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Abstract. Beta regression models have been widely used for the analysis
of limited-range continuous variables. Here, we consider an extension of the
beta regression models that allows for explanatory variables to be measured
with error. Then we propose a Bayesian treatment for errors-in-variables beta
regression models. The specification of prior distributions is discussed, com-
putational implementation via Gibbs sampling is provided, and two real data
applications are presented. Additionally, Monte Carlo simulations are used to
evaluate the performance of the proposed approach.

1 Introduction

Beta regression models have been widely employed for modeling limited-range
continuous outcomes. A remarkable feature of these models is that the beta distri-
bution is very flexible. The beta family includes left or right skewed, symmetric,
J-shaped, and inverted J-shaped distributions. In addition, these models are pa-
rameterized in such a way as to allow for modeling of the mean response and a
precision parameter in terms of covariates and unknown parameters; see Ferrari
and Cribari-Neto (2004) and Smithson and Verkuilen (2006).

An alternative strategy to model limited-range continuous variables, such as
rates and proportions, is to apply a homoscedastic normal model after transform-
ing the dependent variable to the real line. However, this strategy is not without
shortcomings. First, the model parameters cannot be easily interpreted as charac-
teristics of the original response. Second, measures of proportions are naturally
heteroscedastic and often considerably skewed, and hence it may be difficult or
even impossible to find a transformation to correct for both skewness and het-
eroscedasticity. Beta regression models naturally accommodate asymmetry and
heteroscedasticity, and allow easy parameter interpretation.

Beta regression models assume that the covariates are measured exactly. In prac-
tice, however, this assumption is not always met because some covariates may be
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not directly observable or are subject to measurement error. If errors in covari-
ates are not properly taken into account in the inferential process, biased and in-
consistent estimates may be obtained and erroneous conclusions may be reached.
There is a vast literature on measurement error models. Some book-length relevant
references include Buonaccorsi (2010), Cheng and JW (1999), Fuller (1987) and
Carroll et al. (2006).

Recently, Carrasco, Ferrari and Arellano-Valle (2014) proposed a classical ex-
tension of the beta regression models to allow for explanatory variables to be mea-
sured with error, where identifiability conditions are necessary to obtain consistent
estimates. Errors-in-variables beta regression models are specified in such a way
that the distribution of the response variable, y, is assumed to depend on covariates,
x, which are imprecisely measured (Carroll et al., 2006, Chapter 9), and observable
variables, w, are seen as surrogates for the unobservable true covariates.

In this paper, we address errors-in-variables beta regression models under a
Bayesian approach, where the classical identifiability conditions on the model pa-
rameters are replaced by the specification of prior distributions. Following Ferrari
and Cribari-Neto (2004), our proposed model uses a parameterization of the beta
law in terms of its mean and an additional positive parameter that can be regarded
as a precision parameter. The mean of the response variable, and possibly the pre-
cision parameter, are conveniently linked with regression structures by link func-
tions. In both cases, one or more covariates are allowed to be measured with error.

We address the issues of model fitting via Gibbs sampling, the choice of prior
distributions, and model selection based on different information criteria. Simu-
lated and real data analyses are presented for illustration. In addition, a Monte
Carlo simulation study is performed to investigate the performance of the pro-
posed approach. Various pieces of BUGS code used for fitting errors-in-variables
beta regression models are presented in an Appendix.

2 Bayesian errors-in-variables beta regression

Beta regression models assume that the response variable, y, has a beta distribution
with probability density function

f (y;μ,φ) = �(φ)

�(μφ)�[(1 − μ)φ]y
μφ−1(1 − y)(1−μ)φ−1, 0 < y < 1, (2.1)

where �(·) is the gamma function, 0 < μ < 1 and φ > 0, and we write y ∼
beta(μφ, (1 − μ)φ). Here, μ = E(y) and φ is interpreted as a precision param-
eter because Var(y) = μ(1 − μ)/(1 + φ). The beta regression model introduced
by Ferrari and Cribari-Neto (2004) assumes that y1, y2, . . . , yn are n independent
random variables such that each yi follows a beta density (2.1) with mean μi and
unknown fixed precision parameter φ, with

g(μi) = z�
i α, (2.2)
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where α ∈ Rpα is a column vector of unknown parameters, and zi = (zi1, . . . ,

zipα )
� is a vector of pα fixed covariates (pα < n). The link function g(·) : (0,1) →

R is assumed to be a continuous, strictly monotone and twice differentiable func-
tion. Possible choices for g(·) include the logit link, g(μi) = log[μi/(1 − μi)],
the probit link, g(μi) = �−1(μi), where �(·) is the cumulative distribution func-
tion of the standard normal distribution, and the complementary log-log link,
g(μi) = log[− log(1 − μi)].

The beta regression model (2.1)–(2.2) has been extended in various directions.
Smithson and Verkuilen (2006) present a beta regression model for which the
precision parameter varies across observations. Simas, Barreto-Souza and Rocha
(2010) include non-linear structures for the regression specification of the mean
and the precision parameter. Furthermore, Zimprich (2010) and Figueroa-Zúniga,
Arellano-Valle and Ferrari (2013) address inference in beta regression models with
mixed effects under the frequentist and Bayesian approaches, respectively.

Let γ ∈ Rpγ (pα + pγ < n) be a column vector of unknown parameters, and
vi = (vi1, . . . , vipγ )� be a vector of fixed covariates. The beta regression model
with linear specification for the transformed mean and nonconstant precision pa-
rameter assumes that each yi follows a beta density (2.1) with mean μi satisfying
(2.2), and precision parameter φi such that

h(φi) = v�
i γ . (2.3)

A natural choice for h(·) is h(φi) = log(φi).
The beta regression models described above do not involve covariates mea-

sured with error. Recently, Carrasco, Ferrari and Arellano-Valle (2014) proposed
an errors-in-variables beta regression model to accommodate the situation in which
some covariates are imprecisely measured. They considered a linear structure for
the measurement error mechanism and developed a classical likelihood-based in-
ference for the proposed model under some standard identifiability conditions on
the nuisance model parameters. Here we introduce a Bayesian errors-in-variables
beta regression model, in which the standard identifiability conditions are replaced
by the elicitation of prior distributions, and the maximization of complex likeli-
hood functions is unnecessary.

