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Abstract. Monte Carlo hypothesis testing is extensively used for statistical
inference. Surprisingly, despite the many theoretical advances in the field,
statistical power performance of Monte Carlo tests remains an open question.
Because the last assertion may sound questionable for some, the first goal in
this paper is to show that the power performance of truncated Monte Carlo
tests is still an unsolved question. The second goal here is to present a solu-
tion for this issue, that is, we introduce a truncated sequential Monte Carlo
procedure with statistical power arbitrarily close to the power of the theoreti-
cal exact test. The most significant contribution of this work is the validity of
our method for the general case of any test statistic.

1 Introduction

When the true distribution of a test statistic is unknown, the exact hypothesis test is
intractable. The Monte Carlo hypothesis test provides an effective solution when
it is feasible to generate values from the test statistic under the null hypothesis
(H0). By means of this simulation, a reference empirical distribution for U can be
obtained and used to make a decision about whether to accept/reject H0.

To illustrate the applicability of Monte Carlo tests, consider the classic problem
of testing the independence between rows and columns in contingency tables with
fixed marginals a priori. If the table has many columns and rows, or the totals of the
marginals are large, the Fisher’s exact test is impracticable. If the expected counts
are small, the Pearson’s Chi-square test can give spurious results. However, given
that all marginals totals are fixed, tables can be generated under the null hypothesis
from a hypergeometric distribution, and then the Monte Carlo test is applicable.

Monte Carlo simulations are used to find efficient solutions in a wide diver-
sity of fields (Li and Kulldorff (2009), Smith, Forster and McDonald (1996),
Gates (1991), Smith (1996)). A modern and well-known problem solved by a
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Monte Carlo test approach is the spatial scan test for detection of spatial clus-
ters (Kulldorff (2001)). Although the analytical distribution of the scan statistic
remains unknown, it is simple to generate values from it under the hypothesis of
non-existence of spatial clusters in the map.

Monte Carlo tests can be broadly separated into conventional and sequential
procedures. The former is based on a fixed and pre-determined number (m − 1)

of simulations (Hope (1968), Barnard (1963), Birnbaum (1974), Dwass (1957)).
Alternatively, in the later the total number of simulations is random, and the user
proceeds with the simulation until there is enough evidence to make a decision
(Besag and Clifford (1991)).

For a given data set, let u0 be an observed value of the test statistic, and let U

to denote the test statistic as a random variable. Denote the probability distribution
of U by F(u), and let u1, . . . , um−1 be a sequence of Monte Carlo copies of U

generated under the null hypothesis. Under the conventional Monte Carlo test, H0
is rejected if x < (αmcm), where x is the number of ui’s that are greater than or
equal to u0, and αmc ∈ (0,1) is a desired significance level for the Monte Carlo
test. A well-known property is that, for any F(u), the Monte Carlo test is a level
αmc test. When F(u) is a continuous distribution, and m is proportional to 1/αmc,
with rational αmc, the Monte Carlo test is of size αmc. One way of proving these
properties was presented by Silva, Assunçăo and Costa (2009).

Under the sequential Monte Carlo test approach, the simulations are interrupted
when xl intersects a lower or upper stopping boundary, where xl is the number of
simulated values greater than or equal to u0 at the lth simulation. In practice, and
depending on the nature of the problem, the boundaries may not be intersected in a
viable time. Even worse, the simulation can last indefinitely (Gandy (2009)). Thus,
it becomes necessary to pre-define a maximum number of simulations, a truncation
rule, to stop such simulations. These sequential procedures are called “truncated
sequential Monte Carlo tests”. Although it is somewhat uncertain when the term
“truncated” was used by the first time in sequential analysis, because the term is
found in the work of Armitage (1958), it is safe to assert that the first use certainly
dates back to fifty decades. Truncated sequential procedures are more realistic than
open-ended approaches; this is so because, in practice, the simulations must be
interrupted at some point in order to favor a decision about H0.

Surprisingly, although Monte Carlo simulation is used in many fields of sci-
ence, such as numerical analysis, applied mathematics and statistical inference,
the power performance of the Monte Carlo test, in comparison to the exact test,
remains an open question in practical terms. After showing, using a real example,
that the conventional Monte Carlo test can lead to elevated power losses such as,
for example, 20% of the exact test power, the second goal of this manuscript is to
present a general solution for this problem.

Generally, a sequential approach is adopted in order to handle at least one of the
two following challenges: (i) saving execution time for computational intensive
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test statistics; and (ii) bounding the power loss in small values, like in at most 1%
of the exact test, for example.

As stressed earlier, the first objective of this paper is to show that item (ii) is
still an open question. The second goal is to provide a general solution for the
problem. We are not strongly concerned with saving computational execution time.
Instead, our proposal is meant to ensure a true control of the power loss in small
values, such as 1%, given pre-fixed and finite maximum number of simulations.
Unlike other truncated methods, our results are valid for the general case of any
test statistic, that is, the method is free from assumptions. Thus, in this sense, we
say that our proposal is a test with exact power. Additionally, a valid p-value, Pmc,
is deduced in order to support the decision about accept/reject H0, that is, for the
proposed Monte Carlo p-value holds that Pr(Pmc ≤ α|H0) ≤ α, for all 0 ≤ α ≤ 1.

Showing that item (ii) has been an open challenge is our first goal. However,
the solution of the problem is certainly of major interest for some readers, espe-
cially for the experts in the field of Monte Carlo testing for whom the reported
problem is well known. Hence, this material is organized in a way that the reader
interested in seeing beforehand the solution can just jump from here to read the
three first paragraphs of Section 3, then read Section 3.1, and then jump to read
the solution presented in Section 4, which can be understood without having to
read other parts of the manuscript. But, those readers unfamiliar with the subject
and interested to see some properties and limitations of conventional procedures,
can just read each section following the natural order at which they appear, which
is organized in the following way: next section presents an overview of the main
proposals for sequential Monte Carlo test designs. Section 3 shows that the the-
oretical power performance of Monte Carlo tests is an open question, and this is
reinforced by presenting a numerical counter-example for testing the mean of a
Poisson distribution. Section 4 introduces our truncated sequential Monte Carlo
test with exact power. Section 5 presents a brief discussion on some implications
of the main results.

2 Sequential Monte Carlo test designs: Current proposals and their
limitations

This section presents a brief description of the main advantages and disadvantages
of some prominent sequential Monte Carlo procedures found in the literature.

