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Abstract. Survival models with frailty are used when additional data are
non-available to explain the occurrence time of an event of interest. This
non-availability may be considered as a random effect related to unobserved
explanatory variables, or that cannot be measured, often attributed to environ-
mental or genetic factors. We propose a survival model with frailty based on
the Birnbaum–Saunders distribution. This distribution has been widely ap-
plied to lifetime data. The random effect is the frailty, which is assumed to
follow the Birnbaum–Saunders distribution and introduced on the baseline
hazard rate to control the unobservable heterogeneity of the patients. We use
the maximum likelihood method to estimate the model parameters and eval-
uate its performance under different censoring proportions by a Monte Carlo
simulation study. Two types of residuals are considered to assess the adequacy
of the proposed model. Examples with uncensored and censored real-world
data sets illustrate the potential applications of the proposed model.

1 Introduction and preliminary notions

Frailty models are characterized by the inclusion of a random effect containing
data that have not been observed or cannot be measured, usually associated with
environmental or genetic factors. Also, it may be attributed to data that were not
considered in the planning of the study; see Hougaard (1995). The random effect
is the frailty, which is introduced in the baseline hazard rate (HR) additively or
multiplicatively. The frailty is considered to control the unobservable heterogene-
ity of the units under analysis. In survival models, the units can be patients with
different frailties, that is, those patients who are most frail (or prone) tend to have a
disease earlier than the less frail patients. The concept of frailty was introduced by
Vaupel, Manton and Stallard (1979) in survival models based on the gamma (GA)
distribution.

A number of authors have studied the multiplicative frailty models, which rep-
resent a generalization of the Cox regression model; see Cox (1972). Hougaard
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(1995) and Sinha and Dey (1997) studied multiplicative frailty models from the
classical and Bayesian perspectives, respectively. For some specific applications
on univariate frailty models, interested readers are refereed to Aalen and Tretli
(1999), Henderson and Oman (1999), and Baker and Henderson (2005), whereas
the book by Wienke (2011) provides details about frailty models.

Consider Cox (1972)’s model and an unobserved source of heterogeneity, which
is not captured by any explanatory variable of this model. An extension of the Cox
model can be considered by allowing the HR of a patient to depend on an unob-
servable random variable U , acting multiplicatively on the baseline HR. Conse-
quently, the conditional HR of the time to the event of interest T given U = ui , for
the patient i, at time t , can be written as

hT |U=ui
(t; θ1, θ2) = uih0(t; θ1), i = 1, . . . , n, t > 0, (1.1)

where ui is the frailty of the patient i and h0 is a baseline HR, with θ1 and θ2
being the parameters of the lifetime and frailty distributions, respectively. Note
that Equation (1.1) is known as Clayton (1991)’s model, from which it is possible
to observe that the risk of the patient i increases if ui > 1 and decreases if ui < 1.
The conditional survival function (SF) can be obtained from Equation (1.1) as

ST |U=ui
(t; θ1, θ2) = exp

(−uiH0(t; θ1)
)
, i = 1, . . . , n, t > 0, (1.2)

with H0(t; θ1) = ∫ t
0 h0(s; θ1)ds being the baseline cumulative hazard rate (CHR).

Suppose that the time to the event of interest is not completely observed and it can
be subject to right censoring. Let ci denote the censoring time and yi the observed
time to the event of interest. Then, ti = min{yi, ci}, whereas κi = I (ti ≤ ci) is a
censoring indicator such that κi = 1 if yi is the time to the event of interest and
κi = 0 if it is right censored for the patient i. From Equations (1.1) and (1.2),
the corresponding log-likelihood function for the vector of model parameters θ =
(θ1, θ2)

� is given by

�(θ; t,κ,u) =
n∑

i=1

κi log
(
uih0(ti)

) −
n∑

i=1

uiH0(ti), (1.3)

where t = (t1, . . . , tn)
� are the observed times to the event of interest, κ =

(κ1, . . . , κn)
� is the vector of their censoring indicators, and u = (u1, . . . , un)

�
are the frailties of the patients. The log-likelihood function given in Equation (1.3),
conditional on the unobserved frailties u, establishes the parameter estimation pro-
cedure. Note that the frailties must be integrated out (depending on the frailty dis-
tribution) to obtain a log-likelihood function for θ (independent on unobserved
quantities) as

�(θ; t,κ) =
n∑

i=1

κi log
(
hT (ti; θ)

) +
n∑

i=1

log
(
ST (ti; θ)

)
,
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where hT and ST are the unconditional HR and SF, respectively, which are defined
next.

By integrating ST |U=ui
(t) given in Equation (1.2) on the frailty U , we obtain the

unconditional (population) SF of T , which can be viewed as the (unconditional)
SF of patients randomly drawn from the population under study; see Klein and
Moeschberger (2003), Aalen, Borgan and Gjessing (2008) and Wienke (2011). Un-
conditional HR and SF may be obtained with the Laplace transform; see Hougaard
(1984). Therefore, in the process of finding distributions for the frailty random
variable U , natural candidates are distributions possessing an explicit Laplace
transform, because it facilitates the use of traditional maximum likelihood (ML)
methods for parameter estimation. To obtain the unconditional SF, we integrate out
the frailty component as

ST (t; θ) =
∫ ∞

0
ST |U=u(t; θ1)fU (u; θ2)du, (1.4)

where fU is the frailty probability density function (PDF) and ST |U=u(t; θ) is
the conditional SF given in Equation (1.2). Let f = fU be the frailty PDF and
s = H0(t; θ1). Then, we obtain the Laplace transform of the unconditional SF as

ST (t; θ) =
∫ ∞

0
exp

(−uH0(t; θ1)
)
fU(u; θ2)du = Q

(
H0(t; θ1)

)
. (1.5)

Note that Equation (1.5) has a similar form as the unconditional SF defined in
Equation (1.4). The frailty random variables Ui are often considered as indepen-
dent and with identical distribution.

