold. We first illustrate the basic idea of transformation based moves
with a simple example. Given that we are in the current state x, we may propose
the “forward move” x′ = x + ε, where ε > 0 is a simulation from some arbitrary
density �(·) which is supported on the positive part of the real line. To move back
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to x from x′, we need to apply the “backward transformation” x′ − ε. In gen-
eral, given ε and the current state x, we shall denote the forward transformation
by T (x, ε), and the backward transformation by T b(x, ε). For fixed ε the for-
ward and backward transformations must be one-to-one and onto, and must satisfy
T b(T (x, ε), ε) = x = T (T b(x, ε), ε); see Dutta and Bhattacharya (2014) for a de-
tailed discussion regarding these.

The simple idea discussed above has been generalized to the multi-dimensional
situation by Dutta and Bhattacharya (2014). Remarkably, for any dimension, the
moves can be constructed by simple deterministic transformations of the one-
dimensional random variable ε, which is simulated from any arbitrary distribu-
tion on some relevant support. We provide some examples of such moves in the
next section after introducing some necessary notation borrowed from Dutta and
Bhattacharya (2014).

2.1 Notation

Suppose that X is a k-dimensional space of the form X = ∏k
i=1 Xi so that T =

(T1, . . . , Tk) where each Ti : Xi ×D →Xi , for some set D, are the component-wise
transformations. Let z = (z1, . . . , zk) be a vector of indicator variables, where,
for i = 1, . . . , k, zi = 1 and zi = −1 indicate, respectively, application of forward
transformation and backward transformation to xi , and let zi = 0 denote no change
to xi . This “no change” step is sufficient to ensure irreducibility of TMCMC in
non-additive transformations; see Dutta and Bhattacharya (2014). Given any such
indicator vector z, let us define Tz = (g1,z1, g2,z2, . . . , gk,zk

) where

gi,zi
=

⎧⎪⎪⎨
⎪⎪⎩

T b
i if zi = −1,

xi if zi = 0,

Ti if zi = 1.

Corresponding to any given z, we also define the following ‘conjugate’ vector
zc = (zc

1, z
c
2, . . . , z

c
k), where

zc
i = −zi.

With this definition of zc, Tzc can be interpreted as the conjugate of Tz.
Since 3k values of z are possible, it is clear that T , via z, induces 3k many types

of ‘moves’ of the forms {Tzi
; i = 1, . . . ,3k} on the state-space. Suppose now that

there is a subset Y of D such that the sets Tzi
(x,Y) and Tzj

(x,Y) are disjoint for
every zi �= zj . In fact, Y denotes the support of the distribution �(·) from which ε

is simulated. This mutual exclusiveness is required to satisfy the detailed balance
property; see Dutta and Bhattacharya (2014) for the details. Thus, although D de-
notes the actual range of values that ε can assume in principle, for implementation
of TMCMC we must restrict the support of ε to Y .
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2.2 Examples of transformations on two-dimensional state-space using
single ε

Although for the sake of illustration, we provide below examples pertaining to
two-dimensional cases it is important to remark at the outset that these examples
can be easily generalized to any dimension; see Dutta and Bhattacharya (2014).

1. Additive transformation: Suppose X = D = R
2. With two positive scale pa-

rameters a1 and a2, we can then consider the following additive transforma-
tion: T(1,1)(x, ε) = (x1 + a1ε, x2 + a2ε), T(−1,1)(x, ε) = (x1 − a1ε, x2 + a2ε),
T(1,−1)(x, ε) = (x1 + a1ε, x2 − a2ε) and T(−1,−1)(x, ε) = (x1 − a1ε, x2 − a2ε).
We set Y = (0,∞).

2. Multiplicative transformation: Suppose X = D = R
2. Then we may con-

sider the following multiplicative transformation: T(1,1)(x, ε) = (x1ε, x2ε),
T(−1,1)(x, ε) = (x1/ε, x2ε), T(1,−1)(x, ε) = (x1ε, x2/ε), T(−1,−1)(x, ε) = (x1/ε,

x2/ε), T(1,0)(x, ε) = (x1ε, x2), T(1,0)(x, ε) = (x1ε, x2), T(−1,0)(x, ε) = (x1/ε,

x2), T(0,1)(x, ε) = (x1, x2ε), T(0,−1)(x, ε) = (x1, x2/ε), T(0,0)(x, ε) = (x1, x2).
We choose Y = {(−1,1) − {0}}.

3. Additive-multiplicative transformation: It is possible to combine additive and
multiplicative transformations, but here we need at least two ε’s, one for the
additive, and another for the multiplicative transformation. For instance, if
X = D = R

2, then we may consider the following moves: T(1,1)(x, ε1, ε2) =
(x1 + ε1, x2ε2), T(−1,1)(x, ε1, ε2) = (x1 − ε1, x2ε2), T(1,−1)(x, ε1, ε2) = (x1 +
ε1, x2/ε2), T(−1,−1)(x, ε1, ε2) = (x1 − ε1, x2/ε2), T(1,0)(x, ε1, ε2) = (x1 +
ε1, x2), T(−1,0)(x, ε1, ε2) = (x1 − ε1, x2), T(0,1)(x, ε1, ε2) = (x1, x2ε2),
T(0,−1)(x, ε1, ε2) = (x1, x2/ε2), T(0,0)(x, ε1, ε2) = (x1, x2). We let Y =
(0,∞) × {(−1,1) − {0}}. Although this example uses two ε’s for two dimen-
sions, it is important to note that for any dimension higher than two, at most two
ε’s will be required for validity of additive-multiplicative TMCMC, one for the
additive part and another for the multiplicative part, irrespective of the dimen-
sionality. Thus, the minimum effective dimensionality of additive TMCMC and
multiplicative TMCMC is 1, while that of additive-multiplicative TMCMC in
this setting is 2, for any dimensionality greater than one.

The key observation underlying the above examples is that it is always possible
to construct valid transformations in high-dimensional spaces using combinations
of appropriate transformations on one-dimensional spaces. These transformations
and the underlying principle remain valid even in TTMCMC.

2.3 The general form of the TMCMC algorithm

For a k(≥ 1)-dimensional target distribution, with current state x = (x1, . . . , xk),
Dutta and Bhattacharya (2014) apply forward and backward transformations to xi

with probabilities pi and qi , respectively and keep xi unchanged with probability
1 − pi − qi , for i = 1, . . . , k. Thus, z can now be interpreted as a random vector
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such that for i = 1, . . . , k, zi ∈ {−1,0,1} with probabilities qi,1 − pi − qi,pi ,
respectively. Thus, we simulate zi ∼ Multinomial(1;pi, qi,1 − pi − qi) indepen-
dently for i = 1, . . . , k, draw ε ∼ �(·), and form the proposed move x 	→ x′ =
Tz(x, ε), which is accepted with probability

α(x, ε) = min
(

1,
P (zc)

P (z)

π(x′)
π(x)

∣∣∣∣∂(Tz(x, ε), ε)

∂(x, ε)

∣∣∣∣
)
, (2.1)

where

P(zc)

P (z)
= ∏

{i1:zi1=−1}

pi1

qi1

∏
{i2:zi2=1}

qi2

pi2

.

Note that the acceptance ratio is always independent of the proposal density �.
The redundant move-type x 	→ x has positive probability of occurrence, and

hence Dutta and Bhattacharya (2014) suggest rejection of this move whenever it
appears. That is, sampling of z is to be continued until at least one zi �= 0. This
rejection sampling of z is very efficient since the rejection region is a singleton
and has very small probability, particularly in high dimensions. The normalizing
constant that arises because of this truncation cancels in the acceptance ratio of
TMCMC, as shown in Dutta and Bhattacharya (2014).

3 TTMCMC for updating the dimension and the parameters in a
single block using deterministic transformations of a single random
variable

First, we illustrate the main idea of TTMCMC informally using the additive trans-
formation.

3.1 Illustration of the key idea of TTMCMC with a simple example

Assume that the current state is x = (x1, x2) ∈ R
2. We first randomly select u =

(u1, u2, u3) ∼ Multinomial(1;wb,wd,wnc), where wb,wd,wnc (> 0) such that
wb + wd + wnc = 1 are the probabilities of birth, death, and no-change moves,
respectively. That is, if u1 = 1, then we increase the dimensionality from 2 to 3; if
u2 = 1, then we decrease the dimensionality from 2 to 1, and if u3 = 1, then we
keep the dimensionality unchanged. In the latter case, when the dimensionality is
unchanged, the acceptance probability remains the same as in TMCMC, given by
(2.1).

If u1 = 1, we can increase the dimensionality by first selecting one of x1 and
x2 with probability 1/2; for the sake of clarity, we assume that x1 has been
selected, Here, as in TMCMC, we draw ε ∼ �(·), where �(·) is supported on
the positive part of the real line, and draw z2 where z2 = 1 with probability
p2 and z2 = −1 with probability 1 − p2. Also, as before, zc = (zc

1, z
c
2) is the



94 M. Das and S. Bhattacharya

conjugate of z, where zc
i = −zi . We then construct the move-type Tb,z(x, ε) =

(x1 + a1ε, x1 − a1ε, x2 + z2a2ε) = (g1,z1=1(x1, ε), g1,zc
1=−1(x1, ε), g2,z2(x2, ε)),

say. We relabel x′ = Tb,z(x, ε) = (x1 + a1ε, x1 − a1ε, x2 + z2a2ε) as (x′
1, x

′
2, x

′
3).

Thus, Tb,z(x, ε) increases the dimension from 2 to 3.
We accept this birth move with probability

ab(x, ε) = min
{

1,
1

3
× wd

wb

× p
I{1}(zc

2)

2 q
I{−1}(zc

2)

2

p
I{1}(z2)

2 q
I{−1}(z2)

2

× π(x1 + a1ε, x1 − a1ε, x2 + z2a2ε)

π(x1, x2)
×

∣∣∣∣∂(Tb,z(x, ε))

∂(x, ε)

∣∣∣∣
}
.

(3.1)

In (3.1), ∣∣∣∣∂(Tb,z(x, ε))

∂(x, ε)

∣∣∣∣ =
∣∣∣∣∂(x1 + a1ε, x1 − a1ε, x2 + z2a2ε)

∂(x1, x2, ε)

∣∣∣∣
=

∣∣∣∣∣∣
⎛
⎝ 1 1 0

0 0 1
a1 −a1 z2a2

⎞
⎠

∣∣∣∣∣∣ = 2a1.

