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Semimartingale properties of the lower Snell envelope in
optimal stopping under model uncertainty
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University of Guanajuato

Abstract. Optimal stopping under model uncertainty is a recent topic under
research. The classical approach to characterize the solution of optimal stop-
ping is based on the Snell envelope which can be seen as the value process
as time runs. The analogous concept under model uncertainty is the so-called
lower Snell envelope and in this paper, we investigate its structural properties.
We give conditions under which it is a semimartingale with respect to one of
the underlying probability measures and show how to identify the finite vari-
ation process by a limiting procedure. An example illustrates that without our
conditions, the semimartingale property does not hold in general.

1 Introduction

Optimal stopping is a central topic in probability and statistics, its origin can be
traced back at least to Wald’s sequential approach to statistical testing; see Wald
(1945). In a few decades, the problem of optimal stopping found applications in a
rich variety of different areas going beyond statistics. The techniques underlying
the solution to optimal stopping problems are diverse and include probabilistic
potential theory for Markov reward processes and martingale methods for the Snell
envelope; see, for example, Peskir and Shiryayev (2006) and El Karoui (1981),
respectively.

In its most essential form, the problem of optimal stopping is formulated with
respect to a unique probability measure which seen from the point of view of math-
ematical modeling, corresponds to a description of relevant probabilistic distribu-
tions determined by the phenomenon of interest. In many instances however, and
including other problems well beyond optimal stopping, there are good reasons for
considering families of probability measures. For example, in composed testing in
which a decision must be taken in order to classify a distribution as the member
of a composed null-hypothesis, one considers a family of distributions represent-
ing the null-hypothesis against another family of distributions which represents
the alternative, see, for example, Witting (1985). In decision theory, Ellsberg’s
paradox Ellsberg (1961), highlights how the information (respectively, ambigu-
ity) about the distribution are crucial in understanding human decisions under risk
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and uncertainty. The solution to the paradox consists in extending von Neumann
and Morgenstern utilities von Neumann and Morgenstern (1944) to the so-called
maxmin preferences axiomatized by Gilboa and Schmeidler (1989). The axiomatic
framework of Gilboa and Schmeidler (1989) yields for each preference a family
of probability measures under which utilities are quantified and the worst possible
outcome is the utility assigned and under which decisions are taken. Another sit-
uation where optimal stopping problems are considered together with a family of
probability measures comes from mathematical finance in the analysis of Ameri-
can options in incomplete markets.

Following Föllmer and Schied (2004), Section 6.4, let us at this point formulate
a problem of optimal stopping in which a family of probability measures is con-
sidered. The numerical representation of a preference in the axiomatic framewok
of Gilboa and Schmeidler (1989) takes the form

ψ(·) := inf
Q∈QEQ

[
u(·)], (1)

with u a concave utility function and Q a convex class of probability measures.
From this point of view, a reward process Y has maximal “expected” utility

sup
τ

ψ(Yτ ), (2)

where the supremum is taken over the class of stopping times τ . There is one intu-
itive interpretation to this problem: The relevant distributions which in particular
describe the probabilistic properties of Y are unclear and a family of probability
measures Q is introduced playing the role of ‘probabilistic models’ potentially de-
scribing the distribution of Y and other relevant variables. Then, the decision of
when to stop is made on the basis of obtaining the best reward under the worst of
the possible choices of a model Q ∈ Q. The choice of Q is subjective and may
change according to Y or to the individual solving the stopping problem.

With this motivation, we can define a process Zt = u(Yt ) and consider the stop-
ping problem

sup
τ

inf
Q∈QEQ[Zτ ]. (3)

By analogy with classical theory of optimal stopping and its solution through the
Snell envelope, we may want to characterize the solution to the robust stopping
problem (3) through an analogous envelope. The approach is possible if the class
of probability measures Q satisfies a property called stability under pasting, also
known as rectangularity. Under this property, Gilboa and Schmeider utility func-
tionals are time-consistent; see Epstein and Schneider (2003). We give the precise
definitions below. Under this special property of time consistency, there exists an
extension of the Snell envelope which characterizes the solution to the robust stop-
ping problem (3). This novel envelope, the lower Snell envelope, is systematically
presented by Föllmer and Schied (2004) in discrete time in the context of martin-
gale measures in financial markets and investigated for other classes of probability
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measures by Riedel (2009). The construction of the lower Snell envelope, and the
solution of the stopping problem (3) in continuous time was studied by the author
Trevino-Aguilar (2011). We recall its definition and properties in continuous time
in Section 2.

In a recent paper, Cheng and Riedel (2013) investigate the robust stopping prob-
lem (3) under g-expectations with backward differential stochastic equations tech-
niques. In particular, this setting covers the κ-ambiguity model due to Chen and
Epstein (2002). In this last model, the class Q is the family of probability measures
under which a Brownian motion develops a trend having a density bounded by a
constant κ > 0. Note that this corresponds in our initial discussion to the situation
in which a signal is observed and it is unclear if the signal is purely noise. Thus,
there is ambiguity in relevant distributions. Their solution consists in stopping as
soon as the underlying process touches its lower Snell envelope. Moreover, they
obtain a structural result which describes the lower Snell envelope as the sum of
a process of bounded variation and a stochastic integral with respect to Brownian
motion. Their structural result yields in particular the fact that the lower Snell en-
velope is a semimartingale. We are going to say that a lower Snell envelope has a
uniform decomposition if it is the difference of a process which is a submartingale
with respect to each element Q ∈ Q and a non decreasing process. This is less
precise than the structural result of Cheng and Riedel (2013) but is suitable for our
purposes here.