As noted, the frailty component of the model is random. Then, a distribution
can be assumed for the frailty. The GA distribution is often used in applications of
frailty models published to date. This is mainly due to the mathematical treatment,
because by using the Laplace transform, we obtain closed-form expressions for
its unconditional SF and HR. Other natural candidates to the frailty distribution
are the inverse Gaussian (IG), lognormal (LN) and Weibull (WE) distributions;
see Hougaard (1995). The Birnbaum–Saunders (BS) distribution is right-skewed
(asymmetrical), continuous and unimodal. It is also known as the fatigue life dis-
tribution and has received considerable attention due to its theoretical arguments,
its attractive properties and its relation with the normal distribution; see Birnbaum
and Saunders (1969), Leiva and Saunders (2015) and Leiva (2016). The BS dis-
tribution has been extensively applied for modeling failure times in engineering,
but novel applications in environmental and financial sciences have been also
considered; see Kotz, Leiva and Sanhueza (2010), Lemonte (2013), Saulo et al.
(2013, 2019), Leiva et al. (2014a, 2014b, 2015a, 2016a, 2016b, 2017), Sánchez
et al. (2015), Wanke and Leiva (2015), Garcia-Papani et al. (2017) and Lillo et al.
(2018). In addition, the BS distribution has been applied to biological and med-
ical studies; see Barros, Paula and Leiva (2008), Leiva et al. (2015b) and Leao
et al. (2017). All of these applications have been conducted by an international,
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transdisciplinary group of researchers. Therefore, such as the GA, IG, LN and
WE distributions, another natural candidate to model frailty is the BS distribu-
tion.

The objective of this paper is to propose a survival model with frailty BS dis-
tributed, which can be an alternative to the GA frailty model and useful to describe
censored data, as well as, of course, uncensored data. We consider a reparameter-
ized version of the BS (RBS) distribution proposed by Santos-Neto et al. (2012,
2014, 2016). An argument given to consider this reparameterization is related to
the present work. We employ the Laplace transform to find the RBS unconditional
SF on the individual frailty. We use the ML method to estimate the model pa-
rameters and evaluate its performance with Monte Carlo (MC) simulations. We
illustrate the potential applications of the proposed model by means of uncensored
and censored medical data related to cancer.

After this introduction and background of frailty models and unconditional HR
and SF, Section 2 introduces the RBS frailty model, derives the ML estimators
of the model parameters and proposes two residuals. Section 3 studies the perfor-
mance of the corresponding ML estimators through MC simulations and provides
two illustrative examples. Section 4 discusses some conclusions.

2 Birnbaum–Saunders frailty model

In this section, we present some properties of the RBS distribution, discuss aspects
of model identifiability, introduce the RBS frailty model, estimate its parameters
and consider two types of residuals.

The RBS distribution is indexed by the parameters μ = β(1 + α2/2) and
δ = 2/α2, where α > 0 and β > 0 are the original BS parameters (see Birnbaum
and Saunders (1969)), μ > 0 is a scale parameter and the mean of the distribution,
whereas δ > 0 is a shape and precision parameter. The notation U ∼ RBS(μ, δ) is
used when the random variable U follows such a distribution. The RBS distribu-
tion permits us to have an alternative GA frailty model (see Vaupel, Manton and
Stallard, 1979) as follows. The mean and variance of U ∼ RBS(μ, δ) are given by
E[U ] = μ and Var[U ] = μ2/φ, respectively, where φ = (δ + 1)2/(2δ + 5). There-
fore, as mentioned, δ can be interpreted as a precision parameter, because, for fixed
values of μ, when δ goes to infinity, the variance of U tends to zero. Moreover, for
fixed μ, if δ approaches zero, then Var[U ] tends to 5μ2. Note that Var[U ] = μ2/φ

is similar to the variance function of the GA distribution, which has a quadratic
relation with its mean. Therefore, a frailty model based on the RBS distribution
can be a good alternative to the GA frailty model. Besides this, the following
additional reasons can be listed to stress the use of the RBS distribution: (i) its
mean-based parameterization allows the possibility to analyze data in their original
scale, since problems of interpretation may arise when a logarithmic transforma-
tion of the data is employed; see Leiva et al. (2014a) and Santos-Neto et al. (2014,
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2016); (ii) it appears to be very competitive for fitting frailty models; (iii) a motiva-
tion based on its genesis permits its usage for medical data; see Desmond (1985);
(iv) it has an explicit Laplace transform, whose characteristic is not shared by the
LN frailty model, although both models belong to the class of log-symmetric dis-
tributions, which arises when a random variable has the same distribution as its
reciprocal; see Vanegas and Paula (2016a, 2016b); and (v) it allows us to model
bimodal data; see details of the logarithmic version of the RBS (log-RBS) model
below and in Rieck and Nedelman (1991). If U ∼ RBS(μ, δ), then its PDF is given
by

fU(u;μ,δ) = exp(δ/2)
√

δ + 1

4u
3
2
√

πμ

(
u + δμ

δ + 1

)

× exp
(
−δ

4

(
u(δ + 1)

δμ
+ δμ

u(δ + 1)

))
, u > 0.

(2.1)

It is possible to show that kU ∼ RBS(kμ, δ), with k > 0, and 1/U ∼ RBS(μ∗, δ),
where μ∗ = (δ + 1)/(δμ). From Equation (2.1), the RBS SF and HR are respec-
tively given by

SU(u;μ,δ) = 1

2
	

(
u + δ(u − μ)

2
√

u(1 + δ)μ

)
, u > 0,

and

hU(u;μ,δ) = exp
(− (−δμ+δu+u)2

4(δ+1)μu

)
(δμ + δu + u)

(πμ(δ + 1))
1
2 2μ

1
2 u

3
2 	

( u+δ(u−μ)

2
√

u(1+δ)μ

) , u > 0,

where 	 is the cumulative distribution function (CDF) of the standard normal
distribution or N(0, 1) distribution. Note that if U = exp(V ) ∼ RBS(μ, δ), then
V ∼ log-RBS(

√
2/δ, log(δμ/(δ + 1))), that is, the log-RBS distribution is ob-

tained. The mean of V is E[V ] = log(δμ/(δ + 1)). Based on the the log-RBS
moment generating function, its asymptotic variance (which has no closed form)
is, as δ goes to ∞, Var[V ] = 2/δ −1/δ2, whereas that, in contrast, as δ approaches
zero, Var[V ] = 4(log2(2/

√
δ) + 2 − 2 log(2/

√
δ)). The distribution of V is sym-

metric around μ, unimodal for δ ≥ 0.5 and bimodal for δ < 0.5; see Rieck and
Nedelman (1991) and Leiva (2016).

Figure 1 displays some shapes for the PDF, SF and HR of U ∼ RBS(1, δ), and
some shapes for the PDF of V = log(U). Note that a unimodal behavior is detected
for the PDF of U and different degrees of asymmetry and kurtosis, whereas the HR
of U has increasing and decreasing shapes, such as the GA distribution, but also
an inverse bathtub shape. Moreover, the bimodality property is noticed in the PDF
of V .

