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Abstract. Comparing concentration properties of uniform sampling with
and without replacement has a long history which can be traced back to the
pioneer work of Hoeffding (1963). The goal of this note is to extend this
comparison to the case of non-uniform weights, using a coupling between
samples drawn with and without replacement. When the items’ weights are
arranged in the same order as their values, we show that the induced cou-
pling for the cumulative values is a submartingale coupling. As a conse-
quence, the powerful Chernoff-type upper-tail estimates known for sampling
with replacement automatically transfer to the case of sampling without re-
placement. For general weights, we use the same coupling to establish a sub-
Gaussian concentration inequality. As the sample size approaches the total
number of items, the variance factor in this inequality displays the same kind
of sharpening as Serfling (1974) identified in the case of uniform weights.
We also construct an other martingale coupling which allows us to answer a
question raised by Luh and Pippenger (2014) on sampling in Polya urns with
different replacement numbers.

1 Introduction

In a celebrated paper (Hoeffding (1963)), Hoeffding first singled out a fruitful
comparison between sampling with and without replacement: any linear statistics
induced by uniform sampling without replacement in a finite population is less, in
the convex order, than the one induced by sampling with replacement. In particular,
all the Chernoff-type tail estimates that apply to sampling with replacement (the
sample then being i.i.d.) automatically apply to sampling without replacement. As
the sample size increases, it is natural to expect that sampling without replacement
should concentrate even more, in the sense that, when the sample size approaches
the total number of items, the variance should not be of the order of the number
of sampled items, but of the number of unsampled items. This was verified by
Serfling (1974).

One natural question is to determine whether a similar comparison also holds
when the sampling procedure is no longer uniform and when different items have
different weights.
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More precisely, consider a collection of N items 1 ≤ i ≤ N , each equipped with
a weight ω(i) > 0 and a value of interest ν(i) ∈ R. We assume that

N∑
i=1

ω(i) = 1.

Let X be the cumulative value of a sample of length n ≤ N drawn without replace-
ment and with probability proportional to weights, that is,

X := ν(I1) + · · · + ν(In),

where for each n-tuple (i1, . . . , in) of distinct indices in {1, . . . ,N},

P
(
(I1, . . . , In) = (i1, . . . , in)

) =
n∏

k=1

ω(ik)

1 − ω(i1) − · · · − ω(ik−1)
.

A much simpler statistic is the one that arises when the sample is drawn with
replacement, namely

Y := ν(J1) + · · · + ν(Jn),

where now for each n-tuple (j1, . . . , jn) ∈ {1, . . . ,N}n,

P
(
(J1, . . . ,Jn) = (j1, . . . , jn)

) =
n∏

k=1

ω(jk).

One particular case, referred to as the monotone case, is when weights and val-
ues are arranged in the same order, that is,

ω(i) > ω(j) =⇒ ν(i) ≥ ν(j). (1)

Theorem 1. Assume that condition (1) holds. Then X is less than Y in the increas-
ing convex order, that is, for every non-decreasing, convex function f : R →R,

E
[
f (X)

] ≤ E
[
f (Y )

]
. (2)

Our second result is a sub-Gaussian concentration inequality for X in the case
of arbitrary weights (ω(i))Ni=1. Define

� := max
1≤i≤N

ν(i) − min
1≤i≤N

ν(i) and α = min1≤i≤N ω(i)

max1≤i≤N ω(i)
.

The case α = 1 (uniform sampling) was analysed by Serfling (1974).

Theorem 2. Assume α < 1. For all t > 0,

max
{
P(X −EX > t),P(X −EX < −t)

} ≤ exp
(
− t2

2v

)
,

with

v = min
(

4�2n,
1 + 4α

α(1 − α)
�2N

(
N − n

N

)α)
. (3)



Weighted sampling without replacement 659

We also answer a question raised by Luh and Pippenger (2014). The problem
is to compare linear statistics induced by sampling in Polya urns with replacement
number d versus D, for positive integers d,D with D > d ≥ 1.

Let C be a population of N items, labelled from 1 to N , each item i being
equipped with some value ν(i). Let d < D be two positive integers. For n ≥ 1, let
(K1, . . . ,Kn) and (L1, . . . ,Ln) be samples generated by sampling in Polya urns
with initial composition C and replacement numbers d and D respectively, that is,
each time an item is picked, it is replaced along with d −1 (resp. D−1) copies. We
say that (K1, . . . ,Kn) (resp. (L1, . . . ,Ln)) is a d-Polya (resp. D-Polya) sample.
Let

W = ν(K1) + · · · + ν(Kn),

Z = ν(L1) + · · · + ν(Ln).