Following Carrasco, Ferrari and Arellano-Valle (2014), we propose to replace
the mean submodel (2.2) and the precision submodel (2.3) by

g(μi) = z�
i α + x�

i β, (2.4)

h(φi) = v�
i γ + m�

i λ, (2.5)

respectively, where β ∈ Rpβ and λ ∈ Rpλ are column vectors of unknown param-
eters, xi = (xi1, . . . , xipβ )� and mi = (mi1, . . . ,mipλ)

� (pα + pβ + pγ + pλ < n)
are unobservable (latent) covariates, in the sense that they are observed with error.
The vectors of covariates measured without error, zi and vi , may contain variables
in common, and likewise, xi and mi . Typically, h(φi) is specified as a submodel
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of g(μi), so that vi and mi are subvectors of zi and xi , respectively. Let si be the
p-vector containing all the unobservable covariates xi and mi , i = 1, . . . , n. For
i = 1, . . . , n, a random vector wi is observed in place of si , and we consider the
classical additive model for the measurement error

wi = si + ei , (2.6)

where ei is a vector of random errors which is assumed to be independent of si .
More specifically, in this work we assume for the measurement error model in
(2.6) that

si
i.i.d.∼ Np(μs,�s), ei

i.i.d.∼ Np(0,�e), (2.7)

where μs ∈ Rp is unknown, and �s and �e are unknown p × p covariance ma-
trices. Thus, assuming (2.6) and (2.7), a convenient hierarchical representation for
the proposed model is

yi | si ,μi, φi
ind∼ beta

(
μiφi, (1 − μi)φi

)
,

wi | si ,�e
ind∼ Np(si ,�e),

si | μs,�s
i.i.d.∼ Np(μs,�s),

where μi and φi are given in (2.4) and (2.5). Note from (2.4) and (2.5) that, for
each i = 1, . . . , n, the response yi is conditionally independent of the observed
covariate wi given the true covariate si .

At this point, it should be noted that the classical distinction between structural
and functional models, namely whether the unobserved true covariates are consid-
ered random vectors or fixed (incidental) parameters, is blurred in the Bayesian
paradigm, in which all unknown quantities are treated as random variables. In ad-
dition, for the measurement error model a distinction is usually made between
the classical model defined by (2.6) and the Berkson-type model. Unlike (2.6), the
Berkson model assumes that si = wi +ei , and considers the observed covariates wi

as known constants. Dellaportas and Stephens (1995) studied linear and non-linear
regression models considering classical and Berkson measurement error models
under a Bayesian paradigm. These authors emphasize that choice between these
two models can have different consequences under a frequentist approach. Under
a Bayesian formulation, however, the distinction between classical and Berkson
models is unnecessary (except purely for reasons of model specification), since
the unobserved covariates are treated as a set of unknown parameters. As indicated
above, in this work the classical model given in (2.6) is considered.

To complete the Bayesian specification of the errors-in-variables beta regression
model described above, elicitation of prior distributions for all unknown parame-
ters is required. Multivariate normal prior distributions are typically considered for
the regression coefficients involved in the mean submodel, i.e., α ∼ Npα(μα,�α),
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β ∼ Npβ (μβ,�β), and for the mean vector of the true covariate si , i.e., μs ∼
Np(ξ s,�s). Vague priors are usually specified by taking large values for the prior
variances. However, the impact of the scale choice under the normal model cannot
be neglected. We propose to replace the multivariate normal priors by multivariate
t distributions, that is,

α ∼ tpα (να,μα,�α), β ∼ tpβ (νβ,μβ,�β), μs ∼ tp(νs, ξ s,�s),

and to specify appropriate values for the degrees of freedom parameters. Prior dis-
tributions for the covariance matrices �s and �e are chosen, mainly for computa-
tional simplicity, to be inverted Wishart distributions as in Fong, Rue and Wake-
field (2010), that is,

�s ∼ IWp(	s, as), �e ∼ IWp(	e, ae).

If �s = diag{σ 2
s1, . . . , σ

2
sp} and �e = diag{σ 2

e1, . . . , σ
2
ep}, then we consider a prod-

uct of inverted gamma prior distributions for σ 2
si and σ 2

ei , that is, we assume that
σ 2

s1, . . . , σ
2
sn (similarly, σ 2

e1, . . . , σ
2
en) are independent and have an inverted gamma

prior distribution, IG(ε1, ε2). Typically, ε1 = ε2 = ε, a small positive value, to ob-
tain a slightly informative prior. Following Figueroa-Zúniga, Arellano-Valle and
Ferrari (2013), we propose an alternative, less informative prior distribution for
σ 2

si (similarly for σ 2
ei ) given by

σ 2
si

d= (aB)2, B ∼ beta(1 + ε,1 + ε),

where d= represents equality in distribution, with a positive value for a and a small
positive value for ε (see Figure 1). Note that the smaller the value of ε, the flatter
the prior density will be.

We now turn to the specification of prior distributions for the precision parame-
ter. We consider the following errors-in-variables beta regression models.

Model 1—Constant precision case. This model considers the errors-in-variables
regression model given by (2.1) and (2.4) with a common precision parameter φ

for all the observations. If a slightly informative prior is required, it can be assumed
that φ ∼ IG(ε, ε), with a small fixed positive value for ε. A less informative prior
distribution for φ is

φ
d= (aB)2, B ∼ beta(1 + ε,1 + ε),

for a positive value for a and a small positive value for ε. As suggested by Gelman
(2006) the prior distribution φ = U2 with U ∼ U(0, a) with large a (a = 50 for
example) is less informative than an inverse gamma prior; the prior distribution
for φ we suggest is then a more flexible version of Gelman’s prior as shown in
Figure 1. Our simulations indicate, however, that a more convenient prior for φ is
a log-normal distribution, say φ ∼ LN(μφ,σ 2

φ).
Model 2—Varying precision case. This model considers the errors-in-variables

regression model given by (2.1), (2.4) and (2.5). Here, the specification of prior
distributions for γ and λ is similar to that used for α and β .
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Figure 1 Probability density function of (aB)2, where B ∼ beta(1 + ε,1 + ε), with a = 50 (left
hand) and a = 100 (right hand), and different values for ε: ε = 0.01 (solid line), ε = 0.5 (dashed
line) and ε = 1 (dotted line).

3 Model fitting using Markov chain Monte Carlo sampling

Let y = (y1, . . . , yn)
� and w = (w�

1 , . . . ,w�
n )� be the observable variables, and

consider the vector η = (η1, . . . , ηn)
�, where ηi = g(μi) is given in (2.4). We

omit the observable vectors zi and vi in the notation as they are non-random and
known. From (2.4) and (2.7) it can be noticed that, conditionally on α, β , μs and
�s , the ηis are independent and normally distributed.

We now present the joint posterior distribution under Models 1 and 2 described
in the previous section. Under Model 1, for which si = xi , and the assumption that
the parameters α,β,μs,�s,�e and φ are independent, the joint posterior density
is

f (α,β,μs,�s,�e,η, φ | y,w) ∝
[

n∏
i=1

f (yi,wi | ηi, φ,μs,�s,�e)

]
× f (η | α,β,μs,�s)f (α)f (β)

× f (μs)f (�s)f (�e)f (φ).

Gibbs sampling can be used to generate a Monte Carlo sample from the joint pos-
terior density, f (α,β,μs,�s,�e,η, φ | y,w). The Gibbs sampler in this context
involves iteratively sampling from the full conditional distributions which can be
implemented in the WinBUGS software. Posterior inferences on α,β,μs,�s,�e,
and φ and on the mean responses μi , for i = 1, . . . , n, are readily obtained in
WinBUGS.