The goal of this paper is to study these two questions: Is the lower Snell en-
velope always a semimartingale?, if so, does it admit a uniform decomposition?
A very simple example suggests that in general both questions have a negative an-
swer. Indeed, we present an extreme example of a class Q under which the lower
Snell envelope of a Brownian motion plus a deterministic function may fail to be a
semimartingale and the lower Snell envelope of Brownian motion is a semimartin-
gale but fails to have a uniform decomposition.

Thus, only if we introduce further properties we can expect positive answers
to our two questions. This is the case in the structural result of Cheng and Riedel
(2013) in which weak-compactness is crucial. What we do here is to introduce
conditions on the side of the underlying process instead of the class Q. We prove
that the lower Snell envelope is a semimartingale if the underlying process is itself
a semimartingale and the lower Snell envelope has a uniform decomposition if the
underlying process has also this form.

The lower Snell envelope of a process Z can be characterized as the minimal
supermartingale, in the generalized sense of Definition 2.2 below, dominating its
underlying stochastic process Z. This is a key result that has been proved in the
framework of g-expectations by Cheng and Riedel (2013). We extend their result
to our setting. We will show how this property allows to identify the non decreas-
ing process in uniform decompositions by a limiting procedure analogous to the
Doob–Meyer decomposition and in which time consistency is crucial.
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The paper is organized as follows. In Section 2, we fix notation, introduce the
concept of stability and time-consistency and recall properties of the lower Snell
envelope which are fundamental to our approach. In Section 3, we show that the
lower Snell envelope of a semimartingale is itself a semimartingale and give a
sufficient condition under which the lower Snell envelope has a uniform decom-
position. In Section 4, we specify a stable class of probability measures under
which the lower Snell envelope fails to be a semimartingale. In Section 5, we iden-
tify the semimartingale parts of the lower Snell envelope by a limiting procedure
analogous to the Doob–Meyer decomposition and that uses only the property of
time-consistency.

2 The lower Snell envelope

We start with some notation. Let T > 0 be a positive finite number. We fix a prob-
ability space (�,F,P) and a filtration F := {Ft }0≤t≤T. The probability measure P

serves as reference measure, and we assume it is 0 − 1 on F0. We assume that the
filtration F satisfies the usual assumptions of right continuity and completeness.
By T we denote the class of F-stopping times with values in the interval [0,T].

Definition 2.1. Let τ ∈ T be a stopping time and Q1 and Q2 be probability mea-
sures equivalent to P. The probability measure defined through

Q3(A) := EQ1

[
Q2[A | Fτ ]], A ∈FT

is called the pasting of Q1 and Q2 in τ .
A family of probability measures Q is stable under pasting or simply stable if

every Q ∈ Q is equivalent to P, and if for each Q1 and Q2 in Q and any stopping
time τ ∈ T , the pasting of Q1 and Q2 in τ is an element of Q.

Definition 2.1 is analogous to the concept studied by Föllmer and Schied (2004).
It is related to the concepts of fork-convexity and m-stability; see Delbaen (2006).
The family of equivalent martingale measures is stable under pasting, and this
property is crucial for the analysis of the upper and lower prices πsup(·) and πinf(·)
of American options; see Föllmer and Schied (2004). Another important applica-
tion of the stability concept appears in the problem of representing time consistent
risk measures; see, for example, Föllmer and Penner (2006) for details and refer-
ences.

From now on, we fix a stable class of probability measures Q. In the introduc-
tion, we mentioned the concept of being a supermartingale in a generalized sense.
In the next definition, we make it precise. Here and in the sequel, we denote by
L1(Q) the space of random variables which are integrable with respect to proba-
bility measure Q.
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Definition 2.2. For τ ∈ T , we denote by E↓[· | Fτ ] : ⋂
Q∈Q L1(Q) → Fτ the op-

erator

E↓[· | Fτ ] := ess inf
Q∈Q EQ[· | Fτ ]. (4)

An F-adapted process {Mt }0≤t≤T is a E↓-supermartingale (respectively, a E↓-
martingale) if for each pair of stopping times τ, θ ∈ T with P(τ ≥ θ) = 1 we have

1. EQ[|Mτ |] < ∞, for Q ∈ Q,
2. E↓[Mτ | Fθ ] ≤ Mθ (respectively =).

Definition 2.2 is specific to our setting here but it has been considered by other
authors; see, for example, Coquet et al. (2002) and Cheng and Riedel (2013).

Remark 2.1. The “upper version” of our operator E↓ is defined by

E↑[· | Fτ ] := ess sup
Q∈Q

EQ[· | Fτ ].