Theorem 3. The variable W is less than Z in the convex order, that is, for every
convex function f : R →R,

E
[
f (W)

] ≤ E
[
f (Z)

]
.

Remark 1. Luh and Pippenger (2014) proved a similar result in the case where
the first sample is drawn without replacement in C and the second is a D-Polya
sample, for D ≥ 1.

The rest of the paper is organized as follows. In Section 2, we give a brief
review of the literature on sampling without replacement and stochastic order-
ing. Both Theorems 1 and 2 rely on a coupling between samples drawn with and
without replacement, which is constructed in Section 3. In Section 4, we consider
the monotone case and prove Theorem 1. Section 5 investigates the concentration
properties of weighted sampling without replacement in the general case and is
devoted to the proof of Theorem 2. Theorem 3 is proved in Section 6. Section 7
contains concluding remarks.

2 Related work

Weighted sampling without replacement, also known as successive sampling, ap-
pears in a variety of contexts. In statistical ecology for instance, the Horvitz-
Thompson estimator (Horvitz and Thompson (1952)) is a well-known estimator
for the population total

∑N
i=1 ν(i) and takes the form of a cumulative value of

samples drawn without replacement:

HTn =
n∑

k=1

ν(Ik)

Pn(Ik)
,
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where, Pn(i) = P(i ∈ {I1, . . . , In}) is the inclusion probability of item i ∈
{1, . . . ,N}.

Allowing heterogeneous weights can make the analysis of sampling without
replacement challenging. Simple quantities such as the expectation EX or the in-
clusion probabilities P(i ∈ {I1, . . . , In}) can be hard to track, even asymptotically
(Rosén (1972), Yu (2012)). The limiting distribution of X has been deeply inves-
tigated and central limit theorems were obtained under various regimes (Hájek
(1960), Holst (1973), Gordon (1983)). However, in situations where the sample
size is relatively small, one may also be interested in non-asymptotic results, in
the form of deviation or concentration inequalities. When n � N , it is natural to
expect Y to be a good approximation of X. For instance, the total-variation dis-
tance between P(In+1 ∈ ·|(Ik)

n
k=1) and P(J1 ∈ ·) is given by

∑n
k=1 ω(Ik), which is

O(n/N) provided all the weights are O(1/N).
Under the monotonicity assumption (1), Theorem 1 establishes an exact strong

stochastic ordering between X and Y . Since J1, . . . ,Jn are independent copies
of I1, the innumerable results on sums of independent and identically distributed
random variables apply to Y . In particular, Chernoff’s bound

P(Y ≥ a) ≤ exp
(
n�(θ) − θa

)
, (4)

yields a variety of sharp concentration results based on efficient controls on the log-
Laplace transform �(θ) = lnE[eθν(I1)]. This includes the celebrated Hoeffding
and Bernstein inequalities, see the book Boucheron, Lugosi and Massart (2013).
Theorem 1 implies in particular that all upper-tail estimates derived from Cher-
noff’s bound (4) apply to X without modification.

The condition (1) describes a sampling procedure which is sometimes referred
to as size-biased sampling without replacement. It arises in many situations, in-
cluding ecology, oil discovery models, in the construction of the Poisson–Dirichlet
distribution (Pitman and Yor (1997), Pitman and Tran (2015)), or in the configura-
tion model of random graphs (Bollobás (1980, 1998)).

Stochastic orders provide powerful tools to compare distributions of random
variables and processes, and they have been used in various applications (Szekli
(1995), Müller and Stoyan (2002), Shaked and Shanthikumar (2007)). As other
stochastic relations, the increasing convex order is only concerned with marginal
distributions. One way of establishing (2) is thus to carefully construct two random
variables X and Y with the correct marginals on a common probability space, in
such a way that

X ≤ E[Y |X] (5)

holds almost-surely. The existence of such a submartingale coupling clearly im-
plies (2), thanks to Jensen’s inequality. Quite remarkably, the converse is also true,
as proved by Strassen (1965). Similarly, Theorem 3 is equivalent to the existence
of a martingale coupling (W,Z).