(3.2)

Now let us illustrate the problem of returning to =(x1, x2) (∈ R
2) from

Tb,z(x, ε) = (x1 + a1ε, x1 − a1ε, x2 + z2a2ε) (∈ R
3). For our purpose, we can

select x1 + a1ε with probability 1/3; then select x1 − a1ε from the remaining two
elements with probability 1/2, and form the average x∗

1 = ((x1 + a1ε) + (x1 −
a1ε))/2 = x1. For non-additive transformations, we can consider the averages of
the backward moves of each of the selected elements. Even in this additive trans-
formation example, after simulating ε as before we can consider the respective
backward moves of x1 + a1ε and x1 − a1ε, both yielding x1, and then take the
average denoted by x∗

1 . For the remaining element x2 + z2a2ε, we need to simulate
zc

2 and then consider the move (x2 + z2a2ε) + zc
2a2ε = x2. Thus, we can return to

(x1, x2) using this strategy.
Letting x′ = (x′

1, x
′
2, x

′
3), and denoting the average involving the first two ele-

ments by x∗
1 , the death move is then given by x′′ = Td,z(x′, ε) = (x∗

1 , x′
3 +zc

2a2ε) =
(
x′

1+x′
2

2 , x′
3 + zc

2a2ε). Now observe that for returning to (x′
1, x

′
2) from x∗

1 , we must
have x1

∗+a1ε
∗ = x′

1 and x1
∗−a1ε

∗ = x′
2, which yield ε∗ = (x′

1 −x′
2)/2a1. Hence,

the Jacobian associated with the death move in this case is given by∣∣∣∣∂(Td,z(x′, ε), ε∗, ε)
∂(x′, ε)

∣∣∣∣ =
∣∣∣∣∂(

x′
1+x′

2
2 , x′

3 + zc
2a2ε,

x′
1−x′

2
2a1

, ε)

∂(x′
1, x

′
2, x

′
3, ε)

∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎜⎜⎜⎝

1

2
0

1

2a1
0

1

2
0 − 1

2a1
0

0 1 0 0
0 zc

2a2 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣
= 1

2a1
.

(3.3)
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We accept this death move with probability

ad

(
x′′, ε, ε∗) = min

{
1,3 × wb

wd

× P(zc)

P (z)

π(x′′)
π(x′)

∣∣∣∣∂(Td,z(x′, ε), ε∗, ε)
∂(x′, ε)

∣∣∣∣
}

= min
{

1,3 × wb

wd

× p
I{1}(zc

2)

2 q
I{−1}(zc

2)

2

p
I{1}(z2)

2 q
I{−1}(z2)

2

× π(x′′)
π(x′)

× 1

2a1

}
.

(3.4)

In the general situation, we shall make the birth, death and no-change probabil-
ities wb, wd , wnc depend upon the current dimension k, and denote them by wb,k ,
wd,k and wnc,k , respectively, satisfying wb,k + wd,k + wnc,k = 1 for every k ≥ 1.
Note that when the current dimension k = 1, then wd,k = 0, as k ≥ 1. Similarly,
if in some cases there is reason to assume that the number of parameters can not
exceed some finite quantity denoted by kmax, then wb,kmax = 0.

Figure 1 illustrates the idea of TTMCMC schematically, and compares it with
the RJMCMC principle, shown diagrammatically in Figure 2. As illustrated, for
RJMCMC, the necessary “ dimension matching” criterion is satisfied, but the cri-
terion is not satisfied, indeed, not necessary, for TTMCMC.

3.2 General TTMCMC algorithm for jumping one dimension at a time

We now provide the TTMCMC algorithm in the general case, as follows.

Algorithm 3.1. General TTMCMC algorithm based on a single ε.

• Let the initial value be x(0) ∈ R
k.

• For t = 0,1,2, . . .

1. Generate u = (u1, u2, u3) ∼ Multinomial(1;wb,k,wd,k,wnc,k).
2. If u1 = 1 (increase dimension), then

(a) Randomly select a co-ordinate from x(t) = (x
(t)
1 , . . . ,

x
(t)
k ) assuming uniform probability 1/k for each
co-ordinate. Let j denote the chosen
co-ordinate.

(b) Generate ε ∼ �(·) and for i = 1, . . . , k; i �= j simulate

zi ∼ Multinomial(1;pi, qi,1 − pi − qi)

independently.
(c) Propose the following birth move:

x′ = Tb,z
(
x(t), ε

)
= (

g1,z1

(
x

(t)
1 , ε

)
, . . . , gj−1,zj−1

(
x

(t)
j−1, ε

)
, gj,zj=1

(
x

(t)
j , ε

)
,

gj,zc
j=−1

(
x

(t)
j , ε

)
, gj+1,zj+1

(
x

(t)
j+1, ε

)
, . . . , gk,zk

(
x

(t)
k , ε

))
.

Re-label the elements of x′ as (x′
1, x

′
2, . . . , x

′
k+1).
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(d) Calculate the acceptance probability of the
birth move x′:

ab

(
x(t), ε

) = min
{

1,
1

k + 1
× wd,k+1

wb,k

× P(j)(z
c)

P(j)(z)

π(x′)
π(x(t))

∣∣∣∣∂(Tb,z(x(t), ε))

∂(x(t), ε)

∣∣∣∣
}
,

where

P(j)(z) =
k∏

i �=j=1

p
I{1}(zi)

i q
I{−1}(zi )

i ,

and

P(j)

(
zc) =

k∏
i �=j=1

p
I{1}(zc

i
)

i q
I{−1}(zc

i )

i .

(e) Set

x(t+1) =
{

x′ with probability ab

(
x(t), ε

)
,

x(t) with probability 1 − ab

(
x(t), ε

)
.

3. If u2 = 1 (decrease dimension), then
(a) Generate ε ∼ �(·).
(b) Randomly select co-ordinate j with probability

1/k, and randomly select co-ordinate j ′ from
the remaining co-ordinates with probability
1/(k − 1). Let x∗

j = (gj,zc
j=−1(xj , ε)+gj ′,zj ′=1(xj ′, ε))/2; re-

place the co-ordinate xj drawn first by the
average x∗

j , and delete xj ′.
(c) Simulate z by generating independently, for i =

1, . . . , k, but i �= j, j ′, zi ∼ Multinomial(1;pi, qi,1−pi −qi).
For i �= j, j ′, apply the transformation x′

i = gi,zi
(x

(t)
i ,

ε).
(d) Propose the following death move:

x′ = Td,z
(
x(t), ε

)
= (

g1,z1

(
x

(t)
1 , ε

)
, . . . , gj−1,zj−1

(
x

(t)
j−1, ε

)
, x∗

j , gj+1,zj+1

(
x

(t)
j+1, ε

)
,

. . . , gj ′−1,zj ′−1

(
x

(t)
j ′−1, ε

)
, gj ′+1,zj ′+1

(
x

(t)
j ′+1, ε

)
, . . . , gk,zk

(
x

(t)
k , ε

))
.

Re-label the elements of x′ as (x′
1, x

′
2, . . . , x

′
k−1).

(e) Solve for ε∗ from the equations gj,zj=1(x
∗
j , ε∗) = xj

and gj,zc
j=−1(x

∗
j , ε∗) = xj ′ and express ε∗ in terms of

xj and xj ′.
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(f) Calculate the acceptance probability of the
death move:

ad

(
x(t), ε, ε∗) = min

{
1, k × wb,k−1

wd,k

× P(j,j ′)(zc)

P(j,j ′)(z)

π(x′)
π(x(t))

∣∣∣∣∂(Td,z(x(t), ε), ε∗, ε)
∂(x(t), ε)

∣∣∣∣
}
,

where

P(j,j ′)(z) =
k∏

i �=j,j ′=1

p
I{1}(zi)

i q
I{−1}(zi )

i ,

and

P(j,j)

(
zc) =

k∏
i �=j,j ′=1

p
I{1}(zc

i
)

i q
I{−1}(zc

i )

i .

(g) Set

x(t+1) =
{

x′ with probability ad

(
x(t), ε, ε∗)

,

x(t) with probability 1 − ad

(
x(t), ε, ε∗)

.

4. If u3 = 1 (dimension remains unchanged), then imple-
ment steps (1), (2), (3) of Algorithm 3.1 of
Dutta and Bhattacharya (2014).

• End for

In Sections S-1 and S-2 of the supplement, we provide the proofs of detailed
balance and ergodicity (irreducibility and aperiodicity) of the above TTMCMC
method.

3.2.1 Observations regarding Algorithm 3.1.

• Note that the acceptance probabilities are independent of the proposal density
�(·) irrespective of its form, just as in TMCMC. The reason is that in TTMCMC
we simulate ε ∼ �, for some appropriate density �, for increasing, as well as for
decreasing dimension (see the proof of detailed balance in Section S-1 for the
precise details). In other words, the “dimension-matching” criterion of RJM-
CMC is not required for TTMCMC. Indeed, recall that, to accomplish the birth
step in RJMCMC one needs to simulate an ε, but in the death step two randomly
chosen components are averaged to reduce the dimension, and no simulation of
ε is done. As such, in RJMCMC the dimension-matching criterion is responsible
for the presence of the proposal density in the acceptance ratio.
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Figure 1 Illustration of TTMCMC algorithm for jumping between dimension 3 and 4.
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Figure 2 Illustration of RJMCMC algorithm for jumping between dimension 3 and 4.
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• Consequently, it is not possible to interpret TTMCMC as a special case of RJM-
CMC. Also, neither is RJMCMC a special case of TTMCMC, even though in
fixed-dimensional problems, TMCMC with additive transformations contains
the random walk Metropolis algorithm as a special case when as many ε’s as
the number of variables to be updated are used for TMCMC.

• Independence of the acceptance ratio of the proposal density � has pleasing
consequences for TTMCMC in the sense that for any finite TTMCMC sample
(which is always the case in practice), the possible bias in the acceptance prob-
abilities of birth and death moves due to involvement of � is absent. Since for
RJMCMC this is not the case, the performance may be seriously affected. For
instance, if � is strictly bounded above by 1, then the birth move will have sig-
nificantly greater acceptance probability than the death move. The advantage of
TTMCMC and disadvantage of RJMCMC in this regard are clearly reflected in
all our experiments that we report in this article.

• In the acceptance probabilities,
P(j)(z

c)

P(j)(z)
= 1 and

P(j,j ′)(zc)

P(j,j ′)(z)
= 1 if pi = qi for

each i. This results in simplification of the acceptance ratio computation. The
birth, death and the no-change probabilities given by wb,k , wd,k and wnc,k can
also be chosen to be equal for every k > 1, which will result in further simplifi-
cation of the computation of the acceptance ratio.

• In our algorithm, the new variables created from one variable are never “neces-
sarily adjacent”. Even in the case of adjacency, our method does absolutely fine;
indeed, for the death step, we only need to have appropriate positive probabil-
ity of selecting the two variables for combining them into one (or deleting one)
such that the detailed balance holds. Specifically, suppose that we create adja-
cent variables in the birth move. Then, in the corresponding death move we will
choose adjacent pairs with appropriate probability and combine them into one.
Alternatively, one may select two variables, but should reject the entire death
move if the selected variables are not adjacent. In fact, the issue of adjacency is
nothing specific to TTMCMC, and can be handled by RJMCMC as well as by
TTMCMC.