When Q is a class of martingale measures, then the corresponding concept of
E↑-supermartingale is crucial in the celebrated optional decomposition theorem;
see Föllmer and Kabanov (1998) and its references. This is a general result on
the structure of E↑-supermartingales and motivates to study analogous properties
for the lower non-linear expectation E↓. In particular, to study semimartingale
properties.

The stability property of the class Q translates into a “time-consistency prop-
erty”:

E↓[
E↓[· | Fs] | Ft

] = E↓[· | Ft ], s ≥ t, (5)

which is crucial to all of our results here.
In this section, we recall some basic properties of the lower Snell envelope and

the solution of the robust stopping problem (3). Recall Q denotes a stable class of
probability measures. We take a stochastic process H that satisfies the following
assumption.

Assumption 2.1. We assume that the process H is a càdlàg positive F-adapted
process which is of class(D) with respect to each Q ∈ Q, that is,

lim
x→∞ sup

τ∈T
EQ[Hτ ;Hτ ≥ x] = 0.

In particular

sup
τ∈T

EQ[Hτ ] < ∞. (6)

The stochastic process H is upper semicontinuous in expectation from the left with
respect to each probability measure Q ∈ Q. That is, for any stopping time θ of the
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filtration F and an increasing sequence of stopping times {θi}i∈N converging to θ ,
we have

lim sup
i→∞

EQ[Hθi
] ≤ EQ[Hθ ]. (7)

For a stopping time ρ ∈ T , we define T [ρ,T] := {τ ∈ T | P(τ ≥ ρ) = 1}.
The lower Snell envelope is the “value process” of the robust stopping problem

(3). Thus, it is a stochastic process such that for any t ∈ [0,T] is equal to

ess sup
τ∈T [t,T]

E↓[Hτ | Ft ], P-a.s. (8)

We continue with a central concept.

Definition 2.3. An F-adapted process {St }0≤t≤T is a Q-submartingale if for each
Q ∈ Q and t, s ∈ [0,T] with s ≥ t

1. EQ[|Ss |] < ∞, for each Q ∈ Q,
2. EQ[Ss | Ft ] ≥ St .

Now we can make more precise the notion of a uniform decomposition first
mentioned in the introduction. A lower Snell envelope U↓ has a uniform decom-
position if there exists a Q-submartingale S and a nondecreasing process A such
that U↓ = S − A.

The next theorem consists of two parts. In the first, an optimal stopping time
under model ambiguity is characterized and in the second, a result clarifying the
“local” structure of the lower Snell envelope. Both parts are going to be fundamen-
tal in the following sections. For Q ∈ Q, we denote by UQ the Snell envelope of
H with respect to Q. Recall that it is an F-adapted Q-supermartingale dominating
H with the property

U
Q
t = ess sup

τ∈T [t,T]
EQ[Hτ | Ft ], Q-a.s., for t ∈ [0,T].

Theorem 2.1. Take Q ∈ Q and let UQ be the Snell envelope of H with respect to
Q. For any stopping time ρ ∈ T let

τQ
ρ := inf

{
s ≥ ρ | Hs ≥ UQ

s

}
. (9)

Then, the random time

τ↓
ρ := ess inf

{
τQ
ρ | Q ∈ Q

}
, (10)

is a stopping time and under the conditions of Assumption 2.1 it is optimal in the
following sense

ess sup
τ∈T [ρ,T]

ess inf
Q∈Q EQ[Hτ | Fρ] = ess inf

Q∈Q EQ[H
τ

↓
ρ

| Fρ]. (11)

The lower Snell envelope is a Q-submartingale in stochastic intervals of the form
[ρ, τ

↓
ρ ].
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See Trevino-Aguilar (2008), Theorem 5.6 for the proof.
An important consequence of Theorem 2.1 is the minimax identity in the next

result. It is going to be used in Theorem 2.2 below.

Corollary 2.1. Assume the conditions of Theorem 2.1 hold true. Then, for ρ ∈ T
the following minimax identity holds true

ess sup
τ∈T [ρ,T]

ess inf
Q∈Q EQ[Hτ | Fρ] = ess inf

Q∈Q ess sup
τ∈T [ρ,T]

EQ[Hτ | Fρ]. (12)

Remark 2.2. The stability of the class Q is crucial in Corollary 2.1. It also allows
to construct an optional right-continuous stochastic process U↓ := {U↓

t }0≤t≤T

such that for any stopping time τ ∈ T

U↓
τ = ess inf

Q∈Q ess sup
ρ∈T [τ,T]

EQ[Hρ | Fτ ], P-a.s.,

see Trevino-Aguilar (2011), Theorem 2.4. Thus, the stochastic process U↓ is a
regular version of the lower Snell envelope.

Remark 2.3. Note that an E↓-martingale is a Q-submartingale for each Q in the
class Q which in combination with the structural result of Cheng and Riedel (2013)
motivates our definition of uniform decomposition.

The proof of Theorem 5.6 in Trevino-Aguilar (2008) establishes that the lower
Snell envelope is a E↓-martingale in stochastic intervals of the form [ρ, τ

↓
ρ ]. We

are not making use of this concept here and instead focus on the Q-submartingale
property of the lower Snell envelope as stated in Theorem 2.1.