We now turn to Model 2. Let ρ = (ρ1, . . . , ρn)
�, where ρi = h(φi) is given in

(2.5). From (2.5) and (2.7), we have that, conditionally on γ , λ, μs and �s , the
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(ηi, ρi)s are independent and normally distributed. Assuming prior independence
of α,β,μs,�s,γ ,λ and �e, we obtain the posterior density given by

f (α,β,μs,�s,γ ,λ,�e,η,ρ | y,w)

∝
[

n∏
i=1

f (yi,wi | ηi, ρi,μs,�s,�e)

]
× f (η | α,β,μs,�s)f (ρ | η,γ ,λ,μs,�s)

× f (α)f (β)f (μs)f (�s)f (γ )f (λ)f (�e).

Similarly to Model 1, the Gibbs sampling can be used to generate a Monte Carlo
sample from f (α,β,μs,�s,γ ,λ,�e,η,ρ | y,w). In this case, again the Gibbs
sampler involves iteratively sampling from the full conditional distributions which
can be implemented in the WinBUGS software. Thus, posterior inferences on
α,β,μs,�s,γ ,λ,�e, and φi for i = 1, . . . , n, and on the mean responses μi ,
for i = 1, . . . , n, are again easily obtained in WinBUGS.

4 Illustration via simulations

To illustrate the proposed methodology, we consider the following errors-in-
variables beta regression model with simulated data (Model 1):

yi | xi,wi, α1, α2, β,φ ∼ beta
(
μiφ, (1 − μi)φ

)
,

log
(

μi

1 − μi

)
= α1 + α2zi + βxi,

wi = xi + ei, xi ∼ N
(
μx,σ

2
x

)
, ei ∼ N

(
0, σ 2

e

)
, i = 1, . . . ,100

with xi and ei′ , for i, i ′ = 1, . . . ,100, being independent.
For our simulation study, the values of the covariates zi were generated from

a uniform distribution in the unit interval, and we set α1 = 2, α2 = 1, β = −0.4,
μx = 5, σ 2

x = 2, φ = 50 and 300. Typically, the measurement error variance, σ 2
e ,

or the reliability ratio, k = σ 2
x /(σ 2

x + σ 2
e ), is considered known. At the outset, we

consider σ 2
e known and equal to 0.1, 0.66 and 2. The corresponding values for

k are approximately 0.95 (low measurement error), 0.75 (moderate measurement
error) and 0.5 (high measurement error), respectively. As proposed, we adopt the
following prior specifications for α1, α2, β and μx :(

α1
α2

)
∼ t2

(
5,

(
0
0

)
,

(
20 0
0 20

))
,

β ∼ t (5,0,20), μx ∼ t (5,0,20).

We first analyze 100 simulated datasets under different prior specifications for
the precision parameter φ and the variance parameter σ 2

x . The following prior dis-
tributions for φ and σ 2

x are considered:
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(i) Model 1a: φ and σ 2
x ∼ IG(ε, ε), with ε = 0.01;

(ii) Model 1b: φ
d= (50B)2 and σ 2

x
d= (50B)2, where B ∼ beta(1 + ε,1 + ε), with

ε = 0.1;

(iii) Model 1c: φ ∼ LN(μφ,σ 2
φ) with μφ = 4, σ 2

φ = 1 and σ 2
x

d= (50B)2, where
B ∼ beta(1 + ε,1 + ε), with ε = 0.1. Note that this prior specification for φ

implies that E(φ) ∼= 90.02 and Var(φ) ∼= 13,923.38 and that the 1st and 99th
percentiles of φ are approximately 5.33 and 559.11. These hyperparameter
values were carefully chosen in order to produce a disperse prior distribution
and to avoid very small estimates for φ.

All the numerical results presented in this paper were obtained using WinBUGS
by considering 140,000 Monte Carlo iterations and discarding the first 50,000 as
burn-in. For each of the different prior distributions considered, we have not ob-
served problems of autocorrelation, convergence and stationarity in the chain.1

Tables 1 and 2 report the average of the deviance information criterion (DIC)
proposed by Spiegelhalter et al. (2002). This criterion is based on the posterior
mean of the deviance and it can be approximated by D = ∑Q

q=1 D(θq)/Q, where
θ1, . . . , θQ is a sample of size Q drawn from π(θ | y,w) after the burn-in period
and D(θ) = −2

∑n
i=1 log[f (yi | wi, θ)]. The DIC criterion can be estimated using

the MCMC output by D̂IC = D+pD = 2D−D̂, where pD is the effective number
of parameters, defined by pD = E{D(θ)} − D{E(θ)}, with D{E(θ)} being the
deviance evaluated at the posterior mean, and D̂ = ∑Q

q=1 θq/Q. For comparison
of two alternative models, the model that better fits a data set is the model with the
smallest value of the DIC.

In addition, Tables 1 and 2 report the average of the expected Akaike infor-
mation criterion (EAIC) introduced by Brooks (2002) and the expected Bayesian
information criterion (EBIC) given in Carlin and Louis (2001), which can be esti-
mated by means of ÊAIC = D + 2pD and ÊBIC = D + pD log(n), respectively.
The averages are based on the 100 simulated datasets for the fitted models with
different prior distributions for φ and for σ 2

x . The goal is to minimize the infor-
mation criteria to identify the best model. We observe that the different proposed
priors lead to similar DICs, EAICs and EBICs when the measurement error is low
(k = 0.95). However, the differences among the criteria increase as k decreases,
and for moderate and high measurement error (k = 0.75 and k = 0.5, respectively)
the three criteria indicate that Model 1c provides a better fit than the other propos-
als.

Tables 3 and 4 present the relative bias (RelBias) and the root-mean-squared
error (

√
MSE) for each parameter estimator over the 100 simulated samples under

1Pieces of BUGS code used for fitting errors-in-variables beta regression models in the simulated
data example are presented in the Appendix.
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Table 1 Mean DIC, EAIC and EBIC based on 100 simulated datasets with φ = 50, for the fitted
models with different prior specifications for the precision parameter; Model 1

k Model Prior for φ and σ 2
x DIC EAIC EBIC

0.95 Model 1a φ, σ 2
x ∼ IG(0.01,0.01) −118.41 −205.94 −190.31

Model 1b φ, σ 2
x

d= (50B)2,B ∼ beta(1.1,1.1) −118.34 −206.32 −190.69

Model 1c φ ∼ LN(4,1), σ 2
x

d= (50B)2,B ∼ beta(1.1,1.1) −118.29 −205.92 −190.29

0.75 Model 1a φ, σ 2
x ∼ IG(0.01,0.01) 39.86 −38.86 −23.23

Model 1b φ, σ 2
x

d= (50B)2,B ∼ beta(1.1,1.1) 33.86 −38.99 −23.36

Model 1c φ ∼ LN(4,1), σ 2
x

d= (50B)2,B ∼ beta(1.1,1.1) 24.49 −58.36 −42.73

0.50 Model 1a φ, σ 2
x ∼ IG(0.01,0.01) 153.31 79.59 95.22

Model 1b φ, σ 2
x

d= (50B)2,B ∼ beta(1.1,1.1) 140.42 73.12 88.75

Model 1c φ ∼ LN(4,1), σ 2
x

d= (50B)2,B ∼ beta(1.1,1.1) 128.04 54.31 69.94

Table 2 Mean DIC, EAIC and EBIC based on 100 simulated datasets with φ = 300, for the fitted
models with different prior specifications for the precision parameter; Model 1