Under an exact hypothesis test criteria, H0 is rejected if p ≤ α, where p is the p-
value and α is a desired significance level. For the continuous case, the probability
distribution function of the p-value, FP (p) = Pr(P ≤ p), can be written in the
following way:

FP (p) =

⎧⎪⎪⎨
⎪⎪⎩

1 − FA

(
F−1

0 (1 − p)
)
, for right-hand tests,

FA

(
F−1

0 (p)
)
, for left-hand tests,

1 − FA

(
F−1

0 (1 − p)
) + FA

(
F−1

0 (p)
)
, two-sided,

(2.1)
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where P is the p-value as a random variable, and FA and F0 denote the probability
distribution functions of U under HA and H0, respectively. F−1

0 (p) is such that
Pr(U ≤ F−1

0 (p)|H0) = p.
The study of the Monte Carlo test power, πm, can be done by evaluating the

probability of rejecting the null hypothesis as a function of p. Because the p-value
is a random variable, P , πm can be seen as the expectation

∫ 1
0 πm(αmc,p)FP (dp),

where πm(αmc,p) is the probability of rejecting H0 with the Monte Carlo test for
a fixed p, and FP is a probability measure defined according to (2.1). Here we
emphasize that, for a more general discussion, the significance level of the Monte
Carlo test, αmc, is not required to be equal to the significance level, α, of the exact
test. This is arbitrary for the user in practice.

For cases where FP is continuous, Hope (1968) studied the behavior of the
conventional Monte Carlo test power with respect to m and proved that it converges
to the power of the uniformly more powerful test. He restricted the evaluations to a
class of probability density functions for P , given by all monotonic densities with
respect to p. After taking the derivative of (2.1) with respect to p, we can see that
this assumption is the same as assuming a monotonic behavior for the likelihood
ratio with respect to the argument F−1

0 (p).
Also limited to the continuous case, Jockel (1986) explored the composed tests

with hypothesis H0 : θ = θ0 vs. HA : θ �= θ0, where θ ∈ R. By assuming that
FP (p) is concave with respect to p, Jockel (1986) derived an expression to bound
the power loss of the conventional Monte Carlo test into arbitrarily small values.
Jockel (1986) argues that likelihood ratio tests usually satisfy the concavity as-
sumption over FP (p). We can figure out the reasoning behind this argument by
noting that, for one-sided tests, a concavity of FP (p) implies in a monotonicity of
the likelihood ratio just as assumed by Hope (1968).

Let τ be the class of concave p-value distributions. In practice, we have to ver-
ify the validity of these assumptions by analyzing the third line in (2.1). But this
presupposes some familiarity with the behavior of F0 and FA with respect to θ .
Therefore, it is not practical to check whether concavity is a reasonable assump-
tion. This is so because F0 and FA are unknown when Monte Carlo tests are in
use. Thus, this sort of assumption does not represent a realistic solution.

Fay and Follmann (2002) proposed the Iterative Push Out procedure (IPO),
which is designed to save execution time in the simulations. To bound the resam-
pling risk (RR), the probability of disagreement about the accept/reject decision
between the Monte Carlo test procedure and the exact test, Fay and Follmann
(2002) considered a rather restrictive class, �, for the p-value distribution, with
cumulative distribution function given by:

Hα,1−β(p) = 1 − �
{
�−1(1 − p) − �−1(1 − α) + �−1(β)

}
, (2.2)

where �(·) is the cumulative distribution function of a standard Normal distribu-
tion, α is the desired significance level and β is the Type II error probability. Their
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approach consisted on finding the worst distribution in � in the sense of having
the largest RR. The class � is implied by a test statistic U that either follows the
standard normal distribution under the null hypothesis and a N(μ,1) under the
alternative, or it follows a central and a non-central χ

(2)
1 under the null and alter-

native hypotheses, respectively. It is important to note that RR is an upper bound
for the power loss, therefore an upper bound for the former is also a bound for the
last.

Klein et al. (2010) noted that the IPO procedure is not applicable when one
wants to bound RR in arbitrary small values (e.g., 1%), and proposed a truncated
sequential procedure to save execution time and to guarantee upper bounds for RR.
This was possible by restricting their analysis to the distribution class �.

Fay, Kim and Hachey (2007) also proposed an algorithm to implement a trun-
cated Sequential Probability Ratio Test (tSPRT) to save execution time in the
Monte Carlo test. They studied the behavior of RR as a function of p, empha-
sizing the fact that RR is close to 0.5 for p = αmc.

In order to save computational effort in sequential Monte Carlo tests without
power losses with respect to the conventional Monte Carlo test, Silva and Assunçăo
(2013) introduced an optimal generalized truncated sequential Monte Carlo test.
Their proposal provided a theoretical expected number of simulations considerably
smaller than the predecessors proposals, but the investigations were not devoted to
treat the Monte Carlo power losses with respect to the exact test.

Gandy (2009) proposed an open-ended sequential procedure that uniformly
bounds the resampling risk in arbitrarily small values for any test statistic. We call
this method by “risk spending approach”. This RR control is possible because the
procedure considered by Gandy (2009) is not truncated. We stress that, in practice,
it is necessary to establish a maximum number of simulations. The reason is that, if
p = αmc, Gandy (2009) shows that the expected number of simulations is infinite.
Since all his results are based on asymptotic arguments and valid only when the
open-ended strategy is adopted, the effective control of RR is an open problem in
practical terms.

In summary, the existing tentative of avoiding power losses in Monte Carlo
tests are valid only under limited circumstances, like assuming a specific shape for
the p-value distribution, or taking the risk of having simulations running forever.
Actually, both limitations are inconvenient for the practice.

The next section presents the response for the first goal of this paper, that is,
we show how and why bounding the power losses of Monte Carlo tests remains
an open problem. The explanation involves: (i) that cases where p = α are patho-
logical for the Monte Carlo theory in such a way that can lead to power losses
of 50% even for very large values of m, (ii) to illustrate that such elevated power
losses can really happen in practice like for the problem of testing the mean of a
Poisson sample, and (iii) to explain why one of the most prominent methods, the
risk spending approach of Gandy (2009) also fails to solve the problem.
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3 The challenge of bounding power losses from Monte Carlo tests

Let u1, u2, . . . , um−1 be a sample generated from the distribution of U under H0,
and let u0 be the observed value of the test statistic for a fixed data set. Un-
der right-hand tests, that is, if H0 is rejected for large values of U , the Monte
Carlo test statistic is Xm−1, which counts the number of ui’s greater than or
equal to u0. If H0 is rejected for small values of U , left-hand tests, Xm−1 is de-
fined as the number of ui’s smaller than or equal to u0. A conventional Monte
Carlo test rejects H0 if Xm−1 < C. For αmc ∈ (0,1), this test criterion has sig-
nificance level equal to αmc if C = �αmcm� (Silva, Assunçăo and Costa (2009)).
The value �y� is the greatest integer smaller than y. With two-sided tests, H0 is
rejected with level αmc if Xm−1 < C1 or if Xm−1 > C2, with C1 = �αmcm�/2,
and C2 = m− (�αmcm�/2). A valid p-value for the conventional procedure can be
calculated by Pm = (Xm−1 + 1)/(m + 1). Denote this conventional Monte Carlo
test by MCm. We shall work only with one-sided tests from now on, but all results
in this paper can be extended for two-sided tests by using similar reasonings. The
Monte Carlo test statistic, Xm−1, follows a binomial distribution with (m − 1) es-
says and success probability equal to the observed p. Thus, MCm rejects H0 with
probability:

πm(αmc,p) = Pr(Xm−1 ≤ C − 1|P = p)
(3.1)

=
C−1∑
x=0

cm−1
x px(1 − p)m−1−x,

where ca
b = a!/[b!(a − b)!], with a and b positive integers.