The following result will underline the general structure of lower Snell en-
velopes. It has been established for g-expectations by Cheng and Riedel (2013),
Theorem 3.1. We extend their result to our setting.

Theorem 2.2. Let H satisfy the conditions of Theorem 2.1. Then, its lower Snell
envelope is an E↓-supermartingale.

Proof. For t, s ∈ [0,T] with t ≥ s

E↓[
U

↓
t | Fs

] = E↓[
E↓[H

τ
↓
t

| Ft ] | Fs

] = E↓[H
τ

↓
t

| Fs] ≤ U↓
s .

The first identity holds true due to equation (11). In the second identity, we have
used the stability property of the family Q in the form of the time consistency
property (5) of the non linear expectation E↓. In the last inequality, we have used
the minimax identity (12). �

A simple corollary of Theorem 2.2 is the following.
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Corollary 2.2. Assume the conditions of Theorem 2.1 hold true. Then, the lower
Snell envelope is the minimal E↓-supermartingale dominating H.

Proof. Let X be an F-adapted E↓-supermartingale dominating H. Then,

Xt ≥ ess sup
τ∈T [t,T]

E↓[Xτ |Ft ]

≥ ess sup
τ∈T [t,T]

E↓[Hτ | Ft ].

The term in the second inequality is precisely the lower Snell envelope as defined
in equation (8) and it is an E↓-supermartingale, due to Theorem 2.2. Thus, Xt ≥
U

↓
t . �

The next simple result will have interesting consequences, see Theorem 3.1
below.

Lemma 2.1. The lower Snell envelope satisfies U
↓
τ

↓
t

= H
τ

↓
t

, P-a.s.

Proof. There exists a sequence of probability measures {Qn}n∈N ⊂ Q such that
the sequence of stopping times {τQn

t }n∈N, with τ
Qn
t as defined in (9), decreases to

τ
↓
t ; see Trevino-Aguilar (2008), Theorem 5.6, first part. In particular, the stopping

time τ
Qn
t clearly has the following property:

H
τ

Qn
t

= U
Qn

τ
Qn
t

.

Therefore,

lim sup
n→∞

H
τ

Qn
t

= lim sup
n→∞

U
Qn

τ
Qn
t

≥ lim sup
n→∞

U
↓
τ

Qn
t

.

The limits lim sup exist, due to the right continuity of U↓ and H since the sequence
of stopping times is non increasing. As a consequence, we obtain the inequality

H
τ

↓
t

≥ U
↓
τ

↓
t

.

The inequality in the other direction is a consequence to the definition of U↓. �

Remark 2.4. A natural question is if the stopping time τ↓ is the first time that H
touches its lower Snell envelope. An example in discrete time, due to Acciaio and
Svindland (2014), suggests that in general, it is not.
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3 The lower Snell envelope for a semimartingale process

There is a disjunctive for the lower Snell envelope formulated in terms of the fam-
ily of stopping times {τ↓

t }0≤t≤T. The Lemma 2.1 yields the set inclusion

{
t = τ

↓
t

} ⊂ {
U

↓
t = Ht

}
. (13)

In the stochastic set {τ↓
t > t}, the lower Snell envelope is “locally” a Q-

submartingale; see Theorem 2.1, last part. In the complementary set {τ↓
t = t},

the set inclusion (13) suggests that U
↓
t “looks like” the underlying process H. We

will make this intuition more precise in this and the next section in such a way
that we obtain “positive” answers to both questions in the introduction as well as
examples in the “negative” direction.

We consider a general stable class of probability measures, but we impose con-
ditions on the side of the underlying process H. In Theorem 3.1 below, we show
that the lower Snell envelope of a semimartingale is again a semimartingale. In
Theorem 3.2 below, we show that the lower Snell envelope has a uniform decom-
position if H itself is of this form. Mainly as an illustration of the results, we show
in Theorem 3.1, in the context of mathematical finance, that the payoff process
of a put option satisfies the condition of Theorem 3.2 with respect to the class of
martingale measures M. Therefore, its lower Snell envelope has a uniform decom-
position.

Assumption 3.1. There exists a probability measure Q ∈ Q such that H is of the
form

Ht = H0 + S
Q
t + L

Q
t − N

Q
t ,

for SQ a Q-submartingale and LQ,NQ càdlàg non decreasing processes with
S

Q
0 = L

Q
0 = N

Q
0 = 0, and EQ[NQ

T ] < ∞.

Theorem 3.1. Suppose the Assumptions 2.1 and 3.1 holds true. Define V Q :=
U↓ + NQ. Let τ1, τ2 be two stopping times with 0 ≤ τ1 ≤ τ2 ≤ T. Then

EQ

[
V Q

τ1

] ≤ EQ

[
V Q

τ2

]
.

Thus, V Q is a Q-submartingale.