k Model Prior for φ and σ 2
x DIC EAIC EBIC

0.95 Model 1a φ, σ 2
x ∼ IG(0.01,0.01) −127.32 −210.98 −195.33

Model 1b φ, σ 2
x

d= (50B)2,B ∼ beta(1.1,1.1) −127.33 −211.10 −195.47

Model 1c φ ∼ LN(4,1), σ 2
x

d= (50B)2,B ∼ beta(1.1,1.1) −127.42 −211.43 −195.80

0.75 Model 1a φ, σ 2
x ∼ IG(0.01,0.01) 38.71 −37.52 −21.89

Model 1b φ, σ 2
x

d= (50B)2,B ∼ beta(1.1,1.1) 24.61 −30.42 −14.79

Model 1c φ ∼ LN(4,1) and σ 2
x

d= (50B)2,B ∼ beta(1.1,1.1) 17.57 −50.02 −34.39

0.50 Model 1a φ, σ 2
x ∼ IG(0.01,0.01) 177.24 97.21 112.84

Model 1b φ, σ 2
x

d= (50B)2,B ∼ beta(1.1,1.1) 168.41 93.85 109.48

Model 1c φ ∼ LN(4,1), σ 2
x

d= (50B)2,B ∼ beta(1.1,1.1) 145.10 76.61 92.24

the different settings. They are defined as

RelBias(θ) = 1

100

100∑
i=1

(
θ̂ (i) − θ

θ

)
and MSE(θ) = 1

100

100∑
i=1

(
θ̂ (i) − θ

)2
,

where θ represents any particular parameter, and θ̂ (i) is the posterior estimate of θ

for the ith sample. The figures in Tables 3 and 4 show that the different proposed
priors achieve reasonable estimates of the model parameters. However, the prior

distributions considered in Model 1c, namely φ ∼ LN(4,1) and σ 2
x

d= (50B)2,
where B ∼ beta(1.1,1.1), produces the smallest

√
MSE.
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Table 3 Relative bias and root-mean-square error based on 100 simulated datasets with φ = 50
and different prior specifications for the precision parameter; Model 1

k Model Posterior inference

β α1 α2 log(φ) μx σ 2
x

0.95 Model 1a RelBias 0.000 −0.001 0.009 0.021 −0.001 0.010√
MSE 0.022 0.129 0.114 0.204 0.146 0.286

Model 1b RelBias 0.001 0.000 0.008 0.025 −0.001 0.022√
MSE 0.022 0.129 0.114 0.212 0.146 0.292

Model 1c RelBias 0.002 0.004 −0.007 0.021 −0.004 0.029√
MSE 0.022 0.130 0.117 0.200 0.138 0.284

0.75 Model 1a RelBias 0.061 0.056 0.013 0.274 −0.004 −0.021√
MSE 0.051 0.265 0.156 2.273 0.154 0.378

Model 1b RelBias 0.062 0.059 0.010 0.143 −0.004 −0.006√
MSE 0.049 0.258 0.154 0.824 0.153 0.378

Model 1c RelBias 0.038 0.038 −0.003 0.078 −0.006 0.010√
MSE 0.041 0.219 0.153 0.520 0.150 0.351

0.5 Model 1a RelBias 0.210 0.204 0.016 1.138 −0.006 −0.089√
MSE 0.121 0.603 0.211 5.802 0.175 0.623

Model 1b RelBias 0.224 0.218 0.015 0.439 −0.007 −0.066√
MSE 0.150 0.764 0.192 1.843 0.175 0.627

Model 1c RelBias 0.067 0.065 −0.004 0.114 −0.008 0.017√
MSE 0.065 0.328 0.186 0.625 0.177 0.504

In order to investigate the prior’s impact on the model selection for smaller
samples, we repeated the above analysis for n = 30 and n = 50. The results are
shown in a supplement available from the authors upon request. Overall, the results
are qualitatively the same as those obtained for n = 100.

In Tables 5 and 6, we report the parameter estimates for one dataset generated
from Model 1c (n = 100). The estimated parameters obtained from the Bayesian
methodology proposed here are similar to the true values of the model parameters.
In addition, the necessary diagnostic tests (such as convergence, autocorrelation,
history) were performed, from which desirable behaviors were observed in the
chains (for brevity detailed numerical results are not shown but are commented on
below). We also conducted a sensitivity analysis with respect to the specifications
of the parameter k. In each case, the posterior inferences were not appreciably
altered, but the standard deviation (s.d.) for each parameter increases when k de-
creases.

The multivariate version of Gelman and Rubin’s convergence diagnostic pro-
posed by Brooks and Gelman (1998) indicates that the chain is convergent because
the multivariate proportional scale reduction factor (m.p.r.f.) equals 1.01 (< 1.2).
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Table 4 Relative bias and root-mean-square error based on 100 simulated datasets with φ = 300
and different prior specifications for the precision parameter; Model 1

k Model Posterior inference

β α1 α2 log(φ) μx σ 2
x

0.95 Model 1a RelBias 0.011 0.010 −0.001 0.141 −0.001 0.007√
MSE 0.016 0.084 0.062 2.271 0.147 0.286

Model 1b RelBias 0.008 0.005 0.000 0.041 −0.004 0.034√
MSE 0.031 0.155 0.116 0.373 0.153 0.376

Model 1c RelBias 0.003 0.003 −0.003 0.015 −0.004 0.030√
MSE 0.015 0.082 0.063 0.349 0.139 0.285

0.75 Model 1a RelBias 0.037 0.030 0.009 0.684 −0.005 −0.001√
MSE 0.037 0.183 0.131 4.862 0.158 3.897

Model 1b RelBias 0.037 0.031 0.001 0.080 −0.007 0.038√
MSE 0.064 0.323 0.156 0.578 0.177 0.575

Model 1c RelBias −0.017 −0.018 −0.004 −0.057 −0.006 0.052√
MSE 0.029 0.155 0.112 0.468 0.150 0.369

0.5 Model 1a RelBias 0.032 0.025 0.007 0.860 −0.006 0.037√
MSE 0.053 0.278 0.171 6.139 0.186 0.569

Model 1b RelBias 0.189 0.173 0.007 0.337 −0.013 −0.114√
MSE 0.118 0.581 0.159 1.026 0.176 0.601

Model 1c RelBias −0.053 −0.056 −0.009 −0.141 −0.008 0.108√
MSE 0.050 0.259 0.154 0.862 0.177 0.555

Also, for each parameter, we checked that the convergence is achieved for each
chain.