3.3 Structured dependence within the moves

In Algorithm 3.1 we have assumed that for i ∈ {1, . . . , k} \ {j} and for i ∈
{1, . . . , k} \ {j, j ′} (accordingly as the move-type is birth move or death move),
zi are independently simulated in every iteration. Although the co-ordinate-wise
moves are dependent since the same ε is used for updating them, more flexible and
structured dependence can be induced within the moves in the TTMCMC context.
Such structured dependence allows for selecting the coordinate-wise forward or
backward transformations in ways that take account of the posterior correlation
between the parameters, thus facilitating more efficient moves.
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Briefly, at each iteration, for i = 1, . . . , k, we can reparameterize pi and qi as

pi = exp(ψ1i )∑3
j=1 exp(ψji)

;

qi = exp(ψ2i )∑3
j=1 exp(ψji)

;

1 − pi − qi = exp(ψ3i )∑3
j=1 exp(ψji)

,

(3.5)

where, for j = 1,2,3,

(ψj1,ψj2, . . . ,ψjk) ∼ Nk(μj ,�j ) (3.6)

independently, where (μj ,�j ); j = 1,2,3 may be estimated from a pilot run of
TMCMC with the dimensionality fixed at k = kmax. Specifically, from a pilot run
of TMCMC with pi = qi , for each variable xi , i = 1, . . . , kmax, we may consider
the three empirical means of xi associated with zi = 1, −1 and 0, as good candi-
dates for the ith components of μ1, μ2 and μ3, respectively. For the covariance
matrices �j , the empirical estimates of the covariances between xi and xj as-
sociated with (zi = 1, zj = 1), (zi = −1, zj = −1), and (zi = 0, zj = 0) may be
considered as the (i, j)th elements of �1, �2 and �3, respectively. The above strat-
egy yields three kmax-dimensional vectors μ̃j ; j = 1,2,3, and three kmax × kmax-

dimensional covariance matrices �̃j ; j = 1,2,3. The required k-dimensional μj

and k × k-dimensional �j are then simply relevant sub-vectors and sub-matrices
of μ̃j and �̃j , respectively.

At each iteration of TTMCMC, we then first simulate (ψj1,ψj2, . . . ,ψjk); j =
1,2,3 using (3.6), obtain {pi, qi,1 − pi − qi; i = 1, . . . , k} using (3.5); then given
{pi, qi,1−pi −qi; i = 1, . . . , k} we simulate zi ∼ Multinomial(1;pi, qi,1−pi −
qi) independently as before, where i ∈ {1, . . . , k} \ {j} or i ∈ {1, . . . , k} \ {j, j ′}.

As in the case of TMCMC, it can be easily verified that our modified TTM-
CMC algorithm with this hierarchical dependence structure for the distribution of
z satisfies detailed balance.

4 Jumping more than one dimensions at a time

We now consider the situations where instead of jumping one dimension, one
wishes to jump several dimensions at a time. That is, we now consider the more
general framework where x = (x1, . . . , xk) ∈ R

k and that we wish to increase
the dimension to k + m, or to decrease the dimension from k + m to k, where
1 ≤ m ≤ k. It follows that TTMCMC can jump from k to 2k dimensions and from
2k to k dimensions at the maximum. RJMCMC does not have such restriction, but
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jumping many dimensions at a time will only add to the general inefficiency of
RJMCMC.

For an illustrative TTMCMC example where jumping more than one dimen-
sion is desired, assume that k = 3 and m = 2, so that it is required to jump from
R

3 to R
5. For simplicity, we illustrate with the additive transformation. One may

anticipate that this can be accomplished by simulating a single positive ε ∼ �(·),
selecting, say, x1 and x2 at random without replacement from x = (x1, x2, x3), sim-
ulating z3, and then constructing the birth move x′ = Tb,z2(x, ε) = (x1 + a1ε, x1 −
a1ε, x2 + a2ε, x2 − a2ε, x3 + z3a3ε) = (x′

1, x
′
2, x

′
3, x

′
4, x

′
5). However, for this move,

the dimension of (x, ε) = (x1, x2, x3, ε) is 4, while that of x′ = (x′
1, x

′
2, x

′
3, x

′
4, x

′
5)

is 5. In other words, the Jacobian | ∂(Tb,z(x,ε))

∂(x,ε)
| is not well-defined.

To get past the above difficulty with dimensions, we need to simulate two ε’s
from �(·): ε1 for splitting x1 into x1 + a1ε1 and x1 − a1ε1, and ε2 for splitting x2

into x2 + a2ε2 and x2 − a2ε2, and also to update x3 to x3 + z3a3ε2 (ε1 can also
be used to update x3). Hence, the birth move takes the form x′ = Tb,z3(x, ε1, ε2) =
(x1 +a1ε1, x1 −a1ε1, x2 +a2ε2, x2 −a2ε2, x3 +z3a3ε2) = (x′

1, x
′
2, x

′
3, x

′
4, x

′
5). Now

the dimensions of both x′ = (x′
1, x

′
2, x

′
3, x

′
4, x

′
5) and (x, ε1, ε2) = (x1, x2, x3, ε1, ε2)

are the same and equals 5; hence the Jacobian∣∣∣∣∂(Tb,z3(x, ε1, ε2))

∂(x, ε1, ε2)

∣∣∣∣
=

∣∣∣∣∂(x1 + a1ε1, x1 − a1ε1, x2 + a2ε2, x2 − a2ε2, x3 + z3a3ε2)

∂(x1, x2, x3, ε1, ε2)

∣∣∣∣
= 4a1a2,

is well-defined. The acceptance probability of the birth move in this example is
given by

ab(x, ε1, ε2) = min
{

1,
1

(3 + 2)(3 + 1)
× wd,5

wb,3
× p

I{1}(zc
3)

3 q
I{−1}(zc

3)

3

p
I{1}(z3)

3 q
I{−1}(z3)

3

× π(x′)
π(x)

×
∣∣∣∣∂(Tb,z3(x, ε1, ε2))

∂(x, ε1, ε2)

∣∣∣∣
}

= min
{

1,
1

20
× wd,5

wb,3
× p

I{1}(zc
3)

3 q
I{−1}(zc

3)

3

p
I{1}(z3)

3 q
I{−1}(z3)

3

π(x′)
π(x)

× 4a1a2

}
.

(4.1)

For the corresponding death move, that is, for moving from x′ = (x′
1, x

′
2, x

′
3,

x′
4, x

′
5) to x′′ = Td,z(x′, ε1) = (

x′
1+x′

2
2 ,

x′
3+x′

4
2 , x′

5 + zc
3a3ε1) = (x′′

1 , x′′
2 , x′′

3 ), we must
have, for the reverse of this death move, x′′

1 + a1ε
∗
1 = x′

1, x′′
1 − a1ε

∗
1 = x′

2, x′′
2 +

a2ε
∗
2 = x′

3, x′′
2 − a2ε

∗
2 = x′

4. The first two equations yield ε∗
1 = x′

1−x′
2

2a1
and the last
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two equations yield ε∗
2 = x′

3−x′
4

2a2
. The Jacobian is given by∣∣∣∣∂(Td,z3(x

′, ε1); ε∗
1, ε∗

2, ε1)

∂(x′, ε1)

∣∣∣∣
=

∣∣∣∣∂(
x′

1+x′
2

2 ,
x′

3+x′
4

2 , x′
5 + zc

3a3ε1,
x′

1−x′
2

2a1
,

x′
3−x′

4
2a2

, ε1)

∂(x′
1, x

′
2, x

′
3, x

′
4, x

′
5, ε1)

∣∣∣∣
= 1

4a1a2
.

(4.2)

We accept this death move with probability

ad

(
x′′, ε1, ε

∗
1, ε∗

2
)

= min
{

1,5 × 4 × wb,3

wd,5

× P(zc)

P (z)

π(x′′)
π(x′)

∣∣∣∣∂(Td,z3(x
′, ε1); ε∗

1, ε∗
2, ε1)

∂(x′, ε1)

∣∣∣∣
}

= min
{

1,20 × wb,3

wd,5
× p

I{1}(z3)

3 q
I{−1}(z3)

3

p
I{1}(zc

3)

3 q
I{−1}(zc

3)

3

× π(x′′)
π(x′)

× 1

4a1a2

}
.

(4.3)

We illustrate the idea of this algorithm in Figure 3 diagrammatically for the ease
of understanding.

Thus, in general, for moving from dimension k to dimension k + m, we need to
simulate ε1, . . . εm for updating x = (x1, . . . , xk) to x′ = (x′

1, x
′
2, . . . , x

′
k, x

′
k+1, . . . ,

x′
k+m). The associated general TTMCMC algorithm for jumping m dimensions is

provided as Algorithm S-3.1 of Section S-3, and the proof of its detailed balance
is provided in Section S-4.

In variable dimensional problems such as mixtures, changing the dimension
of one set of parameters necessitates changing the dimensions of the other sets
of parameters. Thus, more than one dimension must be changed at a time, while
the parameters are inter-related. We provide the details and the relevant algorithm
(Algorithm S-5.1) in Section S-5 of the supplement. Indeed, for our mixture ap-
plications of TTMCMC, we implement Algorithm S-5.1, choosing the additive
transformation.

Note that exactly as discussed in Section 3.3, we can incorporate a hierarchical
dependence structure on the distribution of z in Algorithms S-3.1 and S-5.1, which
does not hamper the detailed balance condition.

5 TTMCMC: Towards automation

Algorithms 3.1, S-3.1 and S-5.1 provide concrete ways to implement our
TTMCMC procedure, in general variable dimensional problems. Below, we de-
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Figure 3 Illustration of TTMCMC algorithm for jumping more than one dimension.
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tail the manyfold advantages of TTMCMC, which point towards the fact that
TTMCMC is close to qualifying as an automatic sampler in variable dimensional
problems.

5.1 Reasonably high acceptance rate

The additive and the multiplicative transformations, and combinations of them can
be effectively utilized, in conjunction with just a few, fixed number of ε’s, to ac-
complish transdimensional movement. The methodology reduces the variable di-
mensional problem to effectively fixed dimensional, indexed by a fixed and small
number of ε’s. The fixed and low-dimensional nature of ε (or the set {ε1, . . . , εm})
ensures reasonably high acceptance rate. Indeed, for high-dimensional proposals,
with high probability at least one component would be ill-proposed, which would
render the acceptance probability extremely small, even in fixed-dimensional
cases. In the context of TMCMC, theoretical and empirical results are provided
in Dutta and Bhattacharya (2014), Dey and Bhattacharya (2017a, 2017b). Our ex-
periments in this paper provide ample support to our claim of adequate acceptance
rate of TTMCMC.

5.2 Good mixing properties in high-dimensional and multimodal cases

Dutta and Bhattacharya (2014) discussed that in one-dimensional situations,
TMCMC reduces to a Metropolis–Hastings algorithm with a specialized mixture
proposal density, and hence, is expected to explore multimodal target densities
quite efficiently (see Guan and Krone (2007), for example). In higher dimensions,
due to singularity, the proposal does not admit a Lebesgue-measure-dominated
mixture density form directly, but since the method employs similar principles,
good convergence properties of TMCMC are to be expected for high-dimensional
multimodal targets as well. Since TTMCMC samplers are also based on the same
principles of deterministic transformations and construction of move types within
each of the birth, death and no-change move types, good convergence properties
are expected when the target density is multimodal for each dimension. In the
context of TMCMC, Dey and Bhattacharya (2017a, 2017b, 2016) demonstrate far
superior mixing of TMCMC compared to random walk Metropolis–Hastings. The
results of our TTMCMC applications reported in this paper provide ample support
to this discussion.