Proof. For δ > 0, we set

θ
(1)
δ := (τ1 + δ) ∧ τ2,

θ
(2)
δ := τ

↓
θ

(1)
δ

∧ τ2.
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Now for i > 2 we define recursively

θ
(i)
δ := (

θ
(i−1)
δ + δ

) ∧ τ2, for i odd,

θ
(i+1)
δ := τ

↓
θ

(i)
δ

∧ τ2, for i + 1 even.

1. For N > T
δ

we have

N∑
i=1

EQ

[
V

Q

θ
(i+1)
δ

− V
Q

θ
(i)
δ

] =
∞∑
i=1

EQ

[
V

Q

θ
(i+1)
δ

− V
Q

θ
(i)
δ

]
.

The series is equal to

EQ

[
V Q

τ2
− V

Q

θ
(1)
δ

]
.

Moreover

lim
δ↘0

EQ

[
V

Q

θ
(1)
δ

] = EQ

[
V Q

τ1

]
,

since V Q is of class(D) with respect to Q. As a consequence

lim
δ↘0

∞∑
i=1

EQ

[
V

Q

θ
(i+1)
δ

− V
Q

θ
(i)
δ

] = EQ

[
V Q

τ2
− V Q

τ1

]
. (14)

2. For i + 1 even, we have

EQ

[
V

Q

θ
(i+1)
δ

− V
Q

θ
(i)
δ

] ≥ 0, (15)

due to the Q-submartingale property of Theorem 2.1.
3. For i + 2 odd, we have

V
Q

θ
(i+2)
δ

− V
Q

θ
(i+1)
δ

= V
Q

(τ
↓
θ
(i)
δ

+δ)∧τ2
− V

Q

τ
↓
θ
(i)
δ

∧τ2
.

We are going to show that

V
Q

θ
(i+2)
δ

− V
Q

θ
(i+1)
δ

≥ S
Q

(τ
↓
θ
(i)
δ

+δ)∧τ2
− S

Q

τ
↓
θ
(i)
δ

∧τ2
+ L

Q

(τ
↓
θ
(i)
δ

+δ)∧τ2
− L

Q

τ
↓
θ
(i)
δ

∧τ2
. (16)

By taking expectation with respect to Q in the inequality (16), we see

EQ

[
V

Q

θ
(i+2)
δ

− V
Q

θ
(i+1)
δ

]
≥ EQ

[
S

Q

(τ
↓
θ
(i)
δ

+δ)∧τ2
− S

Q

τ
↓
θ
(i)
δ

∧τ2
+ L

Q

(τ
↓
θ
(i)
δ

+δ)∧τ2
− L

Q

τ
↓
θ
(i)
δ

∧τ2

]
(17)

≥ 0,
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since SQ is a Q-submartingale and L is a non decreasing process.
We now prove (16). In the event {τ↓

θ
(i)
δ

≥ τ2} both sides of the inequality (16)

are equal to zero.
In the event {τ↓

θ
(i)
δ

≤ τ2} we have

V
Q

θ
(i+2)
δ

− V
Q

θ
(i+1)
δ

= V
Q

(τ
↓
θ
(i)
δ

+δ)∧τ2
− V

Q

τ
↓
θ
(i)
δ

= U
↓
(τ

↓
θ
(i)
δ

+δ)∧τ2
+ N

Q

(τ
↓
θ
(i)
δ

+δ)∧τ2
− U

↓
τ

↓
θ
(i)
δ

− N
Q

τ
↓
θ
(i)
δ

= U
↓
(τ

↓
θ
(i)
δ

+δ)∧τ2
+ N

Q

(τ
↓
θ
(i)
δ

+δ)∧τ2
− H

τ
↓
θ
(i)
δ

− N
Q

τ
↓
θ
(i)
δ

,

where in the last identity we applied the equality U
↓
τ

↓
θ
(i)
δ

= H
τ

↓
θ
(i)
δ

, proved in

Lemma 2.1. Moreover,

U
↓
(τ

↓
θ
(i)
δ

+δ)∧τ2
+ N

Q

(τ
↓
θ
(i)
δ

+δ)∧τ2
− H

τ
↓
θ
(i)
δ

− N
Q

τ
↓
θ
(i)
δ

≥ H
(τ

↓
θ
(i)
δ

+δ)∧τ2
+ N

Q

(τ
↓
θ
(i)
δ

+δ)∧τ2
− H

τ
↓
θ
(i)
δ

− N
Q

τ
↓
θ
(i)
δ

= S
Q

(τ
↓
θ
(i)
δ

+δ)∧τ2
− S

Q

τ
↓
θ
(i)
δ

+ L
Q

(τ
↓
θ
(i)
δ

+δ)∧τ2
− L

Q

τ
↓
θ
(i)
δ

.

This proves the inequality (16).
4. As a consequence, we obtain

EQ

[
V Q

τ2
− V Q

τ1

] ≥ 0,

due to (14), (15), and (17). This establishes the theorem.
�

We now establish a variant of Theorem 3.1 under the stronger condition of the
next assumption.

Assumption 3.2. There exists a Q-submartingale {St }0≤t≤T with S0 = 0 such that
H is of the form

Ht = H0 + St + Lt − Nt,

for L,N càdlàg non decreasing processes with L0 = N0 = 0, and

EQ[NT] < ∞,
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for each Q ∈ Q.