An interesting MCm property, which has not been pointed out in the literature
yet, is the fact of being necessary to set m as a multiple of �1/αmc�. This is needed
in order to avoid power losses in comparison to another design, say MCm1 , which
by its turn is based on a smaller number of simulations, m1, where m1 is the great-
est multiple of �1/αmc� smaller than m. After restricting the choice of m to the set
of the multiples of �1/αmc�, Hope (1968) and Jockel (1986) assumed some con-
ditions over the shape of F(u) to prove that the Monte Carlo test power increases
monotonously with m. But here we emphasize that, if the power is monotonously
increasing in a sequence m1 < m2 < · · · , then the terms of this sequence are mul-
tiples of �1/αmc�. The last assertion holds for any shape of F(u). Thus, for the
conventional Monte Carlo test, a rule of thumb is: m must be always selected as a
multiple of 1/αmc.

Theorem 3.1. The power of the conventional Monte Carlo test is non-increasing
with m for �j/αmc� ≤ m < �(j + 1)/αmc�, where j is a positive integer. Then, if
power is the only concern, m must be chosen as a multiple of �1/αmc�.
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The proof is left to the Appendix. As an example, take αmc = 0.01, then a
Monte Carlo test with m1 = 1050 is less powerful than a second design with
m2 = 1000. A potential increasing in power, with respect to m2, occurs for m1
starting from 1100.

3.1 A trap near α

The power πm(αmc) of the MCm test is obtained by integrating expression (3.1),
πm(αmc,p), with respect to the distribution of the p-value, FP , as follows:

πm(αmc) =
∫ 1

0
πm(αmc,p)FP (dp). (3.2)

Let α be the significance level of the exact test. For P = p, that is, given a
realized p-value after an observed data set, under the exact hypothesis test, H0 is
rejected if p ≤ α, and it is not rejected if p > α. Let π(α,p) be the probability of
rejecting H0 under the exact test, which, for a given p, can be expressed by:

π(α,p) =
{

1, if p ≤ α,

0, if p > α.

Thus, the power of the exact test is calculated as following:

π(α) =
∫ 1

0
π(α,p)FP (dp) =

∫ α

0
FP (dp). (3.3)

A well-known fact is the convergence of the MCm power to the exact power. To
state this we use the notation “

a.e.→” for “almost everywhere” convergence.

Theorem 3.2. Let πm(αmc) and π(α) denote the statistical power of the conven-
tional Monte Carlo test and of the exact test, respectively. Thus, πm(αmc)

a.e.→ π(α)

as m → ∞.

Proof. Take αmc = α. As Xm−1/m
a.e.→ p when m → ∞, then, for p < α,

Pr(Xm−1 ≤ mα − 1|P = p)
a.e.→ 1, and if p ≥ α, Pr(Xm−1 ≤ mα − 1|P = p)

a.e.→
0. Thus, according to the dominated convergence theorem, limm→∞ πm(α) =
π(α). �

Although the convergence stated in Theorem 3.2 is clearly a very important prop-
erty of the conventional Monte Carlo test, under a practical point of view, it is more
useful to understand the relationship between πm(αmc) and π(α) for finite m. Let

D(α,αmc,m,p) = π(α,p) − πm(αmc,p).

In words, D(α,αmc,m,p) is the difference between the exact test power and
the MCm power for a fixed P = p. Note that πm(αmc,p) is decreasing with p,
and this is so because it is the cumulative binomial distribution evaluated at C − 1.
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The function π(α,p), by its turn, is a step function assuming 1 for p ∈ (0, α] and
0 otherwise. Then, the difference D(α,αmc,m,p) is positive and increasing for
p ∈ (0, α], and it is negative for p ∈ (α,1). Consequently, the maximum power
difference occurs at p = α, that is:

D(α,αmc,m,α) = max
p∈(0,1)

{
D(α,αmc,m,p)

}
(3.4)

= 1 −
�mαmc�−1∑

x=0

cm−1
x αx(1 − α)m−x−1. (3.5)

Figure 1 illustrates this behavior for values of m = 1000, 10,000, α = 0.05
and αmc = 0.05,0.06. The step function in each graph of Figure 1 represents

Figure 1 Power difference between the exact test and MCm for fixed p-values.
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π(α = 0.05,p), the dashed curve represents πm(αmc,p), and the dotted line is
the difference between them. The maximum difference occurs at p = α because
the exact power function is zero after α. For the case m = 1000 and αmc = 0.05,
Figure 1(A), the maximum difference is D(0.05,0.05,1000,0.05) = 0.517. Fig-
ure 1(B) has the case m = 10,000, which is close to 1 for a larger interval of p than
in (A), but also tumbles to 0.51 for p = α. The maximum difference keeps close
to 0.5 even for astronomically large values of m, like 1010, for example. Then, the
power loss is elevated when FP is concentrated near α. This problem explains the
utility of assuming restricted classes of distributions to study the MCm power, like
� and τ , since these assumptions restrict the amount of mass that FP allocates
around α.

At first sight, the discussion about the behaviour of the Monte Carlo power func-
tion around α may sound like technicality without practical relevance. An analyst
could argue that the situations where the distribution of P is substantially high
around α are rare, then this problem can be overlooked. But this is not true. In fact,
FP does not belong to distribution families like � or τ even for classically com-
mon applications like, for example, the problem of testing the mean of a Poisson
distribution.

3.2 Power losses from the conventional Monte Carlo test for Poisson data

This section is meant to show that, for some applications, the actual power loss
from a conventional Monte Carlo test can be excessively large even when using
a very large number (m − 1) of simulations, that is, the guarantee of a satisfac-
tory statistical power for procedures based on the conventional Monte Carlo test
remains an open question under a general perspective.