5.3 Applicability to all variable dimensional problems

The construction of TTMCMC sampler does not require any assumptions regard-
ing the model, such as existence of moments or unimodality. Note that in the at-
tempts made so far for constructing generic RJMCMC samplers, these assump-
tions are quite crucial; see Sisson (2005), Fan and Sisson (2011) for comprehensive
discussions regarding these assumptions. So, for the construction of TTMCMC
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sampler for switching between two models, namely, from Mk to Mk′ , we only
need to determine if some sets of parameters are related and decide on the num-
ber of parameters to be added or deleted, in a single step. Accordingly we will
choose one of the above mentioned algorithms and update all the parameters in a
single block. Hence, our proposed sampler is very much applicable to any variable
dimensional problem.

5.4 Default TTMCMC algorithm and its tuning

In order to design efficient MCMC algorithms, it has become standard practice to
tune the proposals. For the default, random walk proposals, this is synonymous
with choosing the scales optimally. Dutta and Bhattacharya (2014) recommended
additive TMCMC as the default TMCMC proposal since this transformation re-
quires much smaller number of move-types and the corresponding acceptance
probability has a simple form in that it is free of the Jacobian of transforma-
tions. Already Dey and Bhattacharya (2017a, 2017b) have developed some the-
ory on optimal scaling in the context of additive TMCMC. In keeping with Dutta
and Bhattacharya (2014), we advocate additive TTMCMC as the default TTM-
CMC sampler, which again requires specification of the scaling constants. In this
regard, in Section S-8.2 of the supplement, we propose a convergence diagnos-
tic that is generally applicable. Guided by our proposed convergence diagnostic
it is possible to find the appropriate value of scaling constants. Instances of the
idea are illustrated in Sections 6 and 7. The results of our experiments demon-
strate great ease of implementation and excellent performance of the default ad-
ditive TTMCMC sampler in all the examples. Further experiments with additive
TTMCMC, conducted by these authors and their colleagues in challenging, high-
dimensional spatio-temporal problems (see, for example, Das and Bhattacharya
(2016)), variable-selection problems, (high-dimensional) curve-fitting problems
also yielded excellent results. Thus, it seems that additive TTMCMC is close to-
wards the kind of automation that we desire.

6 Simulation studies with mixtures of gamma distributions with
unknown number of components

Wiper, Insua and Ruggeri (2001) implement RJMCMC in mixtures of gamma
distributions of the form G(ν, ν

μ
), where by G(a, b) we mean a gamma distribu-

tion with mean a/b and variance a/b2. In other words, Wiper, Insua and Ruggeri
(2001) consider the following mixture density for y > 0:

f (y|νk,μk,πk, k) =
k∑

j=1

πj

(νj /μj )
νj

	(νj )
yνj−1 exp

(
− νj

μj

y

)
, (6.1)
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where νk = (ν1, . . . , νk), μk = (μ1, . . . ,μk), and πk = (π1, . . . , πk). Given k > 0,
for each j , νj > 0, μj > 0, 0 < πj < 1 such that

∑k
j=1 πj = 1. We assume k to be

unknown, so that the dimension of the model (that is, the number of the component
parameters) is unknown and considered random.

6.1 Prior structure

Wiper, Insua and Ruggeri (2001) assumed the following prior structure given k:

πk ∼ D(1, . . . ,1); (6.2)

νj
i.i.d.∼ E(100); j = 1, . . . , k; (6.3)

μ−1
j

i.i.d.∼ G(1,1); j = 1, . . . , k, (6.4)

such that μ1 < · · · < μk . In (6.2), D(1, . . . ,1) denotes the Dirichlet distribution
with all the parameters equal to 1, and in (6.3), E(100) stands for the exponen-
tial distribution with mean 100. As regards k, Wiper, Insua and Ruggeri (2001)
consider the discrete uniform distribution on {1, . . . ,10}.

For the implementation purpose, we reparameterize νj and μj as exp(ν∗
j ) and

exp(μ∗
j ), where ν∗

j ∼ log(Exponential(100)) and (μ∗
j )

−1 ∼ log(G(1,1)). Since
−∞ < ν∗

j < ∞ and −∞ < μ∗
j < ∞, this reparameterization frees the parameter

space from any restrictions, allowing TTMCMC to move freely, while keeping the
original prior distributions intact. We denote (ν∗

1 , . . . , ν∗
k ) by ν∗

k and (μ∗
1, . . . ,μ

∗
k)

by μ∗
k .

For π , we propose the following prior based on reparameterization: for j =
1, . . . , k,

πj = exp(ωj )∑k
�=1 exp(ωj )

; ω1, . . . ,ωk
i.i.d.∼ N

(
μω,σ 2

ω

)
, (6.5)

where ωj
i.i.d.∼ log(G(1,1)), so that the prior (6.2) remains intact. Thus, we need to

update ωk = (ω1, . . . ,ωk), instead of π , using TTMCMC.

6.2 Label switching

A brief account of the so-called “label-switching problem” associated with iden-
tifiability of mixtures is provided in Section S-6 of the supplement. In this article,
our goal is to demonstrate TTMCMC with inference regarding posterior distribu-
tions of densities. Since inference on densities is not affected by label switching,
the problem of label switching is not of much importance in our context. Moreover,
we argue in Section S-6 that identifiability in the mixture context is not generally
desirable. However, since Wiper, Insua and Ruggeri (2001) enforced the restriction
μ1 < · · · < μk in an attempt to mitigate identifiability problems, for fair compari-
son we also impose the same restriction.



108 M. Das and S. Bhattacharya

6.3 Posterior summary

An important aspect to any Bayesian analysis is summarization of the posterior
in the sense of obtaining a measure of central tendency and appropriate credible
regions. Here we are interested in the posterior distribution of the entire mixture
density, induced by the posterior of the unknown number of parameters. Thus, we
need a measure of central tendency for the set of mixture densities supported by
the posterior, and appropriately constructed credible regions. Indeed, in Section S-
7 of the supplement, we develop a methodology for obtaining the modal mixture
density associated with the posterior, along with the desired credible regions and
highest posterior density (HPD) credible regions. In the context of our experiments
we shall display the modal mixture densities and several other mixture densities
falling within the 95% HPD regions.

6.4 Convergence diagnostics

Convergence assessment even in fixed-dimensional set-ups is a difficult propo-
sition; in variable-dimensional problems, the challenges increase manyfold. We
provide a briefing on these in Section S-8.1 of the supplement. As an attempt to
make some progress on convergence assessment in variable-dimensional problems
we propose a convergence diagnostic in Section S-8.2 of the supplement, which is
based on the methodology for summarizing the posterior. In a nutshell, we obtain
95% (or any other desired) credible regions from the first and second halves of a
complete run of TTMCMC, and then obtain the minimum increments of the radii
required for the credible regions to contain one another; small values of the incre-
ments indicate convergence of TTMCMC. Not only do we assess convergence of
TTMCMC with this method, we exploit this idea to select the scales of the additive
transformation that we employ for the illustrations.

6.5 General TTMCMC strategy for our experiments

We conduct four simulation studies, with data generated from the same 1-
component, 2-component, 3-component and 4-component gamma mixtures as
considered by Wiper, Insua and Ruggeri (2001) and apply TTMCMC and compare
our results with those obtained by the RJMCMC algorithm of Wiper, Insua and
Ruggeri (2001). In particular, we apply Algorithm S-3.1, updating (k, ν∗,μ∗,ω)

simultaneously in a single block using the additive transformation; we choose the
proposal density to be �(ε) ≡ N(ε : 0,1)I(0,∞)(ε), where N(ε : 0,1) denotes the
normal density with mean 0, variance 1, and evaluated at ε; I(0,∞)(·) denotes the
indicator function for the set (0,∞). For every iteration of TTMCMC we choose
equal move-type probabilities of birth, death and no-change strategies. Also, for
the underlying additive transformation, we choose equal probabilities of forward
and backward transformations. The forms of the Jacobian for the birth and the
death moves are given by 8aν∗

j
aμ∗

j
aωj

and (8aν∗
j
aμ∗

j
aωj

)−1 respectively, where



TTMCMC 109

aν∗
j
, aμ∗

j
and aωj

are the scales for additive TTMCMC updating of ν∗
j , μ∗

j and
ωj respectively. We base the choices of these scales on the convergence diag-
nostic proposed in Section S-8.2 of the supplement. The experimental details are
provided in the context-specific applications. All our codes are written in C and
implemented on a 32 bit, dual core (2.53 GHz × 2) laptop with 2.8 GiB memory.
However, for high-dimensional multivariate experiments we implemented our C
codes on a VMWare.

6.6 An RJMCMC algorithm based on random walk proposals

Since, in this paper, we apply additive TTMCMC to our examples, it makes sense
to compare our TTMCMC results with those obtained by the RJMCMC algorithm
based on random walk, which is the closest to additive TTMCMC among all RJM-
CMC algorithms. Recall that random walk involves additive transformations of the
same form as additive TTMCMC, but with independent jump sizes for every vari-
able, unlike TTMCMC. Also, unlike TTMCMC, the acceptance ratios for the birth
and death moves involves products of the densities �(ui) ≡ N(ui : 0,1)I(0,∞)(ui);
i = 1,2,3, corresponding to the birth proposals for (ν∗

1 , τ ∗
1 ,ω1). Since the pro-

posals of additive TTMCMC and random walk have the same additive form, the
variabilities of the jump sizes of the competing proposals are not expected to be
different. This is confirmed by the optimal scaling theory of TMCMC developed
by Dey and Bhattacharya (2017b), where it is shown that the optimal scales of
additive TMCMC and random walk are the same. Hence, in this work, we choose
the same scales of random walk RJMCMC as additive TTMCMC.

The main difference between our random walk RJMCMC and the proposal of
Green (2003) is that the latter is deterministic unless movement to a higher di-
mension is attempted; the moves also involve dimension-specific mean vectors
and covariance matrices, which are to be estimated from the dimension-specific
posteriors. Even for moderate number of models this is a difficult and computa-
tionally burdensome proposition; see, for example, Fan and Sisson (2011). Indeed,
as stressed in Green (2003), the approach is unlikely to be useful for more than a
small set of models.

However, for all our examples related to the gamma mixture, our random walk
RJMCMC had very small overall acceptance rate, and completely failed to change
the dimension in any such example. Hence, we do not provide further details re-
garding the performance of the random walk RJMCMC in gamma mixtures. In
the normal mixture context, random walk RJMCMC performed somewhat better,
although still not at all satisfactorily. Since this algorithm fails even in univariate
contexts, we do not pursue this for the multivariate situations.

6.7 First simulation study with data generated from a one-component
gamma mixture

Following Wiper, Insua and Ruggeri (2001) we generate 400 realizations from
Gamma(3,3), and model the realized data with the gamma mixture of the form
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(6.1). Assuming the same prior structure described in Section 6.1, we then simulate
from the resulting variable-dimensional posterior using TTMCMC.