The following result can be established with analogous arguments in the proof
of Theorem 3.1 and we omit the details.

Theorem 3.2. Assume H satisfies the Assumptions 2.1 and 3.2. Then V := U↓ +N

is a Q-submartingale.

Proof. Analogous to the proof of Theorem 3.1. �

As an illustration of Theorem 3.2, we now prove that the lower Snell envelope
of an American put option has a uniform decomposition. We consider the class of
martingale measures M of a non-negative continuous semimartingale X.

We denote the local time of X at level K by {LK
t }0≤t≤T.

Remark 3.1. Let X be a non-negative continuous semimartingale and assume that
its class of local-martingale measures M is nonempty. Take K > 0 and assume
X0 > 0. Then, the payoff process of the American put option {(K − Xt)

+}0≤t≤T

satisfies the condition of Assumption 3.2.

Proof. We are going to make use of the put-call parity formula:

(K − x)+ − (x − K)+ = K − x.

The payoff process of the call option {(Xt − K)+}0≤t≤T can be represented as

(Xt − K)+ = (X0 − K)+ +
∫ t

0
1{Xs>K} dXs + 1

2
LK

t

= (X0 − K)+ + Xt − X0 −
∫ t

0
1{Xs≤K} dXs + 1

2
LK

t ,

due to Meyer–Itô’s formula for convex functions; see, for example, Protter (2005),
Theorem 70, page 218. Then∫ t

0
1{Xs≤K} dXs ≥ (X0 − K)+ − X0 + 1

2
LK

t ,

and the integral in the left-hand side of the inequality is a supermartingale with
respect to each P ∈M. We then have

EP

[
LK

T

] ≤ 2X0 − 2(X0 − K)+.

We use the put-call parity formula to write the payoff of a put option in the form

(K − Xt)
+ = (X0 − K)+ + K − X0 −

∫ t

0
1{Xs≤K} dXs + 1

2
LK

t .

In this representation, it is clear that it satisfies the Assumption 3.2. �
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4 A warning example

In this section, we specify a stable family of equivalent probability measures W

under which lower Snell envelopes

• may fail to be semimartingales and
• are supermartingales with respect to each element of W but do not have a uni-

form decomposition.

Let B be a Brownian motion defined in the probability space (�,F,P) in this
section we assume that F is the augmented filtration generated by B .

Definition 4.1. The class W consists of probability measures Qγ determined by
density processes satisfying the Dooleans-Dade stochastic equation

dZt = γtZt dBt , (18)

with γ a progressively measurable process satisfying

1. γt ≤ 0 for t ∈ [0,T], and
2. E[∫ T

0 γ 2
s ds] < ∞.

The class W corresponds to a pessimistic view of the future in which the Brow-
nian motion B becomes a supermartingale. Indeed, the stochastic process

B
γ
t := Bt −

∫ t

0
γs ds, (19)

is a Qγ Brownian motion due to Girsanov’s transformation theorem.

Remark 4.1. The κ-ambiguity model due to Chen and Epstein (2002) specifies
a stable class of probability measures in the following way. One considers proba-
bility measures defined by density process described by the Dooleans-Dade expo-
nential (18) with γ satisfying |γ | ≤ κ for κ a nonnegative constant. Our class W

is a extreme case where γ is bounded from above but free from below.

Take a nonnegative continuous deterministic function V defined in the interval
[0,T]. In the next result, we show that the lower Snell envelope of the process
H = B +V is equal to H itself. Note that for a function V of arbitrary p-variation,
for p > 2, the lower Snell envelope of H may fail to be a semimartingale.

Proposition 4.1. The lower Snell envelope of the process H is equal to H itself.

Proof. Take t ∈ [0,T). Let {rn}n∈N be a sequence of positive numbers decreasing
to t . For K,n ∈ N let γ n,K be defined by

γ n,K
s =

⎧⎨
⎩

0 if s ∈ [0, t)
−K
rn−t

if s ∈ [t, rn)
0 if s ∈ [rn,T].
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Let hn,K be the exit time defined by

hn,K := sup
{
s ∈ [t, rn]

∣∣ Vs +
∫ s

t
γ n,K
s ds ≥ 0

}
.

For K > supt∈[0,T] Vt sufficiently large, the exit time hn,K is smaller than rn. It is
clearly a deterministic time, and a stopping time.

For a stopping time σ with σ ≥ t , the stopping time σn := σ ∧hn,K is a stopping
time with the property σn ≤ rn and

Vσn +
∫ σn

t
γ n,K
z dz ≥ Vσ +

∫ σ

t
γ n,K
z dz.