Weighted sampling without replacement 661

Remark 2 (The uniform case). When ω is constant, that is, α = 1, the se-
quence (I1, . . . , In) is exchangeable. In particular, E[X] = E[Y ], forcing equality
in (5). Thus, (2) automatically extends to arbitrary convex functions. This impor-
tant special case was established five decades ago by Hoeffding in his seminal
paper (Hoeffding (1963)). Since then, improvements have been found as n/N ap-
proaches 1 (Serfling (1974), Bardenet and Maillard (2015)). Another remarkable
feature of uniform sampling without replacement is the negative association of the
sequence (ν(I1), . . . , ν(In)) (Joag-Dev and Proschan (1983)). However, this result
seems to make crucial use of the exchangeability of (I1, . . . , In), and it is not clear
whether it can be extended to more general weights, for example, to monotone
weights satisfying (1). Non-uniform sampling without replacement can be more
delicate and induce counter-intuitive correlations, as highlighted by Alexander
(1989), who showed that for two fixed items, the indicators that each is in the
sample can be positively correlated.

In the non-uniform case, EX and EY need not be equal. Hence, Theorem 1 may
not entail concentration inequalities for X around its mean, but rather bounds on
P(X ≥ EY + t), for t > 0. Theorem 2 then establishes a sub-Gaussian concen-
tration inequality for X. It holds under the only assumption that α < 1, but the
domain of application that we have in mind is when α is bounded away from 0
and 1. In this domain, when n ≤ qN , for some fixed 0 < q < 1, equation (3) gives
v = O(�2n), which corresponds to the order of the variance factor in the classi-
cal Hoeffding inequality. When n/N → 1 as N → +∞, it can be improved up to
v = O(�2n(N−n

N
)α). In the uniform case α = 1, Serfling (1974) showed that X

satisfies a sub-Gaussian inequality with v = �2nN−n+1
4N

, implying that the vari-
ance factor has the order of the minimum between the number of sampled and
unsampled items.

3 A coupling between samples drawn with and without replacement

The proofs of Theorems 1 and 2 rely on a particular coupling of samples drawn
with and without replacement. This coupling is inspired by the one described in
Luh and Pippenger (2014) for the uniform case.

First, generate an infinite sequence (Jk)k≥1 by sampling with replacement and
with probability proportional to (ω(i))Ni=1. Now, “screen” this sequence, starting
at J1 as follows: for 1 ≤ k ≤ N , set

Ik = JTk
,

where Tk is the random time when the kth distinct item appears in (Ji )i≥1.
The sequence (I1, . . . , In) is then distributed as a sample without replacement.

As above, we define X = ∑n
k=1 ν(Ik) and Y = ∑n

k=1 ν(Jk).
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4 The monotone case

Consider the coupling of X and Y described above (Section 3). Under the mono-
tonicity assumption (1), we show that (X,Y ) is a submartingale coupling in
the sense of (5). As the sequence (J1, . . . ,Jn) is exchangeable and as permut-
ing Ji and Jj in this sequence does not affect X, it is sufficient to show that
E[ν(J1)|X] ≥ X/n.

Proof of Theorem 1. Let {i1, . . . , in} ⊂ {1, . . . ,N} be a set of cardinality n, and
let A be the event {I1, . . . , In} = {i1, . . . , in}.

E
[
ν(J1)|A] =

n∑
j=1

P(J1 = ij |A)ν(ij ).

Let us now show that, for all 1 ≤ k 
= � ≤ n, if ν(ik) ≥ ν(i�), then P(J1 = ik|A)

is not smaller than P(J1 = i�|A). First, by (1), one has ω(ik) ≥ ω(i�). Letting Sn

be the set of permutations of n elements, one has

P
({J1 = ik} ∩ A

) = ∑
π∈Sn,π(1)=k

p(π),

where

p(π) := ω(iπ(1))
ω(iπ(2))

1 − ω(iπ(1))
· · · ω(iπ(n))

1 − ω(iπ(1)) − ω(iπ(2)) − ω(iπ(n−1))
.

Now, each permutation π with π(1) = k can be uniquely associated with a per-
mutation π
 such that π
(1) = �, by performing the switch: π
(π−1(�)) = k, and
letting π(j) = π
(j), for all j /∈ {1, π−1(�)}. Observe that p(π) ≥ p(π
). Thus,

P(J1 = ik|A) − P(J1 = i�|A) = 1

P(A)

∑
π∈Sn,π(1)=k

(
p(π) − p

(
π
)) ≥ 0.