We now use the same simulated datasets from the beginning of this section to
fit Model 2 with three different regression structures for the precision parameter.
Note that the true (unknown) model is a beta regression model with constant pre-
cision, and hence only Model 2a (see Tables 7 and 8 below) corresponds to the
true model. Note also that the φis are not assumed to be constant over the obser-
vations under Models 2b and 2c (see Tables 9 and 10 below), and we then report
log(φ) = 1/100

∑100
i=1 log(φi) to allow comparisons with the real value of log(φ).

Prior distributions for β , α1, α2, μx are the same as those proposed for Model 1
and the prior distribution for σ 2

x is the same as the one proposed for Models 1b
and 1c. For model specifications that include measurement error for the precision
parameter, we assume that the parameter λ has the same distribution as the parame-
ter β , namely t (νβ,0, σ 2

β ) and the parameters γ1 and γ2 have the same distribution

as the parameters α1 and α2, namely t (να1,0, σ 2
α1

), and t (να2,0, σ 2
α2

) respectively.
Tables 7 and 8 report the mean DIC, EAIC and EBIC based on the 100 simulated

datasets for the three fitted models using simulated data for φ = 50 and φ = 300,
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Table 5 True mean and estimated posterior means and standard deviation, with φ = 50 for
Model 1c; simulated dataset

k Parameter Posterior inference

True Mean s.d.

0.95 β −0.4 −0.397 0.027
α1 2.0 2.002 0.143
α2 1.0 1.011 0.101
log(φ) 3.912 4.132 0.174
μx 5.0 4.954 0.131

σ 2
x 2.0 1.610 0.251

0.75 β −0.4 −0.400 0.039
α1 2.0 2.087 0.212
α2 1.0 0.896 0.141
log(φ) 3.912 4.138 0.348
μx 5.0 5.057 0.171

σ 2
x 2.0 2.224 0.426

0.5 β −0.4 −0.378 0.066
α1 2.0 1.978 0.363
α2 1.0 0.830 0.170
log(φ) 3.912 3.969 0.500
μx 5.0 5.147 0.201

σ 2
x 2.0 2.003 0.557

respectively. Model 2a, the model under which the data were simulated and which
is equivalent but less informative than Model 1c, provides a better fit than the
other proposals when φ = 50, and when φ = 300 and the measurement error is
low (k = 0.95). When φ = 300 and the measurement error is moderate or high
(k = 0.75 and k = 0.5), DIC and EAIC are slightly smaller for Model 2b than for
Model 2a, but the smallest EBIC corresponds to Model 2a.

Tables 9 and 10 present the relative bias and the root-mean-squared error for
each parameter estimator over the simulated samples under the different settings.
We observe that the different proposed priors achieve reasonable estimates of the
model parameters, but when the value of k is not very large, Model 2a exhibits
more stability in the estimation of φ.

Tables 11 and 12 report the parameter estimates for one dataset under Model 2a
for each value of k. The estimates obtained through the Bayesian methodology
proposed here are similar to the corresponding true values of the parameters. Diag-
nostic tools suggest that the chain for each parameter is convergent, not correlated
and stationary. Hence, our estimates can be regarded as reliable.

In the simulation studies reported above, the measurement error variance, σ 2
e , is

assumed to be known. Next, we study the estimates of the parameters of Model 1c,
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Table 6 True mean and estimated posterior means and standard deviation, with φ = 300 for
Model 1c; simulated dataset

k Parameter Posterior inference

True Mean s.d.

0.95 β −0.4 −0.413 0.017
α1 2.0 1.984 0.073
α2 1.0 0.960 0.055
log(φ) 5.704 5.609 0.303
μx 5.0 5.000 0.125

σ 2
x 2.0 2.181 0.336

0.75 β −0.4 −0.374 0.027
α1 2.0 1.992 0.140
α2 1.0 0.873 0.107
log(φ) 5.704 5.719 0.526
μx 5.0 4.967 0.170

σ 2
x 2.0 2.286 0.415

0.5 β −0.4 −0.411 0.084
α1 2.0 2.200 0.434
α2 1.0 0.924 0.145
log(φ) 5.704 5.291 0.675
μx 5.0 5.080 0.205

σ 2
x 2.0 2.409 0.581

assuming that σ 2
e is unknown. The prior distribution for σ 2

e is taken as the same
prior distribution used for σ 2

x in Models 1b and 1c.
In Tables 13 and 14, we report the mean, the relative bias and the root-mean-

squared error for each parameter estimator over 100 simulated samples under the
different settings. We observe that for different values for σ 2

e and k, good estimates
of all the parameters are achieved both for φ = 50 and φ = 300.

5 Real data applications

To illustrate our Bayesian approach to errors-in-variables beta regression in prac-
tice, we apply the proposed methods to two real datasets. First, we consider the
data studied by Coakley and Rust (1968), who investigated 39 sediment samples
taken at different depths from an arctic lake and then classified according to their
relative amounts of sand, silt, and clay. We will focus on the analysis of the relative
amount of clay or, in other words, the proportion of clay (y), which can be seen as
a continuous variable with limited range (0,1). According to the authors, “water
depths were obtained from a winch cable meter, because a hammer seismograph
designed for this purpose was inefficient due to ice reverberation.” It is reasonable
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Table 7 Mean DIC, EAIC and EBIC based on 100 simulated datasets for the fitted models with φ =
50 and different prior specifications for the precision parameter under Model 2; simulated dataset

k Model Precision submodel DIC EAIC EBIC

0.95 Model 2a log(φi) = γ1 −118.44 −206.01 −190.37
Model 2b log(φi) = γ1 + γ2zi −118.42 −205.77 −187.53
Model 2c log(φi) = γ1 + γ2zi + λxi −115.40 −198.64 −177.80

0.75 Model 2a log(φi) = γ1 29.28 −44.54 −23.70
Model 2b log(φi) = γ1 + γ2zi 33.00 −41.72 −23.49
Model 2c log(φi) = γ1 + γ2zi + λxi 71.74 −2.90 17.94

0.5 Model 2a log(φi) = γ1 115.75 43.84 59.47
Model 2b log(φi) = γ1 + γ2zi 118.85 45.92 64.16
Model 2c log(φi) = γ1 + γ2zi + λxi 239.14 155.83 176.68

Table 8 Mean DIC, EAIC and EBIC based on 100 simulated datasets for the fitted models with
φ = 300 and different prior specifications for the precision parameter; Model 2

k Model Precision submodel DIC EAIC EBIC

0.95 Model 2a log(φi) = γ1 −127.49 −211.85 −196.22
Model 2b log(φi) = γ1 + γ2zi −127.33 −211.67 −193.43
Model 2c log(φi) = γ1 + γ2zi + λxi −122.85 −203.00 −182.16

0.75 Model 2a log(φi) = γ1 16.43 −51.11 −35.48
Model 2b log(φi) = γ1 + γ2zi 16.01 −51.79 −33.56
Model 2c log(φi) = γ1 + γ2zi + λxi 52.69 −12.71 8.13

0.5 Model 2a log(φi) = γ1 142.10 73.94 89.57
Model 2b log(φi) = γ1 + γ2zi 141.85 72.92 91.16
Model 2c log(φi) = γ1 + γ2zi + λxi 214.31 142.24 163.08

to admit that the water depth is measured with error. Our goal is to model the pro-
portion of clay (y) using water depth (x, in meters) as a (latent) covariate measured
with error. The water depth measured with the winch cable is denoted by depth.