An important aspect in frailty models to be studied is their identifiability. In the
case of proportional hazard models with frailty, it is necessary that the random
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Figure 1 Plots of PDF (left), SF (left-center) and HR (right-center) of the RBS distribution, and
PDF (right) of the log-RBS distribution for μ = 1, with the indicated value of δ.

effect distribution has a finite mean for the model to be identifiable; see Elbers and
Ridder (1982). Thus, it is convenient to have a distribution mean fixed at a finite
value in order to keep the identifiability of the frailty model, which for simplicity,
we assume equal to one. Therefore, we consider that the frailty U has the RBS
distribution with parameters μ = 1 and δ, where E[U ] = 1 and Var[U ] = (2δ +
5)/(δ + 1)2. Note that the variance quantifies the amount of heterogeneity among
patients.

The Laplace transform for the RBS distribution with parameters μ = 1 and δ is
given by

Q(s) = exp
(
δ
2(1 − √

δ + 4s + 1/
√

δ + 1)
)(√

δ + 4s + 1 + √
δ + 1

)
2
√

δ + 4s + 1
. (2.2)

From Equation (1.5) and evaluating Equation (2.2) at s = H0(t), we obtain the
unconditional SF under the RBS frailty as

ST (t) = exp
(
δ
2(1 − √

δ + 4H0(t) + 1/
√

δ + 1)
)(√

δ + 4H0(t) + 1 + √
δ + 1

)
2
√

δ + 4H0(t) + 1
,

(2.3)
t > 0.

Then, from Equation (2.3), the corresponding unconditional HR is obtained by

hT (t) = h0(t)

(
δ(δ + √

δ + 1
√

δ + 4H0(t) + 1 + 4H0(t) + 3) + 2

(δ + 4H0(t) + 1)(δ + √
δ + 1

√
δ + 4H0(t) + 1 + 1)

)
,

(2.4)
t > 0.

Here, h0(t) is assumed to be specified up to a few unknown parameters, which are
related to a distribution assumed for the baseline HR. For example, one can assume
an exponential (EXP), LN or WE distribution. However, a parametric distribution
assumption is not always desirable, because such an assumption may be difficult
to verify. Note that the EXP distribution has been extensively used to model the
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baseline HR due to its simplicity or when the HR must be constant for each patient;
see Lawless (2003). Therefore, we use the EXP distribution as baseline hazard,
which has h0(t) = λ and H0(t) = λt , for t > 0. Thus, from Equation (2.4), the
unconditional HR under RBS frailty reduces to

hT (t) = λ(δ(δ + √
δ + 1

√
δ + 4λt + 1 + 4λt + 3) + 2)

(δ + 4λt + 1)(δ + √
δ + 1

√
δ + 4λt + 1 + 1)

, t > 0, (2.5)

where λ is the average HR of each patient. From Equation (2.5), the unconditional
SF under RBS frailty is given by

ST (t) = exp
(1

2δ(1 − √
δ + 4λt + 1/

√
δ + 1)

)(√
δ + 1 + √

δ + 4λt + 1
)

2
√

δ + 4λt + 1
,

(2.6)
t > 0.

Note that Equations (2.3) and (2.4) can be easily applied to different baselines
other than the EXP one. Indeed, we also assume a WE baseline in Section 3.

Consider n patients providing pairs of times and right censoring indicators
(t1, κ1), . . . , (tn, κn), with ti and κi being the elements of the vectors t and κ de-
fined in Equation (1.3), respectively. Moreover, consider the RBS frailty model
given by Equations (2.5) and (2.6) with parameter vector θ = (δ, λ)�. Therefore,
the corresponding log-likelihood function under uninformative censoring can be
expressed as

�(θ; t,κ)

= nδ

2
− δ

2
√

δ + 1

n∑
i=1

√
δ + 4λti + 1 −

n∑
i=1

κi log(δ + 4λti + 1)

−
n∑

i=1

log(2
√

δ + 4λti + 1) +
n∑

i=1

log(
√

δ + 1 + √
δ + 4λti + 1) (2.7)

+
n∑

i=1

κi log
(
λ
(
δ
(
δ + √

(δ + 1)(δ + 4λti + 1) + 4λti + 3
) + 2

))

−
n∑

i=1

κi log
(
δ + √

(δ + 1)(δ + 4λti + 1) + 1
)
.

Then, the first derivatives of the log-likelihood function given in Equation (2.7)
with respect to the two parameters are obtained to establish the score vector �̇(θ) =
∂�(θ)/∂θ . For the sake of simplicity, we define τi,1 = δ + 4λti + 1 and τi,2 =
δ + √

(δ + 1)τi,1 + 4λti + 3. Then, elements of the score vector are expressed
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as

∂�(θ)

∂δ
= n

2
−

n∑
i=1

κi + 1

τi,1
−

n∑
i=1

κi

( 2δ+4λti+2
2
√

(δ+1)τi,1
+ 1

)
δ + √

(δ + 1)τi,1 + 1

+
n∑

i=1

κi

(
δ + δ

( 2δ+4λti+2
2
√

(δ+1)τi,1
+ 1

) + √
(δ + 1)τi,1 + 4λti + 3

)
δτi,2 + 2

−
(

δ

4
√

δ + 1

) n∑
i=1

1√
τi,1

+
(

δ

4(δ + 1)3/2 − 1

2
√

δ + 1

) n∑
i=1

√
τi,1,

∂�(θ)

∂λ
= −

n∑
i=1

4(κi + 1)ti

τi,1
−

n∑
i=1

2(δ + 1)κiti√
(δ + 1)τi,1(δ + √

(δ + 1)τi,1 + 1)

+
n∑

i=1

κi

(
δτi,2 + δλ

( 2(δ+1)ti√
(δ+1)τi,1

+ 4ti
) + 2

)
λ(δτi,2 + 2)

−
(

δ

4
√

δ + 1

) n∑
i=1

ti√
τi,1

+
n∑

i=1

2ti√
τi,1

(√
δ + 1 + √

τi,1
) .

ML equations generated from �̇(θ) = 02×1, for estimating δ and λ, must be solved
with an iterative method for non-linear optimization problems, where 02×1 is a
2 × 1 vector of zeros. Specifically, the ML estimates of the RBS frailty model pa-
rameters can be obtained by using a quasi-Newton non-linear optimization algo-
rithm with numeric derivatives known as the Broyden–Fletcher–Goldfarb–Shanno
(BFGS); see Nocedal and Wright (1999) and Lange (2001). The BFGS method is
implemented in the R software by the functions optim and optimx; see www.R-
project.org and (2016).