For a counter-example against the performance of previous Monte Carlo test
procedures, our discussion uses an important test statistic for the sequential anal-
ysis field, the maximized sequential probability ratio test statistic (MaxSPRT).
MaxSPRT was developed for the prospective rapid cycle vaccine safety surveil-
lance, and implemented by the Centers for Disease Control and Prevention (CDC)
sponsored Vaccine Safety Datalink (VSD) (Kulldorff et al. (2011)). MaxSPRT is
an extension of the well-known Sequential Probability Ratio Test (SPRT) (Wald
(1945)). Unlike SPRT, MaxSPRT is defined for composite alternative hypothe-
sis rather than simple. Currently, MaxSPRT is widely used for monitoring in-
creased risks of adverse events in post-market safety surveillance (Yih et al. (2009),
Belongia et al. (2010), Klein et al. (2010)).

In the vaccine safety surveillance context, Ct is the random variable that counts
the number of adverse events in a known risk window, from 1 to W days, after
a vaccination that was administrated in a period [0, t]. Commonly, under the null
hypothesis, Ct is supposed to have a Poisson distribution with mean μt , where μt

is a known function of the population at risk, adjusted for age, gender and any
other covariates of interest. Under HA, Ct is Poisson with mean Rμt , where R
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is the unknown increased relative risk due to the vaccine. The MaxSPRT statistic,
denoted here by LLRt , is given by: LLRt = (μt − ct ) + ct log(ct/μt ), if ct ≥ μt ,
and LLRt = 0, otherwise.

The monitoring can be done by a continuous or group sequential fashion. In
the continuous case, a test is performed as soon as a chunk of events arrives, and
LLRt is confronted against a critical value, CV, to decide about the H0 accep-
tance/rejection. Basically, the surveillance is interrupted for the rejection of H0
at the first t for which LLRt ≥ CV, with t ∈ (0, T ]. T is a pre-specified maximum
length of surveillance, and defined in terms of the expected number of events under
H0. In the group approach, there are G pre-defined moments of testing, t1, , . . . , tG,
for which, if LLRti ≥ CV, for some i = 1, . . . ,G, the null hypothesis is rejected.
In both approaches, continuous or group sequential, the surveillance is interrupted
for the acceptance of H0 if t = T happens before LLRt ≥ CV. For the present
example, we shall consider the group sequential approach.

Based on the exact distribution of LLRt , we have calculated the true power under
the exact MaxSPRT test. It was done for R in the range [1,1.1, . . . ,2], a signifi-
cance level of 0.05, and four different designs for the number of group sequential
tests, G = 1,2,4,10. The case G = 1 is the classical non-sequential test for the
parameter of a Poisson-based distribution, and represents the design for an unique
test at time T . Here, and accordingly to a common practice in the sequential anal-
yses field, the moments of testing were distributed in equally spaced sizes. Thus,
we fixed the interval between two sequential tests by 10/G, except for the last mo-
ment, T , which was taken in a way to satisfy the desired alpha level of 0.05. For
G = 1,2,4,10, the solutions were T = 10.0359566, 6.65359, 8.17171, 32.18292,
respectively. We used this large number of decimal places because of the discrete
nature of Ct , which provided a precision of 10−8 for type I error probabilities
around α = 0.05. Maximum surveillance sizes around 10 and 30 are likely com-
mon when monitoring rare adverse events.

Assuming μt known, for each fixed G, we used a numerical procedure to run
a Markov chain of a Poisson process in order to calculate the exact distribution
of LLRt . Then, using expression (3.3), we have calculated the MaxSPRT power
for different values of R. In parallel, the MCm power, expression (3.2), was also
obtained for each scenario. Because we want to stress the fact that the power losses
from Monte Carlo tests can be expressively large even if we use a very large m

value, here the MCm power calculations were made by fixing m = 1010.
The y-axis of Figure 2 presents the effective ratio between the MCm power and

the exact MaxSPRT power. The x-axis brings the values of the exact MaxSPRT
powers. Each line represents a different scheme associated to a specific value of
G. At first, for fixed G and varying R, observe the inconvenient characteristic of
having higher losses for smaller exact powers. It is also an undesirable fact that, for
fixed R and varying G, the power losses are more expressive for the more powerful
designs, which are the less frequent tests (G = 1 and G = 2). The effective MCm

power losses reach expressive values as, for example: 20% (G = 1,R = 1.1); 10%
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Figure 2 Ratio between the MCm power and the exact test power for the MaxSPRT statistic with
relative risks (R) in the range [1,1.1, . . . ,2].

(G = 2,R = 1.4); or 5% (G = 4,R = 1.4). This occurs because the values of ct ,
leading to the rejection of H0 at the fringe of CV, have an expressive mass of
probability due to its discrete nature, and, as already discussed, the MCm power is
around 0.5 in this situation (p = α = 0.05).

To clarify the calculations used to access the MCm power losses, consider the
case G = 1, where the critical value, in the scale of the number of cases, is cT = 16,
that is, Pr(XT ≥ 16|T = 10.0359566,R = 1) = 0.05, where XT ∼ Poisson(T ).
Now, if R = 1.5, the exact MaxSPRT power is Pr(XT ≥ 16|T = 10.0359566,R =
1.5) = 0.4374351. We point out that the single probability at p = α (i.e.,
cT = 16) is responsible for a large amount of the overall power: Pr(XT =
16|T = 10.0359566,R = 1.5) = 0.102426. From (3.1), we have π1010(αmc =
0.05,p = 0.05) = 0.4999945. Thus, the power loss, given cT = 16, is equal to
(1 − 0.4999945) × 0.102426 = 0.05121356, about 11.7% of 0.4374351, the exact
MaxSPRT power. A similar reasoning was applied to calculate the power losses
from different values of G.
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Now, it is opportune to mention that the MCm power, for fixed p, is not substan-
tially affected for p close and suitably greater than α (see Figure 1). But, for the
example of G = 1 above, because the distribution of XT is discrete, the smallest p,
greater than 0.05, is 0.08535, which is associated to cT = 15. This event occurs
with probability approximately equal to zero for any m > 1000. Fortunately, the
critical values for the MaxSPRT statistic can be exactly calculated by a numerical
Markov chain algorithm (Kulldorff et al. (2011)), that is, the Monte Carlo approach
is not needed because the exact test can be naturally applied.

Elevated power losses, such as the experienced with the numerical example
above, cannot be figured out in real applications since Monte Carlo tests are re-
quired just because of the inability of performing similar analytical studies. When
Monte Carlo tests are needed, the exact test statistic distribution is unknown. But,
these power losses are potentially present in many hypotheses testing situations.
For example, when the maximum length of surveillance, T , is impressively large,
for example, T = 10,000, and it is allowed to look to the data as many times as
the user wants (continuous sequential approach), the exact critical value, for per-
forming the MaxSPRT test, is computationally intensive to be calculated. Then,
the Monte Carlo test is a convenient option. Since this last scenario is directed to
treat, in essence, the same type of data as earlier, it is evident that an application
of the Monte Carlo test can lead to elevated power losses such as the illustrated
above.