Let Qγ n,K
be the probability measure with Dooleans-Dade exponential γ n,K . Let

σ ∗
n be the first optimal time of V + ∫ ·

t γ n,K
z dz in the interval [t,T] with respect to

Qγ n
. Then, it is clear that σ ∗

n is deterministic and dominated from above by rn due
to our previous argument involving the exit time hn,K . As a consequence,

U
↓
t = ess inf

Q∈W ess sup
τ∈T [t,T]

EQ[Hτ | Ft ]

≤ ess sup
τ∈T [t,T]

E
Qγn,K [Hτ | Ft ]

= ess sup
τ∈T [t,T]

E
Qγn,K

[
Bγ n,K

τ +
∫ τ

t
γ n,K
z dz + Vτ | Ft

]

= B
γ n,K

t + ess sup
τ∈T [t,T]

E
Qγn,K

[∫ τ

t
γ n,K
z dz + Vτ | Ft

]

= Bt + E
Qγn,K

[∫ σ ∗
n

t
γ n,K
z dz + Vσ ∗

n

∣∣ Ft

]

≤ Bt + Vσ ∗
n
.

The first inequality is clear. The second identity holds true due to the definition
of H and equation (19) for Bγ n,K

. The third identity holds true due to the fact
that Bγ n,K

is a Qγ n,K
-Brownian motion. The fourth equality is a consequence to

the fact that γ n,K is zero in the interval [0, t] and the optimality of σ ∗
n . The last

inequality holds true since the trend
∫ σ ∗

n
t γ n,K

z dz is negative and Vσ ∗
n

is determin-
istic.

The stopping time σ ∗
n has the property that it takes values in the interval [t, rn]

and therefore, the difference Vσ ∗
n

− Vt converges uniformly to zero. Then

U
↓
t ≤ Ht + (Vσ ∗

n
− Vt) → Ht .

This proves that the lower Snell envelope of H is again H. �

The lower Snell envelope of the Brownian motion B is B itself due to Proposi-
tion 4.1. The following result shows that there exists no uniform decomposition.
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Proposition 4.2. There exists no continuous uniform decomposition for the Brow-
nian motion B with respect to W.

Proof. By way of contradiction, assume B = Z + V where Z is a continuous W-
submartingale and V is a continuous process of locally-bounded variation. Let τ

be a stopping time such that V is of bounded variation in the interval [0, τ ]. For
k > 0 let τk := inf{s ≥ 0 | Zs ≥ k} ∧ τ . Take Qγ ∈ W. Recall our notation of the
Qγ -Brownian motion Bγ = Bt − ∫ t

0 γs ds. Then, we must have

Zt − B
γ
t =

∫ t

0
γs ds − Vt .

We see that the stopped process Zt∧τk
− B

γ
t∧τk

is a Qγ -submartingale of bounded
variation. It is of class(D) and it has a Doob–Meyer decomposition in the interval
[0, τk] as the sum Xγ + Aγ , with Xγ a continuous Qγ -martingale and Aγ a con-
tinuous non decreasing process; see Ethier and Kurtz (1986), Corollary 5.2 p.78.
Therefore, up to the stopping time τk , the process Xγ is a martingale of bounded
variation. It is then, a purely discontinuous local martingale; see Yoeurp (1976),
Théorème (1-6), p. 443. As a consequence, Xγ is constant, since it is continuous.
We then see that the process V satisfies

Vt∧τk
=

∫ t∧τk

0
γs ds − A

γ
t∧τk

− X
γ
0 .

In particular, this implies that for any progressively measurable stochastic process
ξ with −1 ≤ ξ ≤ 0 ∫

[0,τk]
ξs− dVs ≥

∫
[0,τk]

ξs−γs ds.

This is impossible since the left hand side of the inequality is dominated from
above by the total variation of V in the interval [0, τk], while the supremum over
ξ and γ in the right-hand side is infinite. �

5 Identification of the uniform parts

In Theorem 3.2, we gave a condition under which the lower Snell envelope is
the difference of a Q-submartingale and a non decreasing process. In this section,
we use the E↓-supermartingale property of the lower Snell envelope, established
in Theorem 2.2, in order to identify the nondecreasing part through a limiting
procedure defined analogously to the proof of the Doob–Meyer decomposition.
Here however, the operator E↓ is nonlinear and we instead use the time consistency
property (5).

We will consider convergence of stochastic processes in the sense of Fatou con-
vergence as in the next definition.
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Definition 5.1. Let D be a dense subset of [0,T]. A sequence of processes
{V n}n∈N is Fatou convergent on D to a process V if the sequence is bounded
from below by an integrable variable, and if for any t ∈ [0,T] we have

Vt = lim sup
s↓t,s∈D

lim sup
n→∞

V n
s

= lim inf
s↓t,s∈D

lim inf
n→∞ V n

s .

This form of convergence has been considered previously by other authors. The
main reason to consider this mode of convergence here is the compactness princi-
ple in Delbaen and Schachermayer (1999) when total variation is controlled.

Theorem 5.1. Let U be a nonnegative E↓-supermartingale of class(D) with re-
spect to each element Q of Q. Let  be the class of finite partitions with points in
D, a countable dense subset of [0,T]. Let DM() be the class of random variables
defined by

V �
T =

n−1∑
i=0

(
Uti − E↓[Uti+1 | Fti ]

)
, (20)

for � = {0 = t0 < t1 < · · · < tn = T} a partition in .
If the class DM() is uniformly integrable with respect to a Q0 ∈ Q, then there

exists a right-continuous nondecreasing process V such that Z := U +V is a Q0-
submartingale. In this case, for each probability measure Q under which the class
DM() is uniformly integrable, the process Z is also a submartingale.