For implementing TTMCMC it is necessary to select the scales aν∗
j
, aτ∗

j
,

aωj
appropriately for each j = 1, . . . , k. Rather than selecting the scales in or-

der to optimize the acceptance rate (see Dey and Bhattacharya (2017b) for op-
timal scaling theory in the context of additive TMCMC), here we choose the
scales by directly quantifying convergence of the TTMCMC chain using the
convergence diagnostic procedure proposed in Section S-8.2 of the supplement.
We experimented by setting, for every j = 1, . . . , k, the scale values aν∗

j
=

aν∗ ; aμ∗
j

= aμ∗ , and aωj
= aω, with aν∗ , aτ∗ , aω being one of the trial values

0.05,0.1,0.12,0.15,0.20,0.25,0.50. With every trial value, we ran our TTM-
CMC algorithm for a burn-in of 7.5 × 105 iterations, and a further 15 × 105 it-
erations, storing one in 150 iterations, thus obtaining a total of 10,000 realizations
from the posterior distribution. For each trial run, we assessed convergence of our
TTMCMC chain using the method proposed in Section S-8.2. . We divided our
TTMCMC samples into two parts, one part consisting of the first 5000 realiza-
tions and the other part containing the next 5000 realizations. Constructing the
approximate 95% credible regions as prescribed, we then obtained the minimum
increment, η1, of the radius of the first credible region such that the increased first
credible region wholly contains the second credible region. Similarly, we obtained
η2, the radius increment associated with the second credible region. Small values
of η1 and η2 indicate convergence of the algorithm. We selected that set of trial
values of the scales which yielded the smallest η1 and η2 among the trial runs.
Indeed, the smallest η1 and η2 turned out to be η1 = 0.041460 and η2 = 0.027130,
which corresponded to aν = aμ = 0.5 and aω = 1.5. Hence, we report our results
with respect to these trial values. Moreover, since both these quantities are small,
we conclude that convergence has taken place appropriately. We remark here that
the rather long burn-in that we had considered was unnecessary, as further experi-
ments showed that the chain converged in far less number of iterations. But we feel
it is a good practice to allow large enough burn-in when it is feasible computation-
ally. The overall acceptance rate, evaluated empirically, turned out to be 0.036596.
The birth, death, and no-change rates are 0.004206, 0.053131 and 0.067679, re-
spectively. Our TTMCMC implementation with the scales selected as above took
10 minutes and 57 seconds.

The trace plots of k, ν∗
1 , μ∗

1 and ω1, provided in Figure 4, exhibits quite ad-
equate mixing properties consistent with our more formal test of convergence.
Also very encouragingly, the posterior distribution of k gives probabilities 0.9344,
0.0649 and 0.0007 to k = 1,2,3 respectively, heavily supporting the true, single-
component gamma mixture. Since the data size is rather large, such high support
to the truth is expected. Indeed, with further simulation studies we demonstrate
in Section S-9.1 of the supplement, that as the data size increases, the posterior
distribution of k concentrates around the truth, namely, k = 1.



TTMCMC 111

Figure 4 TTMCMC for 1-component gamma mixture: Trace plots of k, ν∗
1 , μ∗

1 and ω1.

Figure 5 shows the modal density (thick, black curve), along with some other
densities within the 95% HPD region overlapped on the histogram of the simu-
lated data. Excellent fit of the posterior distribution of the densities to the data is
indicated by the diagram.

6.7.1 Comparison with the results obtained by Whiper, Insua and Ruggeri (2001).
In sharp contrast with our TTMCMC results, Wiper, Insua and Ruggeri (2001), us-
ing an RJMCMC algorithm that is very similar to that proposed by Richardson and
Green (1997) for normal mixtures, obtained a posterior distribution that supports
all possible values of k ∈ {1, . . . ,10}. In particular, their posterior probabilities
of k = 1,2,3,4,5 turned out to be 0.41, 0.24, 0.12, 0.08 and 0.05, respectively,
with other values of k having posterior probabilities less than 0.03. In other words,
driven by RJMCMC, the true value k = 1 received lower posterior support, in
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Figure 5 TTMCMC for 1-component gamma mixture: Goodness of fit of the posterior distribution
of densities (coloured curves) to the simulated data (histogram). The thick black curve is the modal
density and the other coloured curves are some densities contained in the 95% HPD.

comparison with our TTMCMC based posterior. This performance can possibly be
attributed to the G(5,5) proposal density they used for their dimension-changing
move. Since this density is uniformly less than one and features in the acceptance
ratio, heavy bias towards large values of k is to be expected as per our discussion
in the third point following Algorithm 3.1. Thus, there seems to be good reasons
to suspect the convergence of the RJMCMC algorithm in this case. In fact, as we
shall show, the same issue hinders convergence of the RJMCMC algorithms for
the remaining experiments as well.

It is important to remark in this context that the actual mixture density can be
approximated well in spite of poor mixing, provided that k takes on large values
with significant posterior probabilities. Therefore fitting the actual density alone
can be very misleading as a criterion of assessment of variable-dimensional algo-
rithms, particularly for RJMCMC algorithms, because of their inherent bias to-
wards large values of k in any practical implementation. In all the four simulation
examples considered by Wiper, Insua and Ruggeri (2001), the actual densities are
well-approximated by RJMCMC, but in all the cases, large values of k seemed to
play vital important roles in this regard. Such an issue is clearly of more concern
in real data cases where the truth is unknown. As we demonstrate with TTMCMC
in the supplement with the real galaxy data example of Richardson and Green
(1997), their prior structure perhaps actually supports unimodal density, while the
histogram is highly multimodal. However, because of large values of k supported
by RJMCMC, the approximated density seems to appear as a good fit.
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6.8 Second simulation study with data generated from a two-component
gamma mixture

Following Wiper, Insua and Ruggeri (2001), we now generate 400 realizations
from the two-component mixture 0.1 × G(9,27) + 0.9 × G(90,270).

In this case, for TTMCMC implementation we obtained aν∗ = 0.05; aμ∗ =
0.005, and aω = 0.05 using our convergence diagnostic procedure. We set a con-
siderably large burn-in time of 3 × 106 iterations as convergence seemed to be
somewhat slow compared to the one-component example. We stored one in 150
iterations of a further run of 15 × 105 iterations, so that, as before we stored a
total of 10,000 realizations from the posterior distribution. This took 31 minutes
6 seconds and yielded an overall acceptance rate 0.229365. Also, the birth, death
and no-change rates are 0.000017, 0.000022 and 0.688025, respectively. In this
case, we obtained η1 = 0.28333 and η2 = 0.30828, which are reasonably small,
providing reasonably strong evidence in support of convergence of our TTMCMC
chain. This is further supported strongly by the visual information carried by the
trace plots of k, ν∗

1 , μ∗
1 and ω1, shown in Figure 6.

Interestingly, after burn-in, TTMCMC gives full mass to 2 components, thus
completely supporting the truth. However, as demonstrated in Section S-9 of the
supplement with simulation studies for different data sizes (see Section S-9.2 for
simulations with this 2-component mixture), it is possible that the actual posterior
distribution of k gives “almost” point mass to k = 2, such that with probability
close to zero some other components may also occur, but might have been missed
by us in this case due to the finite run length of our algorithm.

As before, Figure 7 shows excellent fit of the posterior distribution of the den-
sities to the simulated data.

6.8.1 Comparison with the results obtained by Whiper, Insua and Ruggeri (2001).
As to be anticipated, bias towards large values of k continued in this example. In-
deed, although Wiper, Insua and Ruggeri (2001) obtained k = 2 as the mode of
their RJMCMC based posterior of k, they also found that their RJMCMC algo-
rithm yielded the posterior probability about 0.01 for k = 1, and supported other
larger values of k. Thus, compared to TTMCMC, which identifies the truth very
precisely, RJMCMC manages to facilitate only weak inference because of its lack
of convergence.

6.9 Third simulation study with data generated from a three-component
gamma mixture

Here we generate 400 realizations from the three-component mixture 0.2 ×
G(40,20) + 0.6 × G(6,1) + 0.2 × G(200,20), following Wiper, Insua and Rug-
geri (2001).

Again, we obtained aν∗ = 0.05; aμ∗ = 0.005, and aω = 0.05 using our conver-
gence diagnostic procedure. Here a burn-in of 15 × 105 iterations turned out to be
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Figure 6 TTMCMC for 2-component gamma mixture: Trace plots of k, ν∗
1 , μ∗

1 and ω1.

more than sufficient. As before we stored 10,000 realizations from the posterior
distribution out of a further 15 × 105 iterations after the burn-in with a thinning of
size 150. The overall acceptance rate was 0.240443 and the time taken was 36 min-
utes and 5 seconds. The birth, death and no-change rates are 0.00001, 0.000017
and 0.720547, respectively. As regards the convergence diagnostic, η1 = 0.01602
and η2 = 0.01757, which are both small enough to let us conclude that the TTM-
CMC chain has converged very well. The trace plots displayed in Figure 8 com-
pletely support our conclusion regarding convergence.

Again, the posterior distribution of k completely supports the truth, giving full
mass to 3, which, in this example, is the correct number of components. The sim-
ulation study in Section S-9.3 of the supplement demonstrates that it is possible
that here TTMCMC has missed k = 4, which might have occurred with extremely
small probability.

As to be expected, Figure 9 confirms excellent fit of the posterior distribution of
the densities to the simulated data.
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Figure 7 TTMCMC for 2-component gamma mixture: Goodness of fit of the posterior distribution
of densities (coloured curves) to the simulated data (histogram). The thick black curve is the modal
density and the other coloured curves are some densities contained in the 95% HPD.

6.9.1 Comparison with the results obtained by Whiper, Insua and Ruggeri (2001).
Specific RJMCMC based results pertaining to the three component mixture are not
provided in Wiper, Insua and Ruggeri (2001), but larger values of k compared to
the truth, are certain to occur with significant probabilities.

6.10 Fourth simulation study with data generated from a four-component
gamma mixture

For the final simulation study with gamma mixtures, following Wiper, Insua
and Ruggeri (2001) we generate 400 realizations from the four-component mix-
ture 0.25 × G(200,100) + 0.25 × G(400,100) + 0.25 × G(600,100) + 0.25 ×
G(800,100).

Here we obtained aν∗ = 0.05; aμ∗ = 0.005, and aω = 0.12, with a burn-in of
15 × 105 iterations and with respect to 10,000 realizations from the posterior dis-
tribution stored as before after burn-in with a thinning of size 150. The time to
implement TTMCMC was 40 minutes and 35 seconds and we obtained an over-
all acceptance rate 0.117432. The birth, death and no-change rates are 0.000417,
0.000401 and 0.345363, respectively. That the chain converged reasonably well
can be inferred since η1 = 0.08154 and η2 = 0.11839 are both reasonably small.
As before, the trace plots displayed in Figure 10 confirm our conclusion regarding
convergence.

Here the posterior distribution of k gives almost full mass to the truth k = 4,
and seems to be consistent with the further simulation study conducted in Section
S-9.4 of the supplement, considering a data of size 1000.
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Figure 8 TTMCMC for 3-component gamma mixture: Trace plots of k, ν∗
1 , μ∗

1 and ω1.