The model (hereafter Model 3) under consideration is defined as follows:

yi | xi, α,β, γ,λ
ind∼ beta

(
μiφi, (1 − μi)φi

)
,

log
(

μi

1 − μi

)
= α + βxi,

log(φi) = γ + λxi,

depthi | xi, σ
2
e

ind∼ N
(
xi, σ

2
e

)
,

xi | μx,σ
2
x

ind∼ N
(
μx,σ

2
x

)
, for i = 1, . . . ,39.
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Table 9 Relative bias and root-mean-square error based on 100 simulated datasets with φ = 50
and different structures for the precision parameter; Model 2

k Model Posterior inference

β α1 α2 log(φ) μx σ 2
x

0.95 Model 2a RelBias 0.001 0.000 0.008 0.021 −0.001 0.022√
MSE 0.022 0.130 0.114 0.198 0.146 0.293

Model 2b RelBias 0.000 −0.002 0.012 0.014 −0.004 0.017√
MSE 0.022 0.130 0.120 0.178 0.139 0.301

Model 2c RelBias 0.002 0.000 0.009 0.020 −0.004 0.015√
MSE 0.023 0.132 0.124 0.192 0.139 0.301

0.75 Model 2a RelBias 0.034 0.030 0.011 0.080 −0.004 0.012√
MSE 0.041 0.212 0.150 0.532 0.153 0.377

Model 2b RelBias 0.045 0.041 0.021 0.102 −0.005 0.005√
MSE 0.046 0.243 0.159 0.638 0.146 0.396

Model 2c RelBias 0.116 0.111 0.024 0.471 −0.006 −0.045√
MSE 0.073 0.368 0.167 2.752 0.150 0.421

0.5 Model 2a RelBias 0.067 0.060 0.011 0.142 −0.007 0.024√
MSE 0.067 0.344 0.185 0.788 0.174 0.541

Model 2b RelBias 0.060 0.055 0.026 0.168 −0.006 0.037√
MSE 0.066 0.343 0.187 0.911 0.168 0.584

Model 2c RelBias 0.202 0.192 0.030 1.200 −0.009 −0.051√
MSE 0.112 0.538 0.205 5.332 0.183 0.618

As before, we assume that, a priori, all the parameters are independent and that α,

β , γ , λ and μx follow a t (5,0,20) distribution, σ 2
x

d= (50B)2 and σ 2
e

d= (50B)2,
where B ∼ beta(1.1,1.1); for the constant precision case, φ ∼ LN(4,1).

Table 15 gives the DIC, EAIC and EBIC for the model fitting with differ-
ent specifications for the precision parameter. Results reported under the label
“Model 1 (naïve)” refer to the situation in which one ignores the measurement
error. The smallest DIC, EAIC and EBIC are achieved for Model 2, that is, the
model that assumes that the precision parameter is constant and takes the mea-
surement error into account, that is, according to these criterion Model 2 is the
“best” among its competitors.

Table 16 gives the posterior estimates of the parameters associated with
Model 2, which provides the best fit for the data. The estimated reliability ratio,
k = 0.836, indicates the presence of moderate measurement error in the covari-
ate. Because β̂ is positive, there is an indication that the mean proportion of clay
increases with depth. Furthermore, as the logit link is employed, exp(cβ) has an
interpretation as odds ratios when the regressor is increased in c units. Hence, be-
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Table 10 Relative bias and root-mean-square error based on 100 simulated datasets with φ = 300
and different structures for the precision parameter; Model 2

k Model Posterior inference

β α1 α2 log(φ) μx σ 2
x

0.95 Model 2a RelBias 0.004 0.001 0.006 0.025 −0.002 0.018√
MSE 0.015 0.079 0.062 0.425 0.150 0.314

Model 2b RelBias 0.008 0.008 −0.001 0.064 −0.004 0.016√
MSE 0.016 0.087 0.064 0.866 0.138 0.301

Model 2c RelBias 0.020 0.020 −0.003 0.274 −0.004 0.005√
MSE 0.019 0.098 0.064 2.903 0.139 0.299

0.75 Model 2a RelBias −0.012 −0.014 −0.007 −0.002 −0.003 0.042√
MSE 0.031 0.158 0.115 0.577 0.152 0.387

Model 2b RelBias 0.003 0.001 0.005 0.072 −0.005 0.030√
MSE 0.032 0.169 0.111 0.852 0.145 0.399

Model 2c RelBias 0.041 0.035 0.021 0.891 −0.007 0.023√
MSE 0.041 0.205 0.146 6.548 0.155 0.493

0.5 Model 2a RelBias −0.052 −0.058 −0.007 −0.110 −0.007 0.111√
MSE 0.052 0.262 0.157 0.757 0.172 0.590

Model 2b RelBias −0.035 −0.041 0.010 −0.059 −0.007 0.097√
MSE 0.054 0.283 0.144 0.602 0.167 0.651

Model 2c RelBias 0.031 0.021 0.033 0.893 −0.009 0.072√
MSE 0.066 0.378 0.168 5.728 0.209 0.703

cause exp(10β̂) ∼= 1.42, β̂ being the posterior mean of β , the estimated increase
in the average proportion of clay relative to the average proportion of other com-
ponents (i.e., sand and silt) when the depth is increased in 10 meters is 42%;
(25%,70%) is the corresponding 95% highest posterior density (HPD) credible
interval.

Some technical details on the model fit are now in order. We ran 140,000 Monte
Carlo iterations and discarded the first 50,000 iterations. The multivariate version
of Gelman and Rubin’s convergence diagnostic (Brooks and Gelman, 1998) indi-
cates that the chain is convergent (m.p.r.f. = 1.02 < 1.2). Additionally, diagnostic
plots (not shown) suggest that the chain for each parameter is not correlated and
stationary. We can then assume that the estimates reported in Table 16 are reli-
able.

We now present an application of our results to data taken from a sample of 408
young males between 8 and 18 years (Machado, Oikawa and Barbanti, 2013). The
observed variables under consideration are: fat mass percentage (y), height (cm),
weight (kg), horizontal abdominal skinfold (SkHab, mm) and year for peak height
velocity (phv, years). Usually, measures of skinfolds are subject to measurement
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Table 11 True mean and estimated posterior means and standard deviation, with φ = 50;
Model 2a

k Parameter Posterior inference

True Mean s.d.