Proof.

1. Given a partition � := {0 = t0 < t1 < · · · < tn = T} we define the non decreas-
ing predictable process V � by V �

0 = 0 and for t > 0

V �
t :=

n−1∑
i=0

(
Uti − E↓[Uti+1 | Fti ]

)
1[ti+1,T](t).

Note that

V �
tk+1

− V �
tk

= Utk − E↓[Utk+1 | Ftk ]. (21)

2. We are going to prove the equality

E↓[
Utl + V �

tl
| Ftk

] = Utk + V �
tk

, for l ∈ {k + 1, . . . , n}, (22)

in which the time consistency property (5) of the operator E↓ is crucial.
For l ∈ {k + 1, . . . , n}, we define

f l := Utl + V �
tl

,
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and recursively

f j := E↓[
f j+1 | Ftj

]
, for j = l − 1, l − 2, . . . , k.

Time consistency and mathematical induction implies that

E↓[
f l | Ftj

] = f j , for j = l − 1, l − 2, . . . , k. (23)

Let us now compute f l−1

f l−1 = E↓[
f l | Ftl−1

]
= E↓[Utl | Ftl−1] + V �

tl

= E↓[Utl | Ftl−1] + V �
tl−1

+ (
Utl−1 − E↓[Utl | Ftl−1]

)
= V �

tl−1
+ Utl−1 .

The second equality holds true since V �
tl

is Ftl−1 -measurable. By mathematical
induction, we get

f j−1 = V �
tj−1

+ Utj−1, for j = l − 1, l − 2, . . . , k. (24)

Equations (23) and (24) clearly imply the equality (22).
3. Take a sequence of partitions {�n}n∈N increasingly exhausting the points on D

and mesh converging to zero. There exists a right continuous process V and a
sequence of convex combinations {V n}n∈N with

V n =
∞∑

j=n

λn
jV

�j ,

such that V n Fatou-converges to V on D, due to Lemma 2.2 of Delbaen and
Schachermayer (1999), since the sequence is uniformly bounded in variation
with respect to a Q0 ∈ Q, due to our condition (20). The total variation of V is
Q0-integrable, again due to Lemma 2.2 of Delbaen and Schachermayer (1999).
As a consequence, VT is a Q0-integrable random variable.

For Q ∈ Q under which the family DM() is uniformly integrable, we are
going to prove that U + V is a Q-submartingale, by making use of the equality
(22). It will require several steps.

4. In this step, we are going to show that for s, t ∈ �n with s > t

EQ

[
Us + V n

s | Ft

] ≥ Ut + V n
t . (25)

Let

Wn,m
s :=

n+m∑
j=n

λn
jV

�j
s .
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Note that Wn,m
s converges in L1(Q) to V n

s , due to monotone convergence.
Hence, there exists a sequence mk such that

EQ

[
V n

s | Ft

] = lim
k→∞EQ

[
Wn,mk

s | Ft

]
, P-a.s.

Now we show the inequality (25)

EQ

[
Us + V n

s | Ft

]
= lim

k→∞
{
EQ

[
Us + Wn,mk

s | Ft

]}

= lim
k→∞

{
EQ

[
n+mk∑
j=n

λn
j

(
Us + V

�j
s

) ∣∣ Ft

]
+ EQ[Us | Ft ]

∞∑
j=n+mk+1

λn
j

}

= lim
k→∞EQ

[
n+mk∑
j=n

λn
j

(
Us + V

�j
s

) ∣∣ Ft

]
≥ Ut + V n

t .

The last inequality follows from the equality (22).
5. Take s, t ∈ [0,T] with s > t . Take a sequence {tj }j∈N ⊂ D ∩ (t, s) decreasing

to t . Let {sj }j∈N ⊂ D ∩ (s,T) be a sequence decreasing to s. For A ∈ Ft we
have

EQ

[
(Usj + Vsj )1A

] = EQ

[(
Usj + lim sup

z↓sj ,z∈D

lim sup
n→∞

V n
z

)
1A

]

≥ lim sup
z↓sj ,z∈D

lim sup
n→∞

EQ

[(
Uz + V n

z

)
1A

]
(26)

≥ lim sup
n→∞

EQ

[(
Utj + V n

tj

)
1A

]
. (27)

The inequality (26) holds true due to our assumption of uniform integrability.
The second inequality (27) follows by the inequality (25). As a consequence

EQ

[
(Usj + Vsj )1A

] ≥ lim inf
tj↓t

lim inf
n→∞ EQ

[(
Utj + V n

tj

)
1A

]
≥ EQ

[
(Ut + Vt)1A

]
. (28)

6. Now

EQ

[
(Us + Vs)1A

] = lim
j→∞EQ

[
(Usj + Vsj )1A

]
(29)

≥ EQ

[
(Ut + Vt)1A

]
, (30)

where (29) follows by uniform integrability and right continuity. The inequality
(30) follows by equation (28).

This proves that U + V is a Q-submartingale. �
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