As before, Figure 11 shows that excellent fit of the posterior distribution of the
densities to the simulated data has been achieved.

6.10.1 Comparison with the results obtained by Whiper, Insua and Ruggeri
(2001). Even for this 4-component example specific RJMCMC based results are
not provided in Wiper, Insua and Ruggeri (2001), but as in the other RJMCMC
based examples, larger values of k compared to the truth, are certain to occur with
significant probabilities.

7 Comparison of TTMCMC and RJMCMC in the normal mixture set
up with unknown number of components

We now illustrate TTMCMC on normal mixture models with unknown number of
components with application to the well-studied enzyme, acidity and the galaxy
data sets. Richardson and Green (1997) modeled these data sets using parametric
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Figure 9 TTMCMC for 3-component gamma mixture: Goodness of fit of the posterior distribution
of densities (coloured curves) to the simulated data (histogram). The thick black curve is the modal
density and the other coloured curves are some densities contained in the 95% HPD.

normal mixtures and applied RJMCMC for Bayesian inference. On the other hand,
Bhattacharya (2008) (see also Escobar and West (1995)) proposed a semi paramet-
ric normal mixture model based on Dirichlet process and used Gibbs sampler for
Bayesian inference.

7.1 Normal mixture

Let the data points y1, . . . , yn be independently and identically distributed (i.i.d.)
as the normal mixture of the following form: for i = 1, . . . , n

f (yi |νk,τ k,πk, k) =
k∑

j=1

πj

√
τj

2π
exp

{
−τj

2
(yi − νj )

2
}
, (7.1)

where νk = (ν1, . . . , νk), τ k = (τ1, . . . , τk), and πk = (π1, . . . , πk). Given k > 0,
for each j , −∞ < νj < ∞, τj > 0, 0 < πj < 1 such that

∑k
j=1 πj = 1. As before,

we assume that k is unknown.

7.2 Prior structure

Note that the semi parametric mixture model of Bhattacharya (2008) can be viewed
as a parametric model when the scale parameter associated with the base distribu-
tion of the Dirichlet process prior tends to infinity. Hence, from that perspective,
the base distributions of νj and τj may be regarded as the respective priors for our
current parametric mixture context. Thus, motivated by Bhattacharya (2008), we
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Figure 10 TTMCMC for 4-component gamma mixture: Trace plots of k, ν∗
1 , μ∗

1 and ω1.

consider the following prior for ν and τ :

[τj ] ∼ G
(

s

2
,
S

2

)
; (7.2)

[νj |τj ] ∼ N

(
ν0,

ψ

τj

)
. (7.3)

In the above, N(μ,σ 2) denotes the normal distribution with mean μ and variance
σ 2. Specifications of the values of the hyperparameters s, S, ν0, ψ are discussed
in the context of the applications.

Analogous to the gamma mixture context here we reparameterize τj as exp(τ ∗
j ),

where τ ∗
j ∼ log(G(s/2, S/2)). We denote (τ ∗

1 , . . . , τ ∗
k ) by τ ∗

k .
For π we propose the same reparameterization (6.5). In this case, we con-

sider two kinds of priors on ω. One is ωj ∼ N(μω,σ 2
ω), and the other is ωj ∼

log(G(αj ,1)) independently, for j = 1, . . . , k, where αj > 0; j = 1, . . . , k. Note
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Figure 11 TTMCMC for 4-component gamma mixture: Goodness of fit of the posterior distribution
of densities (coloured curves) to the simulated data (histogram). The thick black curve is the modal
density and the other coloured curves are some densities contained in the 95% HPD.

that, for the normal prior on ωj , the induced prior on π is not the traditional Dirich-
let distribution, while the second prior implies that π ∼ D(α1, . . . , αk).

As regards the prior on k, we consider the uniform distribution on {1,2, . . . ,30},
the truncated Poisson distribution on {1,2, . . . ,30} and the discretized normal with
mean μk and variance σ 2

k on {1,2, . . . ,30} (that is, the normal density with mean
μk and variance σ 2

k evaluated and re-normalized on {1,2, . . . ,30} to render it a
discrete probability mass function).

We fit normal mixture models to each of the three data sets—enzyme, acidity,
and galaxy, using the general TTMCMC strategy provided in Section 6.5. The
details are provided in the context-specific applications.

We compare the performance of additive TTMCMC with random walk RJM-
CMC, which is analogous to additive TTMCMC but with independent jump-sizes
for every co-ordinate and with the proposal density associated with the birth move
incorporated within the acceptance ratio, unlike TTMCMC; see Section 6.6.

Our main aim is to demonstrate that the simplest version of TTMCMC, namely,
TTMCMC with the additive transformation, is efficient enough for adequately
exploring the complicated mixture-based posteriors in all the three applications,
while the corresponding RJMCMC version, composed of random walk based
moves, fails miserably.

Specific details of inference and implementation of our methodologies follow.

7.3 Enzyme data

Following Bhattacharya (2008) we set s = 4.0; S = 2 × (0.2/1.22) = 0.3278689;
ν0 = 1.45; ψ = 33.3. Rather than assuming ωj ∼ log(G(αj ,1)) which induce the
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traditional Dirichlet distribution for π , here we assume that ωj ∼ N(μωj
, σ 2

ωj
),

with μω = 0 and σ 2
ω = 0.25. We chose somewhat small variance to reflect our

belief that ωj ’s are relatively close to constant, so that a priori the mixing prob-
abilities π are approximately the same. We specify the uniform distribution on
{1, . . . ,30} as the prior on k.

As in the gamma mixture set-up we experimented by setting, for every j =
1, . . . , k, the scale values aν∗

j
= aν∗ ; aτ∗

j
= aτ∗ , and aωj

= aω, with aν∗, aτ∗, aω

being one of the trial values 0.05, 0.1, 0.12, 0.15, 0.20, 0.25, 0.50. We considered
a burn-in of 3.75 × 105 iterations and a further 15 × 105 iterations, storing as
before one in 150 iterations to obtain 10,000 realizations from the posterior. Here
η1 and η2 turned out to be η1 = 0.07291 and η2 = 0.039230, which corresponded
to aν = aτ = aω = 0.05. The results we report are with respect to these trial values.
Since both η1 and η2 are small, we conclude that convergence has taken place
appropriately. The overall acceptance rate, evaluated empirically, turned out to be
0.05284032, and the birth, death, no-change rates are 0.000306, 0.000304 and
0.157810, respectively. Our TTMCMC implementation with the scales selected as
above took 2 minutes and 56 seconds.

We also verified convergence of our TTMCMC chain with informal trace plots.
Figure 12 displays the trace plots of k, ν∗

1 , τ ∗
1 and ω1. As seen in panel (a) of Fig-

ure 12 the posterior distribution of k placed highest mass on 2 components (poste-
rior probability 0.986), followed by 3 components (posterior probability 0.0137),
and then by 4 components (probability 0.0003). In other words, our Bayesian anal-
ysis strongly supports bimodality. Indeed, the information regarding bimodality is
particularly strong thanks to the small range on which the data are supported and
the large size of the data (the data set contains 245 observations on an effective
support (0,3)). Panels (b), (c) and (d) of Figure 12 show adequate mixing proper-
ties of the chain. Thus, the mixing information provided by these trace plots sup-
ports the conclusion obtained by our proposed credible region based convergence
assessment method.

Figure 13 shows excellent fit of the posterior distribution of the densities to the
data.

7.4 Acidity data

Again following Bhattacharya (2008) we set s = 4.0; S = 2 × (0.2/0.573) =
0.6980803; ν0 = 5.02; ψ = 33.3. Here also we assume that ωj ∼ N(μωj

, σ 2
ωj

),

with μω = 0 and σ 2
ω = 0.25. As before, we put the uniform prior distribution on

{1, . . . ,30} on k.
Following the convergence diagnostic method detailed above for choosing ap-

propriate scales here, we obtain aν∗
j
= aτ∗

j
= aω∗

j
= 0.05 for j = 1, . . . , k. For these

scales, we obtained η1 = 0.0049 and η2 = 0.0080, which are very small, indicating
very good convergence.
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Figure 12 TTMCMC for the enzyme data: Trace plots of k, ν∗
1 , τ∗

1 and ω1.

With the chosen scales our implementation took 1 minute and 43 seconds to
yield 10,000 realizations following a burn-in of 3 × 105 iterations, after storing
one in 150 iterations out of further 15×105 iterations after the burn-in period. The
overall acceptance rate turned out to be 0.198572, and the birth, death, no-change
rates turned out to be 0.000795, 0.000842 and 0.593601, respectively.

The trace plots of k, ν∗
1 , τ ∗

1 and ω1, shown in Figure 14, again indicate quite
good mixing properties and are consistent with the conclusions of our proposed
credible region based convergence assessment criterion.

With our prior structure here the posterior distribution of k again strongly
favoured 2 and 3 components, with k = 2 receiving significantly larger posterior
mass 0.9941 compared to the posterior probability of k = 3. The reason for the
strong support for bimodality can be attributed to the large size of the data con-
tained in the relatively small interval (2,8).

The modal density and sample densities falling in the 95% HPD region, over-
lapped on the histogram of the observed data are shown in Figure 15. Once again,
good fit to the data is indicated.
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Figure 13 TTMCMC for the enzyme data: Goodness of fit of the posterior distribution of densities
(coloured curves) to the observed data (histogram). The thick black curve is the modal density and
the other coloured curves are some densities contained in the 95% HPD.

7.5 Galaxy data

In contrast with the previous two cases of the enzyme and the acidity data, the
galaxy data, which is much more sparse and seems to exhibit far greater number
of modes, seems to be much more challenging to analyze. Thus, we consider a
somewhat different prior structure to reflect our beliefs regarding the Bayesian
mixture analysis.

Here, following Bhattacharya (2008) we set s = 4.0; S = 2; ν0 = 20; ψ = 33.3.
However, unlike the previous two cases here we assume that ωj ∼ log(G(5,1)),
so that π follows the Dirichlet distribution with all the parameters equal to 5. The
prior mean and mode of πj associated with this Dirichlet distribution are 1/k and
the variance is (k − 1)/6k2. Note that the mean and the variance of the uniform
Dirichlet distribution, which corresponds to taking all the parameters equal to 1,
are 1/k and (k − 1)/{k(k + 1)}, respectively. Hence, for large k, the variance of
our prior distribution is about 1/6 times that of the uniform Dirichlet. This lesser
variability ensures that the minor local modes receive non-negligible prior weights,
and hence makes sense in this galaxy data scenario. As regards the prior on k, here
we choose a discretized normal distribution on {1, . . . ,30} with mean 15 and vari-
ance 50. This reflects our belief that although all the values in {1, . . . ,30} receive
significant prior masses, relatively large number of components is preferable in
this application where many local modes are exhibited by the data.

In this application, following the previous convergence diagnostic method, we
found the appropriate scales to be aν∗

j
= aτ∗

j
= aωj

= 1 for j = 1, . . . , k. These
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Figure 14 TTMCMC for the acidity data: Trace plots of k, ν∗
1 , τ∗

1 and ω1.

scales correspond to η1 = 0.01657 and η2 = 0.01039, which indicate good con-
vergence. Here the overall acceptance rate, computed over 18 × 105 iterations,
turned out to be 0.036388, while the birth, death and no-change rates are 0.007517,
0.007559 and 0.094195, respectively.