In this case, standard regularity conditions (see Cox and Hinkley (1974)) are
fulfilled, if the parameters are within the parameter space. Hence, the estimators δ̂

and λ̂ are consistent and bivariate normal distributed, asymptotically, with means
δ and λ, respectively, and asymptotic covariance matrix of θ̂ �θ̂ say, which may be
computed from the expected Fisher information matrix associated with the RBS
frailty model, I(θ) say. Then, recalling θ = (δ, λ)�,

√
n(̂θ − θ)

D→N2
(
02×1,�θ̂ = J (θ)−1)

, as n → ∞, (2.8)

where
D→ means convergence in distribution and

J (θ) = lim
n→∞

1

n
I(θ).

Here, Î(θ)−1 is a consistent estimator of � θ̂ . The expected Fisher information
matrix may be approximated by its observed Fisher information matrix; see Efron

http://www.R-project.org
http://www.R-project.org


BS frailty model 715

and Hinkley (1978). The diagonal elements of the inverse of this matrix can be used
to approximate the associated standard errors. The observed information matrix for
the RBS frailty model is given as follows.

Let T1, . . . , Tn be a random sample from the RBS frailty model and t1, . . . , tn
their observations. From the log-likelihood function given in Equation (2.7), we
have that the observed information matrix of the RBS frailty model is given by

I (θ) =
(
Iδδ Iδλ

Iδλ Iλλ

)
,

where Iθiθj
= −∂2�(θ)/∂θiθj , for i, j = 1,2, with θ1 = δ and θ2 = λ. Therefore,

Iδδ =
n∑

i=1

(κi + 1)

τ 2
i,1

−
n∑

i=1

κi

⎛
⎜⎜⎝

1√
(δ+1)τi,1

− (2δ+4λti+2)2

4((δ+1)τi,1)
3/2

δ + √
(δ + 1)τi,1 + 1

−
( 2δ+4λti+2

2
√

(δ+1)τi,1
+ 1

)2

(δ + √
(δ + 1)τi,1 + 1)2

⎞
⎟⎟⎠

+
n∑

i=1

κi

⎛
⎜⎜⎝

2δ+4λti+2√
(δ+1)τi,1

+ δ
( 1√

(δ+1)τi,1
− (2δ+4λti+2)2

4((δ+1)τi,1)
3/2

) + 2

δτi,2 + 2

−
(
δ + δ

( 2δ+4λti+2
2
√

(δ+1)τi,1
+ 1

) + √
(δ + 1)τi,1 + 4λti + 3

)2

(δτi,2 + 2)2

⎞
⎟⎠

− 1

2
δ

⎛
⎝

∑n
i=1

1
2
√

τi,1

(δ + 1)3/2 − 3
∑n

i=1
√

τi,1

4(δ + 1)5/2 +
∑n

i=1 + 1
4τi,1

3/2√
δ + 1

⎞
⎠

+
∑n

i=1
√

τi,1

2(δ + 1)3/2 −
n∑

i=1

⎛
⎝ 1

4(δ+1)3/2 + 1
4τi,1

3/2√
δ + 1 + √

τi,1
+

( 1
2
√

δ+1
+ 1

2
√

τi,1
)2

(√
δ + 1 + √

τi,1
)
2

⎞
⎠

−
∑n

i=1
1

2
√

τi,1√
δ + 1

,

Iδλ =
n∑

i=1

4(κi + 1)ti

τ 2
i,1

−
n∑

i=1

⎛
⎜⎝κi

( 2ti√
(δ+1)τi,1

− (δ+1)ti (2δ+4λti+2)

((δ+1)τi,1)
3/2

)
δ + √

(δ + 1)τi,1 + 1
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−
2(δ + 1)κiti

( 2δ+4λti+2
2
√

(δ+1)τi,1
+ 1

)
√

(δ + 1)τi,1(δ + √
(δ + 1)τi,1 + 1)2

⎞
⎟⎠

+
n∑

i=1

⎛
⎜⎝κi

( 2(δ+1)ti√
(δ+1)τi,1

+ δ
( 2ti√

(δ+1)τi,1
− (δ+1)ti (2δ+4λti+2)

((δ+1)τi,1)
3/2

) + 4ti
)

δ(δ + √
(δ + 1)τi,1 + 4λti + 3) + 2

−
(
δκi

(
2(δ + 1)ti√
(δ + 1)τi,1

+ 4ti

)(
δ + δ

(
2δ + 4λti + 2

2
√

(δ + 1)τi,1
+ 1

)

+
√

(δ + 1)τi,1 + 4λti + 3
))/

(δτi,2 + 2)2

⎞
⎟⎠

+
(

δ

4(δ + 1)3/2 − 1

2
√

δ + 1

) n∑
i=1

2ti√
τi,1

+
(
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Thus, from Equation (2.8), we have that an approximate 100 × (1 − �)% confi-
dence region for θ is given by

R = {
θ ∈ R

2: |̂θ − θ |��̂
−1
θ |̂θ − θ | ≤ χ2

1−�(2)
}
, 0 < � < 1, (2.9)

where χ2
1−�(2) denotes the 100× (1−�)th quantile of the chi-squared distribution

with two degrees of freedom and �̂θ is an estimate of �θ . Confidence bands for
the RBS frailty model parameters can be obtained by means of the region provided
in Equation (2.9).

Goodness of fit of the RBS frailty model may be assessed by residual analysis.
First, we propose to use the generalized Cox-Snell (GCS) residual (see Cox and
Snell, 1968) given by

rGCS
i = − log

(
ŜT (ti)

)
, i = 1, . . . , n, (2.10)

where ŜT is the corresponding estimated SF. The GCS residual defined in Equa-
tion (2.10) has an EXP(1) distribution when the frailty model is correctly spec-
ified, regardless of the frailty model considered. Second, we propose to use the
quantile (QS) residual (see Smith, 1985 and Dunn and Smyth, 1996), which is
often employed in generalized additive models for location, scale and shape; see
Stasinopoulos and Rigby (2007). The QS residual is given by

r
QS
i = 	−1(

ŜT (ti)
)
, i = 1, . . . , n, (2.11)

where 	−1 is the inverse function of the N(0, 1) CDF and ŜT is as in Equation
(2.10). The QS residual defined in Equation (2.11) has a N(0, 1) distribution if the
frailty model is correctly specified for any frailty model considered.

3 Numerical applications

In this section, we carry out a simulation study to evaluate the performance of the
ML estimators of the RBS frailty model parameters with EXP baseline HR. Then,
we illustrate the proposed methodology by applying it to two real-world medical
data sets. The first (uncensored) data set refers to a leukemia cancer study intro-
duced by Feigl and Zelen (1965), whereas the second (censored) data set comes
from a lung cancer trial presented in Kalbfleisch and Prentice (2002).