0.95 β −0.4 −0.399 0.026
α1 2.0 2.014 0.135
α2 1.0 1.011 0.101
log(φ) 3.912 4.134 0.174
μx 5.0 4.953 0.130

σ 2
x 2.0 2.177 0.335

0.75 β −0.4 −0.385 0.033
α1 2.0 1.787 0.176
α2 1.0 1.220 0.126
log(φ) 3.912 4.285 0.328
μx 5.0 4.970 0.168

σ 2
x 2.0 2.184 0.412

0.5 β −0.4 −0.383 0.047
α1 2.0 2.059 0.281
α2 1.0 0.897 0.148
log(φ) 3.912 3.975 0.573
μx 5.0 4.864 0.202

σ 2
x 2.0 2.137 0.600

error. We therefore assume that the observed value of SkHab is a surrogate for the
true (latent) horizontal abdominal skinfold (x). We assume that y1, y2, . . . , yn are
independent observations of the percentage fat mass of the n = 408 individuals in
the sample, and such that yi follows a beta distribution with mean μi and precision
parameter φi , with

log
(

μi

1 − μi

)
= α1 + α2phvi + α3heighti + α4weighti + βxi,

log(φi) = γ1 + γ2phvi + γ3heighti + γ4weighti + λxi,

SkHabi = xi + ei,

i = 1, . . . , n, xi ∼ N(μx,σ
2
x ) and ei ∼ N(0, σ 2

e ). The specifications for the prior
distributions of the parameters are as follows: α1, α2, α3, α4, β , γ1, γ2, γ3, γ4,
λ and μx have a t (5,0,20) distribution; σ 2

x , and σ 2
e follow the same distribution

as (50B)2, where B ∼ beta(1 + ε,1 + ε), with ε = 0.1; finally, for the constant
precision case, φ ∼ LN(4,1).

Table 17 gives the DIC, EAIC and EBIC for the model fitting with different
prior specifications for the precision parameter. Model 1 ignores the measurement
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Table 12 True mean and estimated posterior means and standard deviation, with φ = 300;
Model 2a

k Parameter Posterior inference

True Mean s.d.

0.95 β −0.4 −0.404 0.013
α1 2.0 1.981 0.074
α2 1.0 1.025 0.060
log(φ) 5.7 5.585 0.286
μx 5.0 4.932 0.151

σ 2
x 2.0 2.059 0.315

0.75 β −0.4 −0.382 0.024
α1 2.0 1.937 0.142
α2 1.0 0.989 0.113
log(φ) 5.7 5.367 0.673
μx 5.0 5.052 0.174

σ 2
x 2.0 2.357 0.421

0.5 β −0.4 −0.373 0.046
α1 2.0 1.879 0.254
α2 1.0 1.016 0.145
log(φ) 5.7 5.164 1.030
μx 5.0 5.060 0.206

σ 2
x 2.0 2.434 0.603

errors, and Models 2–5 take the measurement errors into account. It can be noticed
that the smallest DIC, EAIC and EBIC are achieved for Model 2, the constant
precision model with measurement error.

Table 18 gives the posterior estimates of the parameters associated with
Model 2, which provides the best fit for the data. It can be noticed that the 95%
HPD credible interval for α3 suggests that this parameter could be removed from
the model and the estimated reliability ratio k1 = 0.822 indicates that the measure-
ment error in the horizontal abdominal skinfold is non-negligible. All the conver-
gence diagnostic tools (results not shown) suggest that the estimates reported in
Table 18 are reliable.

We now evaluate the estimated impact of the horizontal abdominal skinfold in
the mean fat mass percentage. Here, exp(cβ) has an interpretation as the odds ratio
when SkHab is increased in c units. Therefore, because exp(10(β̂)) ∼= 1.70, β̂ be-
ing the posterior mean of β , the estimated increase in the mean fat mass percentage
relative to the mean non-fat mass percentage when the horizontal abdominal skin-
fold is increased in 10 mm is 70%; (63%,79%) is the corresponding 95% HPD
credible interval.
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Table 13 Summary results based on 100 simulated datasets for the fitted models with φ = 50 and
prior specifications given in Model 1c; σ 2

e unknown

k Posterior inference

β α1 α2 log(φ) μx σ 2
x σ 2

e

0.95 True −0.4 2.0 1.0 3.912 5.0 2.0 0.1
mean −0.430 2.147 1.018 4.397 4.996 1.917 0.223
RelBias 0.076 0.073 0.018 0.124 −0.001 −0.042 −0.888√

MSE 0.040 0.218 0.121 0.528 0.147 0.322 1.778

0.75 True −0.4 2.0 1.0 3.912 5.0 2.0 0.66
mean −0.405 2.026 0.995 4.184 4.972 2.106 0.610
RelBias 0.013 0.013 −0.005 0.070 −0.006 0.053 −0.076√

MSE 0.041 0.223 0.153 0.374 0.149 0.380 0.192

0.5 True −0.4 2.0 1.0 3.912 5.0 2.0 2.0
mean −0.381 1.903 0.986 4.024 4.957 2.406 1.648
RelBias −0.047 −0.049 −0.014 0.029 −0.009 0.203 1.498√

MSE 0.066 0.333 0.189 0.339 0.179 0.737 1.091

Table 14 Summary results based on 100 simulated datasets for the fitted models with φ = 300 and
prior specifications given in Model 1c; σ 2

e unknown

k Posterior inference

β α1 α2 log(φ) μx σ 2
x σ 2

e

0.95 True −0.4 2.0 1.0 5.7 5.0 2.0 0.1
mean −0.391 1.957 0.996 5.421 4.979 2.108 0.053
RelBias −0.022 −0.022 −0.004 −0.050 −0.004 0.054 −0.468√

MSE 0.017 0.089 0.063 0.339 0.139 0.297 0.05

0.75 True −0.4 2.0 1.0 5.7 5.0 2.0 0.66
mean −0.351 1.753 0.988 4.601 4.974 2.362 0.350
RelBias −0.123 −0.124 −0.012 −0.193 −0.005 0.181 −0.470√

MSE 0.056 0.285 0.114 1.122 0.149 0.509 0.327

0.5 True −0.4 2.0 1.0 5.7 5.0 2.0 2.0
mean −0.316 1.575 0.982 4.231 4.956 2.758 1.295
RelBias −0.210 −0.213 −0.018 −0.258 −0.009 0.379 0.962√

MSE 0.096 0.489 0.154 1.494 0.178 0.975 0.721

6 Concluding remarks

Beta regression models have become a popular tool for modeling limited range
continuous data. The constant precision beta regression model proposed by
Ferrari and Cribari-Neto (2004) and its non-constant precision version studied by
Smithson and Verkuilen (2006) have been extended in various directions. Recently,
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Table 15 DIC, EAIC, EBIC for the fitted models with different specifications of the precision pa-
rameter; Arctic lake data

Model Precision submodel DIC EAIC EBIC

Model 1 (naïve) log(φ) = γ 105.7 116.5 126.5
Model 2 log(φ) = γ 97.5 104.3 114.3
Model 3 log(φi) = γ + λxi 148.8 144.1 155.7

Table 16 Estimated posterior medians and means for Model 2; Arctic lake data

Parameter Posterior inference

Mean s.d. Median 95% HPD credible interval

α −2.659 0.404 −2.600 (−3.568,−1.955)

β 0.035 0.008 0.033 (0.022,0.053)

log(φ) 2.776 0.435 2.705 (2.048,3.624)