Consequently, by Chebyshev’s sum inequality,

E
[
ν(J1)|A] = n

1

n

n∑
j=1

P(J1 = ij |A)ν(ij )

≥ n

(
1

n

n∑
j=1

P(J1 = ij |A)

)(
1

n

n∑
j=1

ν(ij )

)

=
∑n

j=1 ν(ij )

n
,

and E[Y |X] ≥ X, which concludes the proof of Theorem 1. �
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5 A sub-Gaussian concentration inequality

We now consider general weights, and proceed with the proof of Theorem 2. We
only need to show that the bound in Theorem 2 holds for P[X −EX > t]. Indeed,
replacing X by −X (i.e. changing all the values to their opposite) does not affect
the proof. Hence, the bound on P[X −EX < −t] will follow directly.

Theorem 2 is proved using the same coupling between sampling with and with-
out replacement as described in Section 3.

Note that, in this coupling, X is a function of the I.I.D. variables (Ji )i≥1:

X =
+∞∑
i=1

ν(Ji )1{Ji /∈{J1,...,Ji−1}}1{Tn≥i}. (6)

As such, one may obtain concentration results for X by resorting to the various
methods designed for functions of independent variables.

Proof of Theorem 2. The proof relies on the entropy method as described in
Chapter 6 of Boucheron, Lugosi and Massart (2013). We will show that X is such
that, for all λ > 0,

λE
[
X eλX] −E

[
eλX]

logE
[
eλX] ≤ λ2v

2
E

[
eλX]

, (7)

for v as in (3). Then, a classical argument due to Herbst (see Boucheron, Lugosi
and Massart (2013), Proposition 6.1) ensures that, for all λ > 0,

logE
[
eλ(X−EX)] ≤ λ2v

2
,

and thus, for all t > 0,

P(X −EX > t) ≤ exp
(
− t2

2v

)
,

that is, the upper-tail of X is sub-Gaussian with variance factor v. Let us establish
inequality (7). For t ≥ 1, consider the truncated variable Xt defined by summing
only from 1 to t in (6), that is,

Xt =
t∑

i=1

ν(Ji )1{Ji /∈{J1,...,Ji−1}}1{Tn≥i}

:= f (J1, . . . ,Jt ).

Note that Xt converges to X almost surely as t → +∞. Then, for all 1 ≤ i ≤ t ,
consider the perturbed variable Xi

t which is obtained by replacing Ji by an inde-
pendent copy J′

i , that is,

Xi
t = f

(
J1, . . . ,Ji−1,J′

i ,Ji+1, . . . ,Jt

)
,
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and let Xi be the almost sure limit of Xi
t , as t → +∞. Theorem 6.15 of Boucheron,

Lugosi and Massart (2013) implies that, for all λ > 0,

λE
[
Xt eλXt

] −E
[
eλXt

]
logE

[
eλXt

] ≤
t∑

i=1

E
[
λ2 eλXt

(
Xt − Xi

t

)2
+

]
. (8)

We now show that this inequality still holds when we let t tend to +∞. Let
νmax = max1≤j≤N ν(j). For all t ≥ 1, the variable Xt is almost surely bounded
by nνmax. Hence, the left-hand side of (8) tends to the left-hand side of (7). As for
the right-hand side, we have that, for all 1 ≤ i ≤ t ,

E
[
λ2 eλXt

(
Xt − Xi

t

)2
+

] ≤ λ2 eλnνmax�2
P(i ≤ Tn),

and
∑+∞

i=1 P[i ≤ Tn] = E[Tn] < +∞. Hence, by dominated convergence, the right-
hand side also converges, and we obtain

λE
[
X eλX] −E

[
eλX]

logE
[
eλX] ≤

+∞∑
i=1

E
[
λ2 eλX(

X − Xi)2
+

]
.

Recall that (I1, . . . , In) is the sequence of the first n distinct items in (Ji )i≥1 and
that X is measurable with respect to σ(I1, . . . , In), so that

+∞∑
i=1

E
[
λ2 eλX(

X − Xi)2
+

] = E

[
λ2 eλX

E

[+∞∑
i=1

(
X − Xi)2

+
∣∣∣∣I1, . . . , In

]]
.

Thus, letting

V := E

[+∞∑
i=1

(
X − Xi)2

+
∣∣∣∣I1, . . . , In

]
,

our task comes down to showing that

V ≤ v

2
a.s.