3.3 Power losses from the risk spending approach

The method of Gandy (2009), referred here by “risk spending approach”, is an
open-ended procedure directed to bound the resampling risk of Monte Carlo tests.
Note that a bound for the resampling risk is also a bound for the power loss. Let Sl

and Ll denote upper and lower thresholds such that H0 is rejected at the lth Monte
Carlo iteration if Xl ≤ Ll , and H0 is not rejected if Xl ≥ Sl . If neither Sl nor Ll

are hit at iteration l, the simulations are continued. Let εl denote a nondecreasing
sequence such that εl → ε as l → ∞, where ε (<0.5) is a desired upper bound for
the resampling risk, and then it is to be settled satisfactorily small like for example,
ε = 0.01. The thresholds are constructed in a way that:

Pr[hit Sl until l|p = α] ≤ εl,
(3.6)

Pr[hit Ll until l|p = α] ≤ εl.

The main fact to be emphasized is that, in practice, the user has to establish
a truncation on the number of simulations. Otherwise, as a matter of chance, the
number of simulations can continue for a long time for a p very close to α, and
worse, the expected number of simulations is infinite for p = α (Gandy (2009)).
But, as stated by Gandy (2009), a truncated version of the method no longer en-
sures a true control of possible power losses.
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To see why the truncated version of the risk spending approach can lead to
elevated power losses, let m denote the maximum number of simulations at which
the procedure is interrupted if neither Sl nor Ll are hit until l = m. In the indecision
situation, that is, the cases where neither Sl nor Ll are hit until l = m, the decision
is based on the Monte Carlo p-value, which, as suggested by Gandy (2009), is
given by the maximum likelihood estimator of p, p̂naive = Xm/m.

By the construction in (3.6), the probability of rejecting H0 until the mth simu-
lation is at most εm. Thus, in the indecision situation, the probability of rejecting
H0 is solely guided by the Monte Carlo p-value p̂naive. Therefore, in the indecision
situation H0 is rejected if p̂naive ≤ α, and H0 is not rejected if p̂naive > α. Hence,

Pr[rejecting H0|p = α] ≤ Pr[hit Ll until l|p = α] + Pr[p̂naive ≤ α|p = α]
≤ ε + Pr[Xm ≤ αm|p = α].

Remind from Section 3.1 that the probability Pr[Xm ≤ αm|p = α] is close to 0.5
even for m values in the magnitude of thousands of billions. Therefore, if p = α,
the power loss from the risk spending approach is of at least 100 × (1 − Pr[Xm ≤
αm|p = α] − ε)%. For example, for α = 0.05 and m = 1010, we have Pr[Xm ≤
αm|p = α] ≈ 0.5000119. Using ε = 0.01, the power loss is of at least 48%. The
power loss can be reduced by increasing ε, but this would simultaneously lead to
an overshoot in the overall test size to α + ε.

3.4 On a general alpha-liberal solution with exact power

Previous sections showed that power losses of former Monte Carlo tests can be
large in practical contexts even if we use a very large number of simulations. In
order to bound the power losses in arbitrarily small values, here we offer an alpha-
liberal Monte Carlo procedure that is valid for the general case of any test statistic.

By taking αmc > α, the power function of MCm given p, evaluated for p = α,
that is, πm(αmc,p = α), becomes more and more near to 1 as αmc moves away
from α. The combination of Figure 1(A) and (C) illustrates this behavior. Formally,
from expressions (3.2) and (3.3), and for any α,αmc ∈ (0,1), the power difference
between the exact test and the Monte Carlo test can be expressed with the following
expectation:

D(α,αmc,m) =
∫ 1

0

(
1(0,α](p) − πm(αmc,p)

)
FP (dp), (3.7)

where 1(0,α](p) is the step function of p ∈ (0, α]. Because 1(0,α](p) is greater than
or equal to πm(αmc,p) only for p ≤ α, from expression (3.3):

D(α,αmc,m) ≤
∫ α

0

(
1 − πm(αmc,p)

)
FP (dp)

= π(α) −
∫ α

0
πm(αmc,p)FP (dp) (3.8)

≤ π(α) − π(α)πm(αmc, α).
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The last inequality holds because πm(αmc,p) is decreasing with p. Therefore,
D(α,αmc,m) reaches its maximum value when the mass π(α) is concentrated at
the point p = α. For π(α) > 0, the upper bound, b(α,αmc,m), for the relative
power loss, is obtained by observing that:

D(α,αmc,m)/π(α) ≤ 1 − πm(αmc, α) = b(α,αmc,m). (3.9)

The right-hand side of inequality (3.9) is an upper bound for D(α,αmc,m),
that is, this inequality can be used to bound the potential power losses in arbitrary
small values. For example, for m = 3000, α = 0.05 and αmc = 0.06, from (3.9),
the power loss is at most 0.783%. For m = 10,000, and αmc = 0.055, the upper
bound is 1.234%. The choice of αmc can be conveniently calibrated in order to use
a minimum m needed to attempt an arbitrary bound. This naive approach results in
a stronger statement: the power loss of conventional Monte Carlo tests with finite
m are uniformly bounded by using αmc = α + δ, δ > 0.

Theorem 3.3. For any ε,α ∈ (0,1), and δ ∈ (0, α/2), it is always possible to find
m < ∞ such that D(α,α + δ,m) ≤ ε.

Proof. Let X ∼ Bin(m−1, α) and Y ∼ Bin(m,α). From expression (3.4), a crude
upper bound for the MC test power loss is the upper tail Pr(X ≥ �αmcm�). Observe
that, for all a ∈ [0,1, . . . ,m − 1], the following holds:

Pr(X ≥ a) ≤ Pr(Y ≥ a). (3.10)

Krafft (1969) established that:

Pr
(∣∣∣∣ Y

m − α

∣∣∣∣ ≥ δ

)
< (2/m)1/2 exp

{−2mδ2 − 4mδ4/3
}
/δ,

where δ is a constant, m > 2 and α, (1 − α) ≥ max{4/m,2δ}. We can dispense the
refinement of the last boundary in order to obtain a simplified inequality:

Pr(Y/m − α ≥ δ) < 21/2 exp
{−2mδ2}

/δ.