μx 45.135 4.934 45.290 (35.050,54.490)

σ 2
x 723.467 224.489 703.600 (309.600,1174.000)

σ 2
e 142.280 115.197 124.950 (0.113,355.600)

Table 17 DIC, EAIC, EBIC for the fitted models with different specifications of the precision pa-
rameter; fat mass data

Model Precision submodel DIC EAIC EBIC

Model 1 (naïve) log(φ) = γ1 191.7 230.2 282.35
Model 2 log(φ) = γ1 106.7 148.1 200.25
Model 3 log(φi) = γ1 + γ2phvi + γ3heighti + γ4weighti + λxi 301.8 350.2 418.39
Model 4 log(φi) = γ1 + λxi 299.6 348.7 404.86
Model 5 log(φi) = γ1 + γ2phvi + γ3heighti + γ4weighti 334.1 380.5 444.68

Table 18 Estimated posterior medians and means for Model 2; fat mass data

Parameter Posterior inference

Mean s.d. Median 95% HPD credible interval

α1 −4.7393 0.208 −4.770 (−5.083,−4.304)

α2 −0.060 0.013 −0.061 (−0.085,−0.036)

α3 0.001 0.001 −0.001 (−0.002,0.003)

α4 0.022 0.002 0.022 (0.019,0.026)

β 0.053 0.002 0.053 (0.049,0.058)

log(φ) 6.702 0.384 6.690 (5.974,7.436)

μx 17.513 0.566 17.520 (16.420,18.630)

σ 2
x 104.807 9.059 104.400 (88.160,122.900)

σ 2
e 22.630 3.089 22.710 (16.670,28.840)
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Carrasco, Ferrari and Arellano-Valle (2014) extended both models for the case
in which some of the covariates are recorded with measurement error, and pro-
posed different likelihood-based methods to estimate the model parameters. The
proposed methods require the optimization of the likelihood or pseudo-likelihood
functions that involve analytically intractable integrals. In the present paper, we
present a Bayesian approach for errors-in-variables beta regression models that
does not require an intensive computational evaluation of these integrals. A care-
ful study was conducted to find prior distributions that have little influence in the
posterior inferences. Our approach can easily be implemented when the measure-
ment error variance is either known or unknown by using simple and accessible
software, such as WinBUGS.

Appendix: BUGS codes for the errors-in-variables beta regression

This appendix presents various pieces of BUGS code used for fitting the errors-in-
variables beta regression in the simulated data example.

Log-normal prior for φ, known measurement error variance
model
{
for( i in 1 : n ) {
Y[i] ~ dbeta(a1[i] ,a2[i])
a1[i] <- mu[i]*phi
a2[i] <- (1-mu[i])*phi
logit(mu[i]) <- z[i,1]*alpha1+z[i,2]*alpha2+x[i]*beta
w[i] ~ dnorm(x[i] , sigmaeinv0)
x[i] ~ dnorm(mux , sigmaxinv)
}
mux ~ dt(mu0,sigma0inv,nu0)
sigmaxx ~ dbeta(a0,a0)
sigma2e0<-1/sigmaeinv0
sigma2x <- (sigmaxx*b0)*(sigmaxx*b0)
sigmaxinv<-1/sigma2x
sigma0inv<-1/sigma20
alpha1 ~ dt(mualpha1,sigmaalpha1inv,nualpha1)
alpha2 ~ dt(mualpha2,sigmaalpha2inv,nualpha2)
sigmaalpha1inv<-1/sigmaalpha1
sigmaalpha2inv<-1/sigmaalpha2
beta ~ dt(mubeta,sigmabetainv,nubeta)
sigmabetainv<-1/sigma2beta
logphi ~ dnorm(muphi,sigmaphiinv)
sigmaphiinv<-1/sigmaphi
phi<-exp(logphi)
}
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Submodel for φ, known measurement error variance
model
{
for( i in 1 : n ) {
Y[i] ~ dbeta(a1[i] ,a2[i])
a1[i] <- mu[i]*phi[i]
a2[i] <- (1-mu[i])*phi[i]
logit(mu[i]) <- z[i,1]*alpha1+z[i,2]*alpha2+x[i]*beta
log(phi[i])<- z[i,1]*gamma1+z[i,2]*gamma2+x[i]*lambda
w[i] ~ dnorm(x[i] , sigmaeinv0)
x[i] ~ dnorm(mux , sigmaxinv)
}
mux ~ dt(mu0,sigma0inv,nu0)
sigmaxx ~ dbeta(a0,a0)
sigma2e0<-1/sigmaeinv0
sigma2x <- (sigmaxx*b0)*(sigmaxx*b0)
sigmaxinv<-1/sigma2x
sigma0inv<-1/sigma20
alpha1 ~ dt(mualpha1,sigmaalpha1inv,nualpha1)
alpha2 ~ dt(mualpha2,sigmaalpha2inv,nualpha2)
gamma1 ~ dt(mugamma1,sigmagamma1inv,nugamma1)
gamma2 ~ dt(mugamma2,sigmagamma2inv,nugamma2)
sigmaalpha1inv<-1/sigmaalpha1
sigmaalpha2inv<-1/sigmaalpha2
sigmagamma1inv<-1/sigmagamma1
sigmagamma2inv<-1/sigmagamma2
beta ~ dt(mubeta,sigmabetainv,nubeta)
lambda ~ dt(mulambda,sigmalambdainv,nulambda)
sigmabetainv<-1/sigma2beta
sigmalambdainv<-1/sigma2lambda
meanphi<-mean(phi[])
}

Log-normal prior for φ, unknown measurement error variance
model
{
for( i in 1 : n ) {
Y[i] ~ dbeta(a1[i] ,a2[i])
a1[i] <- mu[i]*phi
a2[i] <- (1-mu[i])*phi
logit(mu[i]) <- z[i,1]*alpha1+z[i,2]*alpha2+x[i]*beta
w[i] ~ dnorm(x[i] , sigmaeinv)
x[i] ~ dnorm(mux , sigmaxinv)
}
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mux ~ dt(mu0,sigma0inv,nu0)
sigmaee ~ dbeta(a0,a0)
sigma2e <- (sigmaee*b0)*(sigmaee*b0)
sigmaeinv<-1/sigma2e
sigmaxx ~ dbeta(a0,a0)
sigma2x <- (sigmaxx*b0)*(sigmaxx*b0)
sigmaxinv<-1/sigma2x
sigma0inv<-1/sigma20
alpha1 ~ dt(mualpha1,sigmaalpha1inv,nualpha1)
alpha2 ~ dt(mualpha2,sigmaalpha2inv,nualpha2)
sigmaalpha1inv<-1/sigmaalpha1
sigmaalpha2inv<-1/sigmaalpha2
beta ~ dt(mubeta,sigmabetainv,nubeta)
sigmabetainv<-1/sigma2beta
logphi ~ dnorm(muphi,sigmaphiinv)
sigmaphiinv<-1/sigmaphi
phi<-exp(logphi)
}
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