Observe that for all i ≥ 1, we have (X−Xi)2+ ≤ �2 and that X = Xi unless i ≤ Tn

and one of the following two events occurs:

• J′
i /∈ {I1, . . . , In};

• the item Ji occurs only once before Tn+1.

Let us define

A =
+∞∑
i=1

E[1{J′
i /∈{I1,...,In}}1i≤Tn |I1, . . . , In],

and

B =
n∑

k=1

E[1{∃!i<Tn+1,Ji=Ik}|I1, . . . , In],
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so that V ≤ �2(A + B). Since J′
i is independent of everything else and since

σn := ω(I1) + · · · + ω(In) is a measurable function of (I1, . . . , In), we have

A = (1 − σn)E[Tn|I1, . . . , In].
We use the following fact.

Lemma 3. For 1 ≤ k ≤ n, let τk = Tk − Tk−1. Conditionally on (I1, . . . , In), the
variables (τk)

n
k=1 are independent and for all 1 ≤ k ≤ n, τk is distributed as a

Geometric random variables with parameters 1 − σk−1.

Proof. Let (i1, . . . , in) be an n-tuple of distinct elements of {1, . . . ,N} and let
t1, . . . , tn ≥ 1. Let also (Gk)

n
k=1 be independent Geometric random variables with

parameter (1 − ω(i1) − · · · − ω(ik−1)). We have

P
(
(τ1, . . . , τn) = (t1, . . . , tn), (I1, . . . , In) = (i1, . . . , in)

)
= 1{t1=1}ω(i1)

n∏
k=2

(
ω(i1) + · · · + ω(ik−1)

)tk−1
ω(ik)

=
n∏

k=1

ω(ik)

1 − ω(i1) − · · · − ω(ik−1)

n∏
k=1

P(Gk = tk)

= P
(
(I1, . . . , In) = (i1, . . . , in)

) n∏
k=1

P(Gk = tk),

and we obtain the desired result. �

Lemma 3 implies that

E[Tn|I1, . . . , In] =
n∑

k=1

1

1 − σk−1
.

In particular, A ≤ n. We also have

A ≤ 1

α

n∑
k=1

N − n

N − k + 1
≤ 1

α
(N − n) log

(
N

N − n

)
. (9)

It remains to control B . Clearly B ≤ n, which shows that V ≤ 2�2n. Moreover,
for 1 ≤ k ≤ n, we have

P(∃!i < Tn+1,Ji = Ik|I1, . . . , In) = E

[
n∏

j=k

(
1 − ω(Ik)

σj

)τj+1−1∣∣∣∣I1, . . . , In

]
.

Using Lemma 3 and the fact that the generating function of a geometric variable
G with parameter p is given by E[xG] = px

1−(1−p)x
, we obtain

B =
n∑

k=1

n∏
j=k

1

1 + ω(Ik)
1−σj

.
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Thanks to the inequality log(1 + x) ≥ x − x2/2 for x ≥ 0,

B ≤
n∑

k=1

n∏
j=k

1

1 + α
N−j

≤
n∑

k=1

exp

(
−α

n∑
j=k

1

N − j
+ 1

2

n∑
j=k

1

(N − j)2

)
.

The second term in the exponent is always smaller than 1/2. Using Riemann sums,
we get

B ≤ 2
n∑

k=1

exp
(
−α log

(
N − k + 1

N − n

))
= 2

n∑
k=1

(
N − n

N − k + 1

)α

≤ 2

1 − α
N

(
N − n

N

)α

,

Combined with (9), this yields

V ≤
(

1

α

(
N − n

N

)1−α

log
(

N

N − n

)
+ 2

1 − α

)
�2N

(
N − n

N

)α

≤
(

e−1

α(1 − α)
+ 2

1 − α

)
�2N

(
N − n

N

)α

≤ 1/2 + 2α

α(1 − α)
�2N

(
N − n

N

)α

,

where the second inequality is due to the fact that log(x)/x1−α ≤ e−1/(1 − α) for
all x > 0. �

6 A martingale coupling for Polya urns

The proof of Theorem 3 relies on the construction of a martingale coupling (W,Z),
that is, of a coupling of W and Z such that E[Z|W ] = W .