Given the frailty component, the times to the event of interest are independent
and follow a proportional hazard model. We compare the proposed RBS frailty
model (under two different baseline distributions: EXP and WE, which are selected
because of their simplicity in modeling lifetimes) and the GA frailty model (under
the same baseline distributions). We assess the impact of the frailty model on its
variance. Then, we find the model that provides the best fit to the data. To make
sure that the model is identifiable, we consider U ∼ GA(1/γ,1/γ ) in the GA
frailty model; see Wienke (2011).
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Algorithm 1 Generator of random numbers from the RBS frailty model
Step 1. Generate a random number v from V ∼ U(0,1).
Step 2. Set values for δ of U ∼ RBS(μ = 1, δ) and for λ of the baseline.
Step 3. Equate ui to the SF and compute the lifetime yi by solving numerically
the equation

exp
(1

2δ(1 − √
δ + 4λyi + 1/

√
δ + 1)

)(√
δ + 1 + √

δ + 4λyi + 1
)

2
√

δ + 4λyi + 1
= ui.

Step 4. Establish the censored time ci from C ∼ U(a, b), where a > 0 and b > 0
must be fixed adequately.
Step 5. Obtain ti = min{yi, ci}. If yi < ci then κi = 1, otherwise κi = 0.
Step 6. Repeat Steps 1 to 5 until the required number of data is completed.

Simulation study

The scenario considers the following: sample size n ∈ {30,150,400,600}, cen-
soring proportion p ∈ {0.00,0.10,0.25,0.40}, values for the parameters δ ∈
{0.25,0.50, 1.50,2.50}—which is related to heterogeneity—and λ ∈ {1.0,3.0,

10.0}, under 5000 MC replications. We consider the EXP distribution as baseline,
which, as it is well known, has the same HR for all λ > 0. Note that, based on the
probability integral transform, the RBS frailty CDF follows a U(0,1) distribution.
Then, the RBS frailty SF is U(0,1) distributed as well. Random number genera-
tion from the RBS frailty model is performed following Algorithm 1. In step #2 of
this algorithm, we use the function uniroot of the R software to get the root of
the equation; see Brent (1973). For each value of the parameter, sample size and
censoring proportion, we report the empirical values for the bias and mean squared
error (MSE) of the ML estimators in Tables 1, 2 and 3. From theses tables, note
that, as the sample size increases, the ML estimators become more efficient, as
expected. We can also note that, as the censoring proportion increases, the perfor-
mance of the estimator of δ—the shape parameter—deteriorates, which means that
the presence of censoring introduces a bias in the ML estimators, as also expected.
In addition, we observe that, as δ increases, the bias of the ML estimator increases
as well. However, the performance of the estimator of λ—the scale parameter of
the baseline distribution—improves. Furthermore, we observe that, as the value
of λ increases, the performance of its estimator decreases. In short, efficiency of
the ML estimators is ratified by our simulation study. Therefore, in general, all of
these results show the good performance of the ML estimators of the correspond-
ing parameters.

First case study: Leukemia cancer data

The data set corresponds to the survival times of 33 patients who died from acute
myelogenous leukemia, whose set we name “leukemia data”. The counting of
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Table 1 Empirical bias (with MSEs in parentheses) of the ML estimators of δ and λ = 1.0 from the
RBS frailty model under the indicated n, δ and p for simulated data

p = 0.00 p = 0.10

n δ δ̂ λ̂ δ̂ λ̂

30 0.25 0.0180 (0.0474) 0.1243 (0.2448) −0.0201 (0.0501) −0.1300 (0.2488)
0.50 0.0287 (0.0887) 0.1129 (0.2317) −0.0431 (0.1004) −0.1108 (0.2217)
1.50 0.2515 (0.3429) 0.0538 (0.1522) −0.2842 (0.3788) −0.0530 (0.1651)
2.50 0.5139 (0.6520) 0.0652 (0.1484) −0.5949 (0.7340) −0.0667 (0.1540)

150 0.25 0.0076 (0.0281) 0.0198 (0.1422) −0.0054 (0.0300) −0.0295 (0.1418)
0.50 0.0173 (0.0583) 0.0186 (0.1326) −0.0081 (0.0632) −0.0171 (0.1299)
1.50 0.1292 (0.2013) 0.0528 (0.1122) −0.1501 (0.2262) −0.0514 (0.1070)
2.50 0.3081 (0.4130) 0.0603 (0.1096) −0.3475 (0.4552) −0.0600 (0.1071)

400 0.25 0.0056 (0.0241) 0.0088 (0.1109) −0.0035 (0.0240) −0.0016 (0.1080)
0.50 0.0142 (0.0485) 0.0008 (0.1043) −0.0075 (0.0507) −0.0064 (0.1067)
1.50 0.0793 (0.1428) 0.0361 (0.0958) −0.0998 (0.1652) −0.0407 (0.0974)
2.50 0.2050 (0.2933) 0.0548 (0.0968) −0.2460 (0.3399) −0.0491 (0.0993)

600 0.25 0.0048 (0.0221) 0.0039 (0.1050) −0.0048 (0.0222) −0.0001 (0.1039)
0.50 0.0120 (0.0463) 0.0120 (0.0988) −0.0065 (0.0470) −0.0104 (0.0954)
1.50 0.0586 (0.1225) 0.0259 (0.0906) −0.0745 (0.1390) −0.0302 (0.0879)
2.50 0.1601 (0.2406) 0.0166 (0.0888) −0.2071 (0.2941) −0.0259 (0.0906)

p = 0.25 p = 0.40

n δ δ̂ λ̂ δ̂ λ̂

30 0.25 −0.0322 (0.0625) −0.1496 (0.2632) −0.0524 (0.0853) −0.1550 (0.2654)
0.50 −0.0618 (0.1211) −0.1121 (0.2298) −0.1007 (0.1635) −0.1300 (0.2465)
1.50 −0.3342 (0.4377) −0.0549 (0.1776) −0.4296 (0.5395) −0.0683 (0.1888)
2.50 −0.7106 (0.8647) −0.0651 (0.1605) −0.8870 (1.0495) −0.0606 (0.1744)

150 0.25 −0.0081 (0.0361) −0.0385 (0.1483) −0.0147 (0.0432) −0.0405 (0.1501)
0.50 −0.0163 (0.0718) −0.0139 (0.1322) −0.0316 (0.0866) −0.0293 (0.1332)
1.50 −0.2016 (0.2779) −0.0554 (0.1152) −0.2488 (0.3380) −0.0498 (0.1118)
2.50 −0.4300 (0.5518) −0.0612 (0.1121) −0.5518 (0.6830) −0.0598 (0.1118)