The implementation of TTMCMC in this application took 6 minutes and 33
seconds to yield 10,000 realizations after discarding a burn-in of 3 × 105 itera-
tions, and then storing one iteration in every 150 iterations out of further 15 × 105

iterations following the burn-in period.
Note that, even in this challenging galaxy data application, the trace plots turned

out to be quite reasonable, as shown in Figure 16. Thus, reasonable overall mixing
behavior of the TTMCMC chain is indicated by the trace plots, consistent with the
results of our credible region based convergence assessment criterion.

In this problem, the posterior distribution of k turned out to be much more vari-
able than in the previous two cases. Here k ∈ {7,8,9,10,11,12,13,14,15,16,17,

18,19,20,21,22,23,24,25} with respective probabilities {0.0002,0.0005,

0.0059, 0.0191, 0.0455, 0.0784, 0.1044, 0.1371, 0.1596, 0.1457, 0.1115, 0.0869,
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Figure 15 TTMCMC for the acidity data: Goodness of fit of the posterior distribution of densities
(coloured curves) to the observed data (histogram). The thick black curve is the modal density and
the other coloured curves are some densities contained in the 95% HPD.

0.0513,0.0277,0.0128,0.0097,0.0018,0.0016,0.0003}. Thus most of the possi-
ble values of k received positive posterior masses. It is also difficult to single out
any particular value of k that is very strongly favoured by the posterior, unlike the
previous two applications.

Figure 17 depicts the modal density and sample densities falling in the 95%
HPD region, overlapped on the histogram of the observed data. The fit to the data
seems to be quite encouraging with the sample densities capturing even the minor
modes located at the extreme ends of the support of the data.

7.6 Comparison of TTMCMC with random walk RJMCMC with respect to
the three real data sets

To save space, we have provided the details of the comparisons in Section S-10 of
the supplement. Briefly, in all the three examples, random walk RJMCMC places
much higher posterior mass to large number of components that are very implau-
sible. The reason for this can be attributed to the product of the left truncated
standard normal densities that features in the denominator of the acceptance ratio
of the birth move of RJMCMC; since the aforementioned densities are bounded
above by 1, this makes the acceptance rate for the birth move exceeding large,
which, in effect, seriously slows down convergence. In addition, for the somewhat
challenging galaxy data set, the random walk RJMCMC chain has extremely poor
acceptance rate, and the chain hardly moved. Recall that this was the case for all
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Figure 16 TTMCMC for the galaxy data: Trace plots of k, ν∗
1 , τ∗

1 and ω1. Good mixing behavior
of the TTMCMC chain is exhibited by the above panels.

the four gamma mixture examples as well. Thus, random walk RJMCMC com-
pletely fails to act as the default RJMCMC algorithm.

7.7 Relevance of autocorrelation plots for convergence diagnosis in variable
dimensions

Convergence assessment with the help of autocorrelations is not always appropri-
ate in variable dimensional MCMC algorithms. Since there is no fixed Euclidean
structure, parameters may not retain the same meaning throughout the iterations.
To proceed with autocorrelation plots, it is necessary to focus attention on those pa-
rameters which retain constant interpretation across all models. In the mixture case
the number of components may be considered. In this regard, the autocorrelation
plots presented in Figure S-4 of the supplement reveal far superior mixing of the
k-chain obtained by our TTMCMC sampler compared to random walk RJMCMC
for all the three real data sets. In particular, for the galaxy data set, the RJMCMC
based autocorrelations are simply hopeless!
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Figure 17 TTMCMC for the galaxy data: Goodness of fit of the posterior distribution of densities
(coloured curves) to the observed data (histogram). The thick black curve is the modal density and
the other coloured curves are some densities contained in the 95% HPD.

7.8 Comparison between TTMCMC and RJMCMC when the prior of
Richardson and Green (1997) is considered

Further comparisons between TTMCMC and RJMCMC with respect to the prior
structure and the algorithm of Richardson and Green (1997), are provided in Sec-
tion S-10 of the supplement, in the context of the challenging galaxy data. We
argue that actually their prior structure, where τ are made dependent in a way that
they are approximately of the same size, is not expected to provide good fit to the
observed histogram, but the large number of components supported by their algo-
rithm as a result of its inherent bias as discussed, create the appearance of good
fit. We further argue that the prior structure of Cappé, Robert and Rydén (2003),
which is essentially the prior of Richardson and Green (1997) but τ are indepen-
dent a priori, is a more appropriate prior for capturing the varieties of modes in
the galaxy data.

8 TTMCMC for multivariate normal mixtures

We now consider i.i.d. p-variate data {yi = (yi1, . . . , yip)T ; i = 1, . . . , n} arising
from the p-variate normal mixture having the following density when the number
of components is k: for i = 1, . . . , n,

f (yi |�k) =
k∑

j=1

πj

1

(2π)p/2|�j | 1
2

exp
{
−1

2
(yi − μj )

T �−1(yi − μj )

}
, (8.1)

where �k = {μ1, . . . ,μk,�1, . . . ,�k,π1, . . . , πk}.
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Letting ȳ denote the p-dimensional sample mean vector and S = diag{s2
1 ,

. . . , s2
p} denote the diagonal matrix with the sample variances in the diagonal,

we transform the data yi , following Dellaportas and Papageorgiou (2006), to
S−1/2(yi − ȳ), once the data are generated.

8.1 Prior structure

Following Dellaportas and Papageorgiou (2006), we assume that a priori

[μj |�j ] ∼ Np(0,�j ), (8.2)

a p-variate normal with mean 0 and covariance matrix �j . We also assume fol-
lowing Dellaportas and Papageorgiou (2006) that

[�j ] ∼ W−1(p + 1,	), (8.3)

an inverse-Wishart distributon with (p + 1) degrees of freedom and diagonal ma-
trix 	. However, instead of considering the gamma prior on the diagonal elements
of 	 as in Dellaportas and Papageorgiou (2006), we set all the diagonal elements
equal to 1. This we do to avoid oversmoothness induced by the dependence struc-
ture between the �j ; j = 1, . . . , k, and to facilitate adaptive learning from the data.
Recall that (see Section 7.8) a similar issue of oversmoothness seems to render the
prior of Richardson and Green (1997) less appropriate for capturing the varieties
of modes as compared to the prior of Cappé, Robert and Rydén (2003), in the
univariate normal mixture case.

As before, we consider a discrete uniform prior for k on {1,2, . . . ,30}. Here we
remark that although Dellaportas and Papageorgiou (2006) also report a discrete
uniform prior on k, they did not specify the range.

8.2 TTMCMC strategy for multivariate situations

As before we reparameterize πj as exp(wj )/
∑k

i=1 exp(wi). As for �j , we con-
sider the Cholesky decomposition �j = LLT , where L = (Lrs)r,s=1,...,p is the
appropriate lower triangular matrix. Thus, there are 1 + p + p(p + 1)/2 num-
ber of parameters to be split in any given birth move given that the j th mix-
ture component is chosen; wj , the p components of μj = (μj1, . . . ,μjp)T and
p(p + 1)/2 non-zero elements of Lj . Thus, we need 1 + p + p(p + 1)/2 ε’s
to define our additive TTMCMC move types. The Jacobian of the birth move is
given 21+p+p(p+1)/2 × awj

× ∏p
r=1 aμjr

∏p
r≥s=1 aLjrs

, where aμjr
is the scale for

the additive transformation of the r th component of μj and aLjrs
is the same for

the (r, s)th element of Ljrs , where r ≥ s. The Jacobian for the death move is the
inverse of that of the birth move with the relevant scale values. We reject the entire
move if any of the diagonal elements of L becomes negative.
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8.3 Simulation experiment with p = 3

Following Dellaportas and Papageorgiou (2006), we set generate 80, 100 and 100
data points from 3-variate normal distributions with means μ1 = (6,4,2)T , μ2 =
(−11,−4,−1)T , μ3 = (−7,−11,−5)T and covariance matrices

�1 =
⎛
⎝3 2 1

2 5 0
1 0 4

⎞
⎠ , �2 =

⎛
⎝ 2 −1.5 1

−1.5 5 2
1 2 3

⎞
⎠ ,

�3 =
⎛
⎝ 5 −1 1

−1 4 −2
1 −2 3

⎞
⎠ ,

respectively. Thus our data set consists of 280 data points and we fit our 3-variate
mixture model to the data assuming unknown number of components.

Considering a burn-in of 3 × 106 iterations, we ran the TTMCMC algorithm for
a further 3 × 106 iterations, storing one in 300 iterations, to obtain 10,000 real-
izations from the posterior. The implementation took 49 minutes and 14 seconds
on our laptop. The overall acceptance rate turned out to be 0.038231 when the
scales of the additive transformations are set to be 0.05 and 0.05 for the means
and the elements of the Cholesky factors, and 0.5 for the weights. The birth, death
and the no-change rates are 0.000002, 0.000015 and 0.114539, respectively. The
trace plots shown in Figure 18 confirm excellent convergence properties of our al-
gorithm, even in the multivariate case. Importantly, we obtained point mass at the
true number of mixture components (as before, we do not rule out the possibility
of missing some component other than 3 in our finite TTMCMC run). In contrast,
Dellaportas and Papageorgiou (2006) report 6 models associated with k = 1, . . . ,6,
with 3 components receiving 0.9493 posterior probability.

Figure 19 depicts the modal density and sample densities falling in the 95%
HPD region, overlapped on the histogram of the first component {yi1; i = 1, . . . , n}
(here n = 280) of the observed data. Excellent fit to the data is clearly indi-
cated.

8.4 Simulation experiment with p = 10

We now consider application of TTMCMC to mixtures of p = 10 dimen-
sional multivariate normals. Specifically, we first generate two mean vectors
μ1 and μ2 from two 10-dimensional, normal distributions N10(4110, I 10) and
N10(−5110, I 10), where, for any integer p ≥ 1, 1p is a d-component vector with
each component 1, and Ip is the identity matrix of order p. Corresponding to the
mean vectors μ1 and μ2, we specify covariance matrices �1 and �2 of the follow-
ing form: the off-diagonal elements are given by σ 2

j ρ and the diagonal elements
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Figure 18 TTMCMC for 3-dimensional case: Trace plots of k, μ11, L11 and ω1. Good mixing
behavior of the TTMCMC chain is exhibited by the above panels.

are all equal to σ 2
j , for j = 1,2. For our illustration we consider σ 2

1 = 4, σ 2
2 = 3

and ρ = 0.5.
We then generate 300 realizations from N10(μ1,�1) and 300 realizations from

N10(μ2,�2), which constitute our data set {y1, . . . ,y600} of size 600.
We use the same TTMCMC algorithm as in the 3-dimensional experiment, but

as to be anticipated for higher dimensions, the convergence was slower compared
to the 3-dimensional example. To improve mixing, we employed the following
strategy. At the end of each iteration t ≥ 1, we simulated r(t) ∼ N(0,1) and pro-
posed the further additive transformation �(t) 	→ �(t) + ar(t), where �(t) de-
notes the stage of the parameters at iteration t , and a denotes the vector of scal-
ing constants for the additive transformation. We then calculated the acceptance
probability of this proposal in the usual TMCMC set-up to either accept the new
proposal �(t) + ar(t) or to remain at �(t). Such a strategy has also been em-
ployed by Mukhopadhyay and Bhattacharya (2013) to improve mixing in the con-
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Figure 19 TTMCMC for 3-dimensional case: Goodness of fit of the posterior distribution
of densities (coloured curves) to the histogram of the first component of the observed data
{yi1; i = 1, . . . ,285}. The thick black curve is the modal density and the other coloured curves are
some densities contained in the 95% HPD.

text of palaeoclimate modeling. The strategy is akin to the so-called generalized
Gibbs/MH methods in fixed-dimensional set-ups have the potential of improving
mixing (see, for example, Liu, Liang and Wong (2000), Liu (2001); see also Liu
and Yu (1999)). Further details can be found in the supplement of Dutta and Bhat-
tacharya (2014).