Replacing (δ + α) by αmc, we have:

Pr(Y ≥ αmcm) ≤ 21/2 exp
{−2mδ2}

/δ. (3.11)

Without loss of generality, since δ and m are arbitrary, the truncation �αmcm� in
the power loss expression, (3.4), can be ignored because δ can conveniently be
replaced by some smaller rational value. Thus, from (3.10) and (3.11),

D(α,αmc,m,α) ≤ 21/2 exp
{−2mδ2}

/δ = C(δ,m). (3.12)

To complete the reasoning, note that C(δ,m) is decreasing with m. Thus, for ε > 0
and 0 < δ ≤ α/2, C(δ,m) ≤ ε for m ≥ m0(ε, δ) = − log(εδ/

√
2)δ−2/2. �

Table 1 offers the minimum m values to ensure upper bounds, ε, for the poten-
tial relative power losses of MCm. This table contains three different scenarios. The
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Table 1 Minimum m values to bound the relative power loss of MCm in comparison to the exact
test of α = 0.05 level

ε(100)% H0.05,0.5(p) Fw(p) MCm (αmc = 0.06)

5% 60 1220 1434
4.5% 60 1500 1517
4% 60 1900 1617
3.5% 80 2480 1717
3% 80 3360 1850
2.5% 100 4840 2000
2% 120 7560 2200
1.5% 160 13,440 2450
1% 240 30,240 2800
0.5% 460 120,960 3417
0.1% 2300 3,019,500 4884

first scenario is based on the worst distribution case, H0.05,0.5(p), from the distri-
bution class �. The second scenario considers the concavity assumption over FP ,
and it is based on the worst case, Fw(p), from the class τ . The last line of the table
presents the minimum m values required when the alpha-liberal MCm approach is
adopted. In this case, the values are obtained by manipulating inequality (3.9).

We see that the approach using the class � gives the smallest m values. Accord-
ing to Fay and Follmann (2002), this approach is valid when U is likely to follow
a standard normal distribution under H0 and a N(μ,1) under HA, or a central and
a non-central χ

(2)
1 under the null and alternative hypothesis, respectively. The case

Fw(p) requires larger m values than the former because the concavity assumption
is actually more general. Silva and Assunçăo (2013) offered an analytical proof
showing that � ⊂ τ . But, the concavity assumption can be equally problematic to
check since FP , in practice, is unknown. Further, classes � and τ are limited to
continuous cases. The last line of Table 1 presents the intermediate minimum m

values. This line is based on the approach that does not require some knowledge
about FP , and holds for continuous, discrete, or mixed distributions. Additionally,
we point out that the liberality from equation (3.9) can be freely calibrated in sat-
isfactorily small values (Theorem 3.1). For example, the less liberal alpha level of
0.051 presents a bound magnitude smaller than 1% for any m greater than 260,000.

Assumptions over the shape of FP , or usage of liberal criterions, are solu-
tions that require small to moderate m magnitudes. But, when usage of large m

is feasible due to simplicity in the simulation process, like, for instance, the con-
ditional MaxSPRT statistics introduced by Li and Kulldorff (2009), a truncated
Monte Carlo design with bounded power losses can always be provided. In the
next section, we introduce our truncated sequential Monte Carlo design which, by
construction, ensures small power loss upper bounds.
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4 Truncated sequential Monte Carlo test with exact power: Our
proposal

Sequential designs for Monte Carlo testing are usually adopted to save execution
time in computational intensive applications. But, like proposed by Gandy (2009),
a sequential approach can also be used in order to avoid power losses. Focused on
this last goal, we introduce a truncated procedure with power satisfactorily close
to the exact test. The key for the solution was finding a stopping criterion for
the simulations that mimics the step function in (0, α] more efficiently than the
conventional Monte Carlo test.

The procedure is described as following. Recall that Xl is the number of simu-
lated values greater than or equal to the observed statistic u0 at lth simulation. For
given constants m, s, t1 and Ce, such that s ≤ t1 ≤ m, the simulation is interrupted
if Xl ≥ s for some l ≤ t1, or if l = m− 1. The null hypothesis is rejected if ψe = 1,
where:

ψe =
{

0, if Xt1 ≥ s or (Xt1 < s,Xm−1 ≥ Ce),

1, if Xt1 < s and Xm−1 < Ce.
(4.1)

We denote this scheme by MCe(α, s,Ce), and sometimes simply by MCe.
The method is quite simple. Basically, H0 is not rejected if Xl is greater than

s until time t1. Otherwise, not further looks at the process Xl are necessary until
time l = (m − 1), at which the decision rule is exactly equal to the conventional
Monte Carlo test, but having Ce as critical value.

Observe that the conventional Monte Carlo test is a particular case of MCe

derived by setting s = t1 = m − 1 and Ce = �αmcm�.
Let t∗ denote the number of simulations generated until the interruption mo-

ment. If the tuning parameters m, s, t1 and Ce are settled according to Theorem 4.1,
a valid p-value following the MCe procedure, denoted by Pe, can be calculate as
follows:

Pe =
{
Xt∗/t∗, if t∗ ≤ t1, or if t∗ = m − 1 and Xm−1 ≥ Ce,

P̂ , if t∗ = m − 1 and Xm−1 < Ce,
(4.2)

where,

P̂ =
s−1∑
x=0

y0∑
y=0

cm−t1−1
y ct1

x

[
m cm−1

x+y

]−1
, (4.3)

where y0 = min{m − t1,Xm−1 − 1 − x}.
Theorem 4.1. The Monte Carlo p-value Pe given in (4.2) is valid if m, s, t1 and
Ce are such that s/t1 > α, Ce/m > α, and∫ 1

0
Pr(ψe = 1|P = p)dp ≤ α. (4.4)
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Proof. We want to prove that Pr(Pe ≤ α|H0) ≤ α. First, observe that, in general,
Pr(ψe = 1|H0) ≤ ∫ 1

0 Pr(ψe = 1|P = p)dp. Thus, from (4.4), it holds that Pr(ψe =
1|H0) ≤ α. Because the choice of the tuning parameters is restricted to satisfy
s/t1 > α and Ce/m > α, the event {Pe ≤ α} can only happen when H0 is rejected.
But, because the probability of rejecting H0, under H0, is smaller than or equal to
α, we conclude: Pr(Pe ≤ α|H0) ≤ α. �

Because the probability Pr(ψe = 1|P = p) is downward monotone with p, the
power loss of MCe can be bounded at a small constant ε by finding a parameteriza-
tion that simultaneously satisfies Pr(ψe = 1|P = α) ≤ ε and Pr(ψe = 1|H0) ≤ α.

Theorem 4.2. Consider a Monte Carlo test procedure with decision rule in the
form of (4.1). If m, Ce, s, and t1 are such that:{

Pr(ψe = 0|P = α) ≤ ε,

Pr(ψe = 1|H0) ≤ α,
(4.5)

then the test is of α-level and the power loss with respect to the exact test is of at
most (100 × ε)%.

Proof. The test is of α-level, and this is obvious due to condition Pr(ψe = 1|H0) ≤
α. From (4.1), and for fixed P = p, the probability of rejecting H0 with MCe is
given by:

Pr(ψe = 1|P = p) = Pr(Xt1 < s,Xm−1 < Ce|P = p). (4.6)

It merits remark that this probability is downward monotone with p. It is also
worth noting that the exact power is the probability Pr(P ≤ α).