400 0.25 −0.0017 (0.0273) −0.0042 (0.1139) −0.0028 (0.0315) −0.0039 (0.1131)
0.50 −0.0032 (0.0563) −0.0068 (0.1068) −0.0075 (0.0661) −0.0191 (0.1068)
1.50 −0.1292 (0.1974) −0.0507 (0.0986) −0.1692 (0.2431) −0.0562 (0.0994)
2.50 −0.3097 (0.4059) −0.0497 (0.0984) −0.3984 (0.5129) −0.0486 (0.0998)

600 0.25 −0.0011 (0.0248) −0.0087 (0.1011) −0.0027 (0.0285) −0.0157 (0.1054)
0.50 −0.0019 (0.0539) −0.0060 (0.0969) −0.0017 (0.0591) −0.0149 (0.0946)
1.50 −0.1041 (0.1700) −0.0372 (0.0921) −0.1561 (0.2256) −0.0267 (0.0936)
2.50 −0.2681 (0.3623) −0.0265 (0.0931) −0.3406 (0.4450) −0.0426 (0.0946)

white blood cell at the time of diagnosis is also recorded. The patients were sepa-
rated into two groups as: presence or absence of a morphological characteristic of
white blood cells. Patients labeled as positive antigen were identified by the pres-
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Table 2 Empirical bias (with MSEs in parentheses) of the ML estimators of δ and λ = 3.0 from the
RBS frailty model under the indicated n, δ and p for simulated data

p = 0.00 p = 0.10

n δ δ̂ λ̂ δ̂ λ̂

30 0.25 0.0144 (0.0400) −0.6436 (0.8083) −0.0250 (0.0553) −0.7028 (0.8855)
0.50 0.0324 (0.0842) −0.5471 (0.6990) −0.0402 (0.0898) −0.5946 (0.7553)
1.50 0.2142 (0.3007) −0.3918 (0.5345) −0.2362 (0.3324) −0.4420 (0.5847)
2.50 0.4496 (0.5773) −0.3675 (0.4964) −0.5049 (0.6455) −0.3857 (0.5163)

150 0.25 0.0136 (0.0273) −0.3441 (0.4645) −0.0211 (0.0455) −0.4125 (0.5411)
0.50 0.0297 (0.0559) −0.2925 (0.3944) −0.0367 (0.0581) −0.3071 (0.4215)
1.50 0.0721 (0.1445) −0.1584 (0.2508) −0.0894 (0.1662) −0.1808 (0.2745)
2.50 0.2032 (0.2972) −0.1236 (0.2101) −0.2488 (0.3513) −0.1270 (0.2165)

400 0.25 0.0094 (0.0242) −0.2224 (0.3140) −0.0181 (0.0351) −0.2853 (0.3826)
0.50 0.0241 (0.0501) −0.1918 (0.2803) −0.0363 (0.0508) −0.1959 (0.2775)
1.50 0.0217 (0.0953) −0.0736 (0.1478) −0.0354 (0.1039) −0.0739 (0.1511)
2.50 0.1057 (0.1860) −0.0521 (0.1242) −0.1258 (0.2165) −0.0525 (0.1278)

600 0.25 0.0085 (0.0232) −0.1965 (0.2832) −0.0108 (0.0298) −0.2162 (0.3138)
0.50 0.0214 (0.0484) −0.1630 (0.2469) −0.0306 (0.0486) −0.1637 (0.2457)
1.50 0.0065 (0.0785) −0.0560 (0.1269) −0.0193 (0.0879) −0.0535 (0.1298)
2.50 0.0771 (0.1512) −0.0275 (0.0995) −0.0917 (0.1714) −0.0297 (0.1048)

p = 0.25 p = 0.40

n δ δ̂ λ̂ δ̂ λ̂

30 0.25 −0.0316 (0.0658) −0.7550 (0.9369) −0.0434 (0.0795) −0.7926 (0.9759)
0.50 −0.0526 (0.1125) −0.5977 (0.7638) −0.0932 (0.1545) −0.6264 (0.7952)
1.50 −0.3005 (0.3996) −0.4339 (0.5805) −0.3968 (0.5079) −0.4856 (0.6375)
2.50 −0.6380 (0.7985) −0.4134 (0.5495) −0.7652 (0.9326) −0.4151 (0.5671)

150 0.25 −0.0298 (0.0470) −0.4070 (0.5249) −0.0302 (0.0521) −0.4231 (0.5525)
0.50 −0.0405 (0.0658) −0.2979 (0.4101) −0.0580 (0.0735) −0.3080 (0.4218)
1.50 −0.1199 (0.1999) −0.1853 (0.2831) −0.1644 (0.2469) −0.1968 (0.2991)
2.50 −0.3073 (0.4209) −0.1526 (0.2423) −0.4527 (0.5931) −0.1583 (0.2573)

400 0.25 −0.0278 (0.0385) −0.2781 (0.3766) −0.0250 (0.0434) −0.2910 (0.3639)
0.50 −0.0345 (0.0536) −0.2034 (0.2899) −0.0388 (0.0590) −0.2149 (0.2771)
1.50 −0.0638 (0.1340) −0.0908 (0.1675) −0.1081 (0.1838) −0.0985 (0.1785)
2.50 −0.1807 (0.2722) −0.0554 (0.1322) −0.2709 (0.3831) −0.0782 (0.1565)

600 0.25 −0.0150 (0.0335) −0.2218 (0.3157) −0.0177 (0.0373) −0.2318 (0.3091)
0.50 −0.0333 (0.0493) −0.1675 (0.2425) −0.0365 (0.0540) −0.1883 (0.2441)
1.50 −0.0402 (0.1116) −0.0622 (0.1381) −0.0735 (0.1443) −0.0648 (0.1433)
2.50 −0.1346 (0.2172) −0.0349 (0.1121) −0.2245 (0.3244) −0.0496 (0.1243)

ence of significant granulation of the leukemic cells in the bone marrow at diagno-
sis. Factors related to leukemia corresponding to “chemical agents” and “genetic
characteristics” were not measured. It motivates the use of a frailty model to cap-
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Table 3 Empirical bias (with MSEs in parentheses) of the ML estimators of δ and λ = 10.0 from
the RBS frailty model under the indicated n, δ and p for simulated data

p = 0.00 p = 0.10

n δ δ̂ λ̂ δ̂ λ̂

30 0.25 0.0311 (0.0541) −2.5836 (3.1092) −0.0381 (0.0542) −2.7628 (2.9962)
0.50 0.0366 (0.0795) −1.9971 (2.4670) −0.0533 (0.0852) −2.0266 (2.5129)
1.50 0.2246 (0.3107) −1.4200 (1.8163) −0.2339 (0.3029) −1.6389 (1.8370)
2.50 0.4513 (0.5748) −1.3007 (1.6595) −0.4549 (0.5804) −1.5487 (1.7312)