Proof of Theorem 3. Consider two urns, Ud and UD , each of them initially con-
taining N balls, labelled from 1 to N . In each urn, arrange the balls from left to
right by increasing order of their label. Then arrange UD and Ud on top of one
another. Each time we will pick a ball in UD , we will pick the ball just below it in
Ud . More precisely, we perform an infinite sequence of steps as follows: at step 1,
we pick a ball B1 uniformly at random in UD and pick the ball just below it in
Ud . They necessarily have the same label, say j . We let K1 = L1 = j , and add,
on the right part of UD , D − 1 balls with label j , and, on the right part of Ud ,
d − 1 balls with label j and D − d unlabelled balls. Note that, at the end of this
step, the two urns still have the same number of balls, N + D − 1. The first step is
depicted in Figure 1. Then, at each step t , we pick a ball Bt at random among the
N + (t − 1)(D − 1) balls of UD and choose the ball just below it in Ud . There are
two different possibilities:
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Figure 1 The ball B1 has label 2 (N = 5, d = 3, D = 4).

• if the ball drawn in Ud is unlabelled and the one drawn in UD has label j , we
let Lt = j and add D − 1 balls with label j on the right part of UD , and D − 1
unlabelled balls on the right part of Ud ;

• if both balls have label j , and if t corresponds to the ith time a labelled ball is
drawn in Ud , we let Lt = Ki = j and add D − 1 balls with label j on the right
part of UD , and d − 1 balls with label j and D − d unlabelled balls on the right
part of Ud .

The sequence (K1, . . . ,Kn) records the labels of the first n labelled balls picked
in Ud , and (L1, . . . ,Ln) the labels of the first n balls picked in UD . Observe that
(K1, . . . ,Kn) (resp. (L1, . . . ,Ln)) is distributed as a d-Polya (resp. D-Polya) sam-
ple. Define

W = ν(K1) + · · · + ν(Kn),

Z = ν(L1) + · · · + ν(Ln).

Let us show that 1 ≤ i ≤ n − 1, E[ν(Li+1)|W ] = E[ν(Li)|W ]. Let {k1, . . . , kn}
be a multiset of cardinality n of elements of {1, . . . ,N}, and let A be the event
{K1, . . . ,Kn} = {k1, . . . , kn} (accounting for the multiplicity of each label). Denote
by Ci the set of D −1 balls added at step i. Observe that, if Bi+1 ∈ Ci , then Li+1 =
Li . Hence

E
[
ν(Li+1)|A] = E

[
ν(Li)1{Bi+1∈Ci}|A

] +E
[
ν(Li+1)1{Bi+1 /∈Ci}|A

]
.

We have

E
[
ν(Li+1)1{Bi+1 /∈Ci}|A

] = 1

P(A)

N∑
k=1

ν(k)

N∑
�=1

P(Li = �,Li+1 = k,Bi+1 /∈ Ci ,A).

Notice that, on the event Bi+1 /∈ Ci , the balls Bi and Bi+1 are exchangeable. Hence,
P(Li = �,Li+1 = k,Bi+1 /∈ Ci ) = P(Li = k,Li+1 = �,Bi+1 /∈ Ci ). Moreover, per-
muting Bi and Bi+1 can not affect the multiset {K1, . . . ,Kn}. Hence

E
[
ν(Li+1)1{Bi+1 /∈Ci}|A

] = E
[
ν(Li)1{Bi+1 /∈Ci}|A

]
,
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and E[ν(Li+1)|W ] = E[ν(Li)|W ]. We get that, for all 1 ≤ i ≤ n,

E
[
ν(Li)|W ] = E

[
ν(L1)|W ] = E

[
ν(K1)|W ] = W/n,

where the last equality comes from the exchangeability of (K1, . . . ,Kn). �

7 Concluding remarks

To summarize the three contributions of the paper,

• we proved that, when weights and values are arranged in the same order, then
the sum of values arising from sampling without replacement is less, in the
increasing order, than the sum arising from sampling with replacement;

• in the general case, we established a sub-Gaussian concentration inequality for
sampling without replacement, in which the variance factor sharpens as the sam-
ple size approaches the total number of items;

• we answered a question posed by Luh and Pippenger (2014), by constructing a
martingale coupling between Polya urns with different replacement numbers.

Various questions are left open. The variance factor in Theorem 2, for instance,
is probably not order-optimal, and it would be interesting to see whether such a
concentration inequality holds with v = O(n(1 − n

N
)), as in Serfling’s inequality.

Also, the dependence properties of the sequence (ν(I1), . . . , ν(In)) are far from
being well understood, even in the monotone case.
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