For fixed P = p, the difference De(p) between the probabilities of rejecting H0
with the exact and with MCe, in this order, is equal to

De(p) = Pr(P ≤ α|P = p) − Pr(ψe = 1|P = p)
(4.7)

=
{

1 − Pr(ψe = 1|P = p), if p ≤ α

−Pr(ψe = 1|P = p), if p > α.

Hence, the actual difference De between the power of exact and MCe tests is given
by the following expectation:

De =
∫ 1

0
De(p)FP (dp) =

∫ 1

0

[
1(0,α] − Pr(ψe = 1|P = p)

]
FP (dp)

[
because 1(0,α] ≥ Pr(ψe = 1|P = p) only if p ≤ α

]
≤

∫ α

0

[
1 − Pr(ψe = 1|P = p)

]
FP (dp)



232 I. Silva and R. Assunção

= Pr(P ≤ α) −
∫ α

0
Pr(ψe = 1|P = p)FP (dp) (4.8)

[
because Pr(ψe = 1|P = p) is decreasing with p

]
≤ Pr(P ≤ α) − Pr(ψe = 1|P = α)

∫ α

0
FP (dp)

= Pr(P ≤ α)
[
1 − Pr(ψe = 1|P = α)

]
.

Then, the last term can be use to construct an upper bound for the percentual power
difference, i.e. 100 × De

Pr(P≤α)
%, as follows:

100 × De

Pr(P ≤ α)
% ≤ 100 × Pr(P ≤ α)[1 − Pr(ψe = 1|P = α)]

Pr(P ≤ α)
%

= 100 × [
1 − Pr(ψe = 1|P = α)

]
%

(4.9)
= [

100 × Pr(ψe = 0|P = α)
]
%[

from condition (4.5)
] ≤ (100 × ε)%.

In conclusion, (4.5) implies that ε is a crude upper bound for the relative power
loss De

Pr(P≤α)
of MCe with respect to the exact test. �

To find solutions for system (4.5) one needs to have computable expressions.
For this, note that the probability of rejecting the null, for fixed P = p, is given
by:

Pr(ψe = 1|P = p)

= Pr(Xt1 < s,Xm−1 < Ce|P = p)
(4.10)

=
s−1∑
x=0

Pr(Xm−1 < Ce|P = p,Xt1 = x)Pr(Xt1 = x|P = p)

=
s−1∑
x=0

Ce−1−x∑
y=0

cm−t1−1
y ct1

x py+x(1 − p)m−1−y−x.

Using the fact that Pr(ψe = 0|P = α) = 1 − Pr(ψe = 1|P = α), and using (4.10),
one can easily compute the left-hand side of the first line of system (4.5) for fixed
tuning parameters.

For manipulation of the second line in (4.5) note that:

Pr(ψe = 1|H0) ≤
∫ 1

0
Pr(ψe = 1|P = p)dp

(4.11)

=
s−1∑
x=0

Ce−1−x∑
y=0

cm−t1−1
y ct1

x

[
mcm−1

x+y

]−1
.
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Table 2 Tuning parameters to use MCe with guaranteed power loss upper bounds ε = 0.02, 0.015,
0.01, 0.005. It was done for significance levels α = 0.01, 0.025, 0.05, 0.1. We used a precision
tolerance of 10−5. The m values are divided by 106

(100 × ε)%

α 2% 1.5% 1% 0.5%

m 3.6 6 15 30
s 3 2 3 3

0.1 t1 6 2 4 4
Ce 361,537 601,903 1,502,900 3,004,991

m 7 20 25 30
s 3 3 2 2

0.05 t1 12 10 3 2
Ce 351,969 1,003,060 1,253,025 1,503,450

m 6.7 8.65 31 200
s 2 2 2 3

0.025 t1 7 7 6 10
Ce 168,481 217,516 777,648 5,006,000

m 9 40 100 200
s 1 4 4 4

0.01 t1 2 48 40 35
Ce 91,150 401,720 1,002,929 2,005,859

Numerical solutions for system (4.5) can be reached by fixing two of the four
tuning parameters (m,s, t1,Ce), and optimizing over the other two. Here we pro-
vide a set of solutions for meaningful values of α and ε, which are available in
Table 2. An efficient strategy to find solutions for system (4.5) is based on search-
ing for values of Ce near to �α(m + 1)�. The intuition is that the solution cannot
differ much from the critical value of the conventional Monte Carlo test. Solutions
will generally be found for small values of s and t1, and for intuitive reasons, thin-
ner bounds are related to larger m values. Parameterizations for α = 0.01, 0.025,
0.05, 0.1 and ε = 0.03, 0.02, 0.015, 0.01, 0.005, are offered in Table 2. Observe
the million scale of m. For example, for α = 0.05, it is guaranteed at least 99% of
the exact test power if s = 2, t1 = 3, m = 25 × 106, and Ce = 1,253,025. It merits
mention that all solutions shown in this table attend the conditions of Theorem 4.1,
hence, the p-value Pe is valid to be use with any of these tuning parameterizations.

4.1 A refinement for the stopping boundaries of MCe

A refinement for MCe, in the spirit of saving computation time, can be obtained
by generalizing system (4.5). To do so, consider to perform additional tests while
the simulation runs. For given constants sl , il , l ∈ {l2, . . . , lh}, where h represents
the total number of sequential tests to be performed, the simulation process is
interrupted as soon as Xl ≥ sl or Xl < il . Denote the p-value followed by this
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refined procedure with Pr , and let l∗ be the value of l in the interruption moment.
The null hypothesis is rejected if ψl = 1, where:

ψl =
{

0, if Pr ≥ α,

1, if Pr ≤ α,

and Pr is defined as:

Pr =
{
Xl∗/l∗, if Xl∗ ≥ sl,

P̂i , if Xl∗ < il∗,
(4.12)

where P̂i = ∑sl1−1
x=0

∑y0
y=0

c
l∗−l1
y c

l1
x

cl∗
x+y(l∗−x−y)

, and y0 = min{l∗ − l1,Xl∗ − 1 − x}. The

term l1 represents the minimum l for which Pr(Xl ≥ sl,Xm−1 < Ce|P = α) > 0.
We call this procedure MCr . Recall the notation for MCe. By setting l1 = t1 and

sl1 = s, a valid MCr parameterization to bound the overall power loss at ε2 can be
obtained by solving the following system:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m−1∑
l=1

Pr(Xl < il,Xm−1 ≥ Ce|H0) ≤ ε1,

m−1∑
l=2

Pr(Xl ≥ sl,Xm−1 < Ce|P = α) ≤ ε2,

(4.13)

where ε1 is Pr(Xl1 ≥ sl1,Xm−1 < Ce|H0).
In practice, there is no need to solve system (4.13) in order to find sl and il . For

an observed realization of Xl , say xl , the procedure has exactly the same effect
over the errors of Type I and II if we track the measures:{

Ps(xl) = Pr(Xl ≥ xl,Xm−1 < Ce|P = α), and

Pi (xl) = Pr(Xl ≤ xl,Xm−1 ≥ Ce|H0),
(4.14)

using two flat thresholds, δ and η, where δ = (ε2 − ε)/h, and η = ε1/h, with
l = l2, . . . , lh. Then, the simulations are interrupted, and H0 is not rejected, for the
first l such that Ps(xl) < δ, situation where the p-value is xl/ l, or, the simulations
are stopped for the rejection of the null if Pi (xl) < η occurs before Ps(xl) < δ,
where the p-value is P̂i . The parameters ε, l1 and sl1 can be fixed directly from the
MCe procedure by setting ε = Pr(Xl1 ≥ sl1,Xm−1 < Ce|P = α), l1 = t1, sl1 = s,
and ε1 = ε.