150 0.25 0.0252 (0.0474) −1.6005 (1.9594) −0.0301 (0.0479) −1.5255 (1.8792)
0.50 0.0320 (0.0545) −1.0724 (1.3909) −0.0428 (0.0563) −1.1615 (1.3506)
1.50 0.0689 (0.1466) −0.7118 (0.9319) −0.0806 (0.1420) −0.9806 (0.9128)
2.50 0.1938 (0.2991) −0.5731 (0.7910) −0.2003 (0.2969) −0.6778 (0.7844)

400 0.25 0.0212 (0.0365) −1.0571 (1.3193) −0.0232 (0.0359) −1.0114 (1.2847)
0.50 0.0214 (0.0511) −0.7708 (0.9990) −0.0313 (0.0511) −0.8650 (0.9840)
1.50 0.0157 (0.0864) −0.4063 (0.5767) −0.0323 (0.0826) −0.5121 (0.5807)
2.50 0.0895 (0.1668) −0.3082 (0.4477) −0.0916 (0.1620) −0.4006 (0.4514)

600 0.25 0.0173 (0.0311) −0.8929 (1.1393) −0.0207 (0.0306) −0.9836 (1.1267)
0.50 0.0134 (0.0508) −0.6830 (0.8789) −0.0255 (0.0498) −0.7804 (0.8696)
1.50 0.0141 (0.0735) −0.3244 (0.4692) −0.0231 (0.0733) −0.3281 (0.4621)
2.50 0.0497 (0.1279) −0.2517 (0.3732) −0.0625 (0.1386) −0.3437 (0.3648)

p = 0.25 p = 0.40

n δ δ̂ λ̂ δ̂ λ̂

30 0.25 −0.0688 (0.0577) −2.8324 (3.0606) −0.0905 (0.0708) −2.9354 (3.2976)
0.50 −0.0744 (0.0847) −2.1751 (2.6420) −0.0802 (0.1124) −2.3151 (2.6025)
1.50 −0.2528 (0.3061) −1.9400 (1.9445) −0.2861 (0.3304) −1.9660 (1.9507)
2.50 −0.4894 (0.6311) −1.7433 (1.7000) −0.4905 (0.6098) −1.8130 (1.7998)

150 0.25 −0.0456 (0.0453) −1.6193 (1.8963) −0.0698 (0.0491) −1.8798 (1.8341)
0.50 −0.0484 (0.0567) −1.4136 (1.4209) −0.0712 (0.0618) −1.5296 (1.4425)
1.50 −0.0935 (0.1443) −0.9955 (0.9381) −0.0995 (0.1581) −1.0138 (0.9350)
2.50 −0.2027 (0.3017) −0.7259 (0.8469) −0.2153 (0.3152) −0.8857 (0.8054)

400 0.25 −0.0278 (0.0368) −1.4530 (1.3170) −0.0434 (0.0420) −1.6708 (1.3467)
0.50 −0.0323 (0.0519) −0.9535 (0.9751) −0.0571 (0.0525) −0.9554 (0.9789)
1.50 −0.0558 (0.0890) −0.4221 (0.5815) −0.0845 (0.0946) −0.4444 (0.6167)
2.50 −0.1010 (0.1850) −0.4133 (0.5094) −0.1991 (0.1866) −0.4502 (0.4973)

600 0.25 −0.0246 (0.0322) −0.9938 (1.1427) −0.0303 (0.0356) −0.9997 (1.1321)
0.50 −0.0354 (0.0509) −0.7971 (0.8707) −0.0392 (0.0506) −0.8887 (0.8850)
1.50 −0.0398 (0.0751) −0.3763 (0.4795) −0.0443 (0.0818) −0.4229 (0.4622)
2.50 −0.0748 (0.1001) −0.3657 (0.2823) −0.0822 (0.1391) −0.3949 (0.3695)

ture the effect of such factors. Table 4 reports the ML estimates of the RBS-EXP,
RBS-WE, GA-EX and GA-WE frailty model parameters (with estimated asymp-
totic standard errors in parentheses), that is, models with frailties RBS and GA
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Table 4 ML estimate with standard errors in parentheses and selection criteria for the indicated
model fitted to leukemia data

Frailty model Baseline Parameter ML estimate AIC BIC BF

RBS EXP δ 1.5640 (1.1497)
λ 0.0619 (0.0304) 290.0783 292.9463 9.2453

WE δ 0.0226 (0.0179)
α 4.5541 (1.0941)
β 2.7008 (0.4203) 280.8330 283.7010 –

GA EXP γ 0.5019 (0.3922)
λ 0.0432 (0.0182) 293.8415 296.7095 13.009

WE γ 0.2176 (0.6974)
α 24.3606 (14.508)
β 0.7999 (0.2553) 290.9419 295.7060 12.005

Table 5 Estimated frailty variance for the indicated model with leukemia data

Model
Variance RBS-EXP RBS-WE GA-EXP GA-WE

V̂ar[U ] 1.2363 4.8247 0.5019 0.2176

distributed with EXP and WE baselines. In this table, values for Akaike (AIC) and
Bayesian (BIC) information criteria, and Bayes factor (BF) are provided. We use
the BF to evaluate the magnitude of the difference between two BIC values; see
Kass and Raftery (1995). We compute the AIC and BIC in all models, but the BF is
obtained for comparing the RBS and GA models with the same baseline HR, that
is, RBS-EXP model versus GA-EXP model, and RBS-WE model versus GA-WE
model. Decision about the best fit is made according to the interpretation of the BF
presented in Table 6 of Leiva et al. (2015b). Table 4 indicates that the RBS frailty
model with WE baseline provides the best overall fit in terms of AIC, BIC and BF.
The estimated variance of the RBS and GA frailty models are respectively given
by

V̂ar[U ] = (2δ̂ + 5)/(̂δ + 1)2, V̂ar[U ] = γ̂ . (3.1)

Based on Table 4 and variances given in Equation (3.1), Table 5 summarizes the
corresponding estimated variances. From this table, note that the estimated frailty
variances are different from zero. This indicates the presence of unobserved het-
erogeneity. Notice that the estimated frailty variance is greater in the RBS model
than in the GA model, in all cases, indicating that the RBS model is better in terms
of capturing the heterogeneity unobserved in the data. In addition, from Table 4,
note that the RBS-WE model provides the best fit compared to the RBS-EXP, GA-
EXP and GA-WE models based on the values of AIC, BIC and BF.