For our purpose, we chose the scales of the additive transformation associated
with the original TTMCMC to be relatively large; 0.5 for the means, 0.05 for the
Cholesky components and 1.5 for the weights, while for the mixing improvement
step we chose the scales to be 1/10th of the above scales. This ensures relatively
small acceptance rate but large moves for the original TTMCMC steps but much
higher acceptance rate at the mixing improvement step.

However, in spite of the above strategy, the mixing improvement was not dra-
matic in our case, and still a considerably long run was necessary. As such, we
discarded the first 3 × 107 iterations, and stored one in 300 iterations out of the
next 12 × 107 iterations to store 4 × 105 iterations. We applied further thinning of
size 40 to the stored samples, finally storing 10,000 iterations. The entire proce-
dure took about 68 hours on our VMWare. The overall acceptance rate, birth rate,
death rate and the no-change rates in this implementation are 0.008173, 0.00014,
0.00037 and 0.023949, respectively.

The trace plots and the goodness of fit (for the first co-ordinate of the 10-
dimensional data) diagram shown in Figures 20 and 21 vindicate satisfactory per-
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Figure 20 TTMCMC for 10-dimensional case: Trace plots of k, μ11, L11 and ω1. Adequate mixing
behavior of the TTMCMC chain is exhibited by the above panels.

formance of our method, in spite of high dimensionality. Importantly, the correct
number of components, namely, k = 2 has been identified correctly.

8.5 Simulation experiment with p = 20

We conduct a further experiment, now with dimension p = 20. Our data generation
mechanism remains the same as in Section 8.4, only the dimension is increased
from p = 10 to p = 20. Our TTMCMC algorithm also remains almost the same,
with the same mixing improvement strategy. We again obtain 10,000 samples by
thinning from a total of 15×107 iterations. In this case, the overall acceptance rate,
birth rate, death rate and the no-change rate are 0.00741, 0.00019, 0.000421 and
0.02163, respectively. The time taken is 136 hours and 44 minutes. The trace plots
and the goodness-of-fit diagram depicted in Figures 22 and 23 once again speak in
favour of our ideas, in particular, the great automation of our method, irrespective
of dimensions.
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Figure 21 TTMCMC for 10-dimensional case: Goodness of fit of the posterior distribution
of densities (coloured curves) to the histogram of the first component of the observed data
{yi1; i = 1, . . . ,600}. The thick black curve is the modal density and the other coloured curves are
some densities contained in the 95% HPD.

9 Conclusion

The transformation based concepts of TMCMC in the fixed-dimensional set-up
has led to the interesting variable-dimensional counterpart TTMCMC just as the
traditional Metropolis–Hastings methodology has led to RJMCMC. Consequently,
the advantages of TMCMC over Metropolis–Hastings are expected to carry over
to TTMCMC as compared to RJMCMC. Indeed, as we demonstrated in this pa-
per, TTMCMC is simple to implement, can update all the (variable number of)
parameters in a single block while maintaining reasonable acceptance rates thanks
to drastic effective reduction of the dimensionality. In fact, TTMCMC effectively
reduces the variable dimensional problem to a fixed dimensional problem involv-
ing a single ε or just a few, fixed number of ε’s, given any move type within the
birth, death or no-change moves. The block updating strategy of TTMCMC using
ε or a few ε’s also ensures huge computational savings. Furthermore, the mixture-
type proposal distributions associated with TTMCMC ensures reasonable mixing
properties.

There are three key features that manifested themselves in our comparative stud-
ies on TTMCMC and RJMCMC. First, TTMCMC yields reasonable acceptance
rates, which are larger than those of RJMCMC for the same scales of the addi-
tive transformations. Importantly, in the gamma mixtures and the galaxy example,
RJMCMC yields extremely poor acceptance rate, while that of TTMCMC is quite
reasonable, for the same scales.
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Figure 22 TTMCMC for 20-dimensional case: Trace plots of k, μ11, L11 and ω1. Adequate mixing
behavior of the TTMCMC chain is exhibited by the above panels.

Second, ensuring reasonable mixing is a very challenging issue in variable di-
mensional problems. Here TTMCMC outperforms RJMCMC very significantly
in all the cases, as vindicated by the autocorrelation plots shown in Figure S-4
of the supplement. In other words, even in univariate situations, the random walk
RJMCMC completely fails to compete with TTMCMC.

Third, it seems to be infeasible to devise appropriate RJMCMC move types
in high-dimensional contexts. Indeed, Dellaportas and Papageorgiou (2006) con-
sider a maximum of only 5-dimensional example for RJMCMC application. On
the other hand, we have demonstrated that our simple additive TTMCMC works
even for dimensions as large as 20. In this regard it is useful to note that the split-
merge proposals of Jain and Neal (2004) and Jain and Neal (2007) are perhaps bet-
ter candidates compared to those of Richardson and Green (1997) and Dellaportas
and Papageorgiou (2006) as they update all the allocation variables simultaneously,
rather than Gibbs sampling. Since TTMCMC also generally updates all the vari-
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Figure 23 TTMCMC for 20-dimensional case: Goodness of fit of the posterior distribution
of densities (coloured curves) to the histogram of the first component of the observed data
{yi1; i = 1, . . . ,600}. The thick black curve is the modal density and the other coloured curves are
some densities contained in the 95% HPD.

ables in a single block, the general principles of their algorithm and TTMCMC
match. But a key difference is that we do not introduce allocation variables for
mixture updation, and hence have much less number of variables to update, which
is expected to lead to better acceptance rate in our case. It is also to be noted that
the algorithms of Jain and Neal (2004) and Jain and Neal (2007) are devised for
mixtures only, not for general variable-dimensional problems. In contrast, our de-
fault additive TTMCMC that we used for mixtures can be applied to all variable
dimensional problems.

A further issue with RJMCMC is that it tends to support more components than
are expected. The main issue responsible for this possible non-convergence is the
requirement of dimension-matching for RJMCMC implementation. This condi-
tion forces the acceptance ratio for the dimension-changing moves to depend upon
the proposal density either via the denominator (birth move) or through the nu-
merator (death move). Thus, unlike fixed-dimensional Metropolis–Hastings, the
acceptance ratio is not balanced by the presence of the proposal density in both
numerator and denominator. As already remarked in the discussion following Al-
gorithm 3.1, this unbalanced nature of the RJMCMC acceptance ratio causes large
number of birth moves if the proposal density is uniformly bounded by 1, as in
our examples. Since TTMCMC does not require dimension-matching, it has been
possible to free the corresponding acceptance ratio of the proposal density, which,
in turn, completely solves the problem of bias towards large number of models in
finite number of iterations.
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The wisdom that emerges from the investigations and the subsequent analyses
is that even the simplest version of TTMCMC, namely, additive TTMCMC, is ca-
pable enough of exploring challenging variable-dimensional posteriors, providing
ample support to our claim of automation inherent within TTMCMC. On the other
hand, as our implementations show, the corresponding random walk RJMCMC do
not measure up at all. In principle, there may exist RJMCMC algorithms which
may perhaps perform reasonably in terms of convergence, but at the cost of being
problem-specific, complicated, hard-to-implement, and computationally burden-
some.

Also, very importantly, as we showed, our simple additive transformation exhib-
ited very decent performance even in dimension as large as 20, thus providing a
large boost to our claim of automation. To our knowledge, there exists no instance
of RJMCMC that works in such high dimension.

Thus, as per our experiments and knowledge, TTMCMC is remarkably close to
automation, while automation for RJMCMC is nowhere in sight.

Apart from developing TTMCMC, we have also proposed, in a separate supple-
mentary material, a general methodology for summarizing the posterior distribu-
tions of densities. In particular, we have prescribed a procedure for obtaining the
modes and desired HPD regions of the posterior distribution of density functions.
Moreover, using these concepts as basis, we have proposed a convergence diagnos-
tic criterion for the underlying TTMCMC algorithm, which is again very generally
applicable. The convergence diagnostic method seems to be particularly useful in
variable-dimensional contexts, where determining convergence is far more difficult
than fixed-dimensional situations. Also, as we demonstrated with our applications,
in the absence of optimal scaling theory in variable-dimensional situations, the
criterion can provide guidance regarding choices of the scales of default additive
TTMCMC.

Our results demonstrate that additive TTMCMC is promising enough to qual-
ify as the default variable-dimensional algorithm. This is also vindicated by the
excellent performances of TTMCMC in challenging spatio-temporal problems in-
vestigated by these authors and others. In this paper, we restricted ourselves to
mixture models because of their high standing in statistics and challenging na-
ture of the associated variable-dimensional problem. However, in a separate paper
we shall present detailed comparisons of TTMCMC and RJMCMC with respect
to various other variable-dimensional problems. Our investigations are on and we
seek to establish TTMCMC as a far superior alternative compared to RJMCMC.
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Supplementary Material

Supplement to “Transdimensional transformation based Markov chain Monte
Carlo” (DOI: 10.1214/17-BJPS380SUPP; .pdf). In Sections S-1 and S-2 we prove
detailed balance, irreducibility and aperiodicity of TTMCMC. In Section S-3 we
provide the general TTMCMC algorithm for jumping m dimensions, and in Sec-
tion S-4 we prove detailed balance for this algorithm. The TTMCMC algorithm
for jumping more than one dimension at a time when several sets of parameters
are related, is detailed in Section S-5. A brief discussion on label switching in
mixtures is included in Section S-6, and in Section S-7, an effective method of
summarization of the posterior distribution of mixture densities is considered. In
Section S-8 we shed light on the important problem of convergence diagnostics in
mixture problems, for both known and unknown number of components. Further
simulation studies with gamma mixtures with varying data sizes are elaborated
in Section S-9. In Section S-10 we include a detailed comparison between addi-
tive TTMCMC and random walk RJMCMC with respect to three real data sets,
and finally, in Section S-11, we provide detailed comparisons between additive
TTMCMC and RJMCMC with respect to the prior structure and the algorithm of
Richardson and Green (1997) in the galaxy data context.
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