The gain with this refinement is more substantial when H0 is true. In cases
where p is close to α, (m−1) simulations will typically be required. For simplicity,
we suggest usage of small number of interim sequential Monte Carlo tests, such
as h equal to 5 or 10. To help with this decision, for all the designs of Table 2, use
h = 5, l1 = t1, l2 = 2000, l3 = 5000, l4 = 20,000, l5 = 1,000,000. Evidently, some
designs of Table 2 have m smaller than 1,000,000, i.e, for those cases the number
of sequential tests is 4.



Monte Carlo test with exact power 235

Table 3 Tuning parameters to use the refinement, MCr , with guaranteed power loss upper bounds
ε = 0.02, 0.015, 0.01, 0.005, and significance levels α = 0.01, 0.025, 0.05, 0.1

ε(100)%

α 2% 1.5% 1% 0.5%

0.1 δ 0.00018 0.00005 5.2 × 10−6 0.00003
η 0.00482 0.00369 0.00249 0.00122

0.05 δ 0.00009 0.00066 0.00002 0.00014
η 0.00497 0.00309 0.00250 0.00111

0.025 δ 0.00009 4.67 × 10−6 0.00002 4.67 × 10−5

η 0.00491 0.00374 0.00248 0.00123

0.01 δ 10−5 0.00262 0.00192 0.00114
η 0.00499 0.00113 0.00058 0.00011

Example 1. Accordingly to Table 2, set α = 0.05, m = 30 × 106, s = 2, t1 =
2, and Ce = 1,503,450. This specific MCe design leads to a power loss upper
bound equal to ε = Pr(X2 ≥ 2,Xm−1 < 1,503,450|P = 0.05) = 0.00443. Using
the refinement through MCr in order to save computation time, from Table 3, a
global power loss bound of 0.5% (ε2 = 0.005), from MCr , is obtained by setting
δ = (0.005 − 0.00443)/4 = 0.0001425, and η = 0.00443/4 = 0.0011075.

Here follows a friendly way of expressing the monitoring measures Ps(xl) and
Pi (xl): ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ps(xl) = 1 −
Ce−1∑
x=0

[
Pr(W ≤ xl − 1)Pr(Y = x)

]
,

Pi (xl) =
Ce−1∑
x=0

Pr(W ≤ xl)
/

m,

(4.15)

where W is hypergeometric-distributed with parameters x, m − x, and l(W ∼
Hyp(x,m − x, l)), i.e., Pr(W = w) = cx

wcm−x
l−w

cm
l

, and Y ∼ Bin(m,α).

For the cases where H0 is rejected, here follows a simplified expression for
calculating the p-value. If l∗ is the value of l at which the simulation process is
interrupted, then P̂i = ∑xl∗

x=0 Pr(W ∗ ≤ s − 1)/(l∗ + 1), with W ∗ ∼ Hyp(x, l∗ −
x, l1).

5 Last comments

There is no doubt that Monte Carlo simulation technics are extensively used for
statistical research and inferential analyses. Its status as a competitor for asymp-
totic tests was anticipated by Jockel (1984). This opinion is also supported by the
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results in the present work, which basically offers a Monte Carlo test procedure
with controlled power losses relatively to the exact test. This power loss control
is obtained for arbitrary and valid significance levels, what is not always possi-
ble with the asymptotic treatment. Therefore, when simulating the test statistic
under the null hypothesis is a feasible option, there is no reason to deliberately
use asymptotic approximations in place of a Monte Carlo approach to get a valid
p-value. This result is especially important in the cases where sample sizes are
small, that is, cases where asymptotic treatments are certainly biased.

Appendix: Rule of thumb for the number of simulations

Here we prove Theorem 3.1, that is, for the conventional Monte Carlo test, and if
statistical power is of meaningful concern, the pre-defined number of simulations,
m, must be a multiple of �1/αmc�. To demonstrate this, it is sufficient to show
that the Monte Carlo test power, πm(αmc), is non-increasing with m for �(j −
1)/αmc� < m < �j/αmc�, with j > 1 an integer.

Proof of Theorem 3.1. When applying the conventional Monte Carlo test, one
rejects H0 if, among (m − 1) simulated ui ’s, the number of values greater than
or equal to u0, Xm−1, is not greater than �αmcm� − 1. Obviously, that requires
m ≥ 1/αmc, because, otherwise, H0 is never rejected. Consider two Monte Carlo
tests which differ from the number of simulations, (m−1) and (m+ k −1), k > 0.
For the first design, based on m, we reject H0 only if Xm−1 is at most �αmcm�− 1,
whereas, for the second test, with (m + k − 1) simulations, H0 is rejected if such
number is at most �αmc(m + k)� − 1. According to (3.1), for any observed P = p,
the power of the second test is greater than that from the first test if

h1∑
y=0

cm+k−1
y py(1 − p)(m+k−1)−y >

h2∑
y=0

cm−1
y py(1 − p)(m−1)−y, (A.1)

where h1 = �αmc(m + k)� − 1, and h2 = �αmcm� − 1.
Observe that inequality (A.1) is equivalent to

Pr
(
X ≤ ⌊

αmc(m + k)
⌋ − 1

)
> Pr

(
Y ≤ �αmcm� − 1

)
,

where X ∼ Bin(m + k − 1,p) and Y ∼ Bin(m − 1,p). If 0 < k < 1/α, then

Pr
(
X ≤ ⌊

αmc(m + k)
⌋ − 1

) = Pr
(
X ≤ �αmcm� − 1

)
,

and the inequality (A.1) becomes

Pr
(
X ≤ �αmcm� − 1

)
> Pr

(
Y ≤ �αmcm� − 1

)
,

which is not valid since X is binomial with larger number of trials, (m + k − 1),
than Y , with (m − 1). Thus, because these arguments hold for any p ∈ (0,1), if
0 < k < 1/α, then πm+k(αmc) ≤ πm(αmc). �
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