BS frailty model 723

Figure 2 QQ plot with simulated envelope under the indicated residual and model for leukemia
data.

Figure 3 TTT plot (left) and fitted SFs by the indicated model (right) for leukemia data.

Figure 2 shows the QQ plots with simulated envelope for the GCS and QS resid-
uals. These plots allow us to check graphically whether the GCS and QS residuals
follow the EXP(1) and N(0,1) distributions or not, respectively. From Figure 2,
note that these residuals present a good agreement with their corresponding target
distributions.

In Figure 3, we display the total time on test (TTT) curve and estimated (fitted)
SFs based on the Kaplan-Meier (KM) estimator and the RBS-EXP, RBS-WE, GA-
EXP and GA-WE frailty models. The TTT plot allows us to characterize the shape
of an HR (constant, increasing, decreasing, bathtub-shaped, or inverse bathtub-
shaped), whereas the plot of the SFs permits us to compare the empirical and fitted
SFs of the data; see, for example, Figure 1 in Azevedo et al. (2012) for different
theoretical shapes of scaled TTT curves. Figure 3(left) suggests a decreasing HR.
Therefore, a natural choice for the baseline seems to be the WE distribution since
it is used to model monotone HR, that is, constant, increasing and decreasing HR.



724 Leão, Leiva, Saulo and Tomazella

Table 6 ML estimates with standard errors in parentheses and selection criteria for the indicated
model fitted to lung data

Frailty model Baseline Parameter ML estimate AIC BIC BF

RBS EXP δ 0.9539 (0.1906)
λ 0.0202 (0.0037) 1514.3670 1520.8070 12.418

WE δ 1.6255 (0.5449)
α 68.3897 (12.4730)
β 1.1920 (0.10631) 1499.6290 1508.3890 –

GA EX γ 1.6837 (6.0740)
λ 0.0178 (0.0235) 1537.6770 1543.5170 35.128

WE γ 1.6360 (0.6701)
α 44.1654 (9.4356)
β 1.4445 (0.24325) 1517.2260 1525.9860 17.597

Table 7 Estimated frailty variance for the indicated model with lung data

Model
Variance RBS-EXP RBS-WE GA-EXP GA-WE

V̂ar[U ] 1.8094 1.1969 1.6837 1.6360

The results indicate that, as expected, the best fit to the data is provided by the
RBS-WE model. It is important to highlight that the overall results suggest that the
RBS frailty model is better than the GA frailty model for all baselines considered,
indicating the potentiality of the new model in describing frailty data.

Second case study: Lung cancer data

This data set is related to the survival times on 137 advanced lung cancer patients,
whose set we name “lung data”; see Kalbfleisch and Prentice (2002). The censor-
ing proportion is p = 0.0657 (6.57%). The ML estimates of the model parameters
(with standard errors in parentheses), AICs, BICs and BFs are summarized in Ta-
ble 6. Comparing the information criteria, we notice that the RBS frailty model
with WE baseline has the smallest AIC and BIC values, suggesting that it pro-
vides a good fit for these data. Also, the BF supports this result. The summary
of the estimated frailty variances is given in Table 7. From this table, note that
the estimated variances of the RBS and GA frailty models indicate the presence
of unobserved heterogeneity for both baselines. Moreover, the results from Ta-
ble 6 show that the RBS frailty model presents a better fit than the GA frailty
model.

The QQ plots with simulated envelope for the GCS and QS residuals are dis-
played in Figure 4. These graphical plots show the notorious superiority, in terms
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Figure 4 QQ plot with simulated envelope under the indicated residual and model for lung data.

Figure 5 TTT plot (left) and fitted SFs by the indicated model (right) for lung data.

of fitting to the data, of the RBS frailty model with WE baseline over all other
models.

Figure 5 shows the TTT plot and fitted SF by the KM method. Note that Fig-
ure 5(left) suggests a decreasing HR for lung data. The fitted SFs presented in
Figure 5(right) confirms graphically the superiority of the RBS frailty model with
WE baseline suggested by the results in Table 6.

4 Concluding remarks

Non-measurable biological variations among patients can be presented, which in-
troduces heterogeneity among them. For instance, some patients may have a ge-
netic disposition with respect to certain disease, having an increasing risk of de-
veloping it compared to others. The heterogeneity therefore affects the observed
survival times. The inclusion of a frailty parameter in the survival data model-
ing brings additional information that may be useful in practice. Thus, a source
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of unobserved heterogeneity that is not captured by explanatory variables can be
introduced by a frailty component in the hazard rate structure. Then, the effects
of omitted explanatory variables may be now captured. We have proposed and de-
veloped a new frailty model based on a Birnbaum–Saunders distribution. In the
model, this distribution is employed to describe the unobserved frailty. Due to its
properties and features, the new model can be a good alternative to the gamma
frailty model. Using the Laplace transform, we have derived explicitly the uncon-
ditional hazard rate and survival function. A Monte Carlo simulation study has
shown that the estimates based on the maximum likelihood method of the model
parameters tend to their true values, whereas the distributions of these estimators
converges to normality, when the sample size increases, as expected. We have con-
sidered two types of residuals to assess the goodness of fit of the model to the data.
Also, we have obtained the observed information matrix analytically, which facil-
itates the direct computation of the corresponding estimated asymptotic standard
errors. We have applied the proposed methodology to uncensored and censored
real-world data sets. These two data sets are related to survival times of patients
who died from acute myelogenous leukemia and advanced lung cancer, respec-
tively. The applications have shown the potential of the new model. The precision
parameter of the Birnbaum–Saunders distribution, which measures the effect of the
time in the corresponding frailty model, has been significant and positive. Then,
we have an increasing hazard rate that could help medical doctors to predict the
occurrence to the event of interest anticipatively, which does not happen in the
model with no frailty. The R codes used in this paper, as well as the data sets, are
available under request from the authors. An R package is currently under progress
and we hope to report it in a future paper. The proposed methodology can be ap-
plied to other distributions. However, mathematical difficulties may be found for
other distributions when doing inference over the model parameters. In addition,
influence diagnostic tools may also be derived for this type of models in order to
evaluate the effect of atypical observations on it, as well as the inclusion of multi-
variate aspects in frailty models and/or spatio-temporal structures; see Marchant,
Leiva and Cysneiros (2016a), Marchant et al. (2016b) and Garcia-Papani et al.
(2017). Thus, the present study leaves some open topics to be addressed in the
future.
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