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A new stochastic model and its diffusion approximation

Shai Covo and Amir Elalouf
Bar Ilan University

Abstract. This paper considers a kind of queueing problem with a Poisson
number of customers or, more generally, objects which may arrive in groups
of random size. The focus is on the total quantity over time, called system
size. The main result is that the process representing the system size, properly
normalized, converges in finite-dimensional distributions to a centered Gaus-
sian process (the diffusion approximation) with several attractive properties.
Comparison with existing works (where the number of objects is assumed
nonrandom) highlights the contribution of the present paper.

1 Introduction

Consider the following stochastic model (formally described in the next section).
A system starts empty at time 0. Nn objects, where Nn is Poisson distributed with
mean n ∈ N, enter and leave the system, independently of each other; the arrival
and departure times of the Nn objects are sampled from a common absolutely
continuous bivariate distribution. Associated with each object is its “size;” the
sizes are i.i.d. (not necessarily nonnegative) random variables from an arbitrary
distribution with finite second moment. This paper considers the stochastic pro-
cess representing the system size at time t . The key point in the present model
is the assumption that the number of objects is Poisson distributed. Indeed, if the
number of objects were to be nonrandom, that is, Nn = n, where n is an arbitrary
but fixed integer, then the process representing the system size at time t would be
of the form

∑n
i=1 fi(t) considered in Steinsaltz (1996), as indicated shortly be-

low. While, by the central limit theorem, a Poisson(n) random variable, Nn, can
be approximated, for large n, by n + √

nZ, where Z ∼ N(0,1), it turns out that
the difference Nn − n, though asymptotically negligible relative to n, results in an
essential difference between the two models. As shown in this paper, the Poisson
case leads to considerably more elegant results. Moreover, there might be scenar-
ios where the assumption of a Poisson distributed number of objects is also more
realistic. This is because the objects may be associated with a prior system where
arrivals are modeled by a (not necessarily homogeneous) Poisson process. For ex-
ample, people reserve tickets to a show/event; requests can be made within a given
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time period. Under the assumption of a Poisson process arrival of requests, the to-
tal number of reservations follows a Poisson distribution, with approximated mean
n ∈ N. Then, the number of audience physically present at the venue (uncondi-
tionally on the actual number of reservations, and assuming no cancellations) may
represent a stochastic process conforming with the paper’s setting.

Having briefly indicated two major advantages of the new model, it is instruc-
tive to consider the standard one (where the number of objects is fixed). Two key
references are Louchard (1988) and Steinsaltz (1996).

A special but particularly important case arises when the object size is 1 and the
amount of time it spends in the system (“service time”) is independent of its ar-
rival time. This case was studied in Louchard (1988), where the following descrip-
tion is given: “We analyse in this paper the large finite population infinite server
model: a total population of n customers applies for some facility; each customer
applies for service only once; the time of applications of the n customers are inde-
pendent, identically distributed random variables, with distribution function F(·);
customers are served in parallel.” As in the general case, the results obtained for
the new model (with Poisson distributed number of arrivals) are considerably more
elegant.

Not only that the assumption made in the previous paragraph that arrival and ser-
vice times are independent is not needed in the present setting, but the object size
distribution can be assumed arbitrary with finite second moment (thus, for exam-
ple, customers may arrive in groups of random size). With τ i

1 and τ i
2 denoting the

arrival and departure times of the ith object, respectively, and Yi its size, the system
size at time t can be expressed

∑Nn

i=1 Yi1[τ i
1,τ i

2)(t), where Nn ∼ Poisson(n) and 1

is the indicator function. The random functions fi defined by fi(t) = Yi1[τ i
1,τ i

2)(t)

are, in particular, independent càdlàg functions. For such functions, the process∑n
i=1 fi , where n is an arbitrary but fixed integer, was considered in Steinsaltz

(1996); its relation to queueing problems is clearly indicated there.
The pertinent works Louchard (1988) and Steinsaltz (1996) will be considered

in more detail in Section 5, in order to highlight the advantages of the new model.
Further motivation of the new model is provided in the following practical ex-

ample, which represents a common lending process.
A lending entity begins with an initial quantity of funds. Borrowers enter the

system at arbitrary times. Upon entering the system, each borrower requests a sum
of money (unknown in advance), receives it, and returns it later on, in one payment
(without interest). The process can either continue forever or terminate at time T ,
after all loans are returned.

This description fits, for example, the case of a bridging loan, a short-term loan
that a bank provides a customer to “bridge a gap” until he or she obtains longer-
term financing. (The model does not take into account the interest, which may be
paid each period (monthly/weekly) and can be investigated and calculated sepa-
rately as the organization’s profit. Rather, we deal with the processes related to the
capital.)
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Such loans are common in real-estate purchases: A borrower might take out
such a loan pending the sale of a property or when waiting to be approved for a
mortgage. An additional example of an entity who might seek out such a loan is
a corporation that needs to secure working capital until a round of equity financ-
ing goes through. Once a borrower obtains longer-term financing (usually within
a period of up to 3 years), the bridging loan is repaid to the bank. In many cases,
the financing that has been secured is used to repay the loan in one lump sum,
although lending entities do allow customers to repay the loan in multiple install-
ments. Bridging loans can range from several thousands of dollars to several mil-
lions.

The analysis presented in the paper can assist the creditor in making decisions
before and during the lending process, for example, to determine the initial capital
required to satisfy borrowers’ requests. We assume that the borrowed quantities
are independent and identically distributed (i.i.d.); this assumption is reasonable
under the assumption that the lender is dealing with a single type of loan, such as
bridging loans for real-estate. Moreover, the customers’ arrival at the creditor is
assumed to be random. As the time at which a loan is returned clearly depends on
the time at which the loan is given, we use a continuous bivariate distribution to
capture the relationship between these two variables. Finally, the number of cus-
tomers is assumed to be large (and clearly random), and hence naturally Poisson
distributed.

The rest of this paper is organized as follows. Section 2 is devoted to basic no-
tation. The main result, namely Theorem 3.1, is presented in Section 3. It gives
the diffusion approximation, X, to the process representing the system size, SNn ,
by showing that, as n(= E(Nn)) tends to ∞, the properly normalized process, Xn,
converges in finite-dimensional distributions to X, where X is a centered Gaus-
sian process whose covariance function is simply expressed in terms of the com-
mon joint density function of the arrival and departure times. Continuity of X is
briefly considered at the end of Section 3. Section 4 is devoted to examples. The
important case where the arrival and departure times are distributed as order statis-
tics is considered in Example 4.1, while the general Example 4.3 corresponds to
the infinite server model of Louchard (1988) (the particular case of exponential
service times is considered in Example 4.4). Section 5 is devoted to comparison
with Louchard (1988) and Steinsaltz (1996). Section 6 presents key features of the
diffusion approximation X. This process has nonpositively correlated increments
and, moreover, a biconvex covariance. The main results of Section 6 are Propo-
sitions 6.1 and 6.2, which give simple (analogous) representations of X, the first
as a stochastic integral with respect to Brownian sheet, the second in terms of a
“modified” inhomogeneous Brownian sheet. Based on the second representation,
a very simple algorithm is presented in Section 7 for generating an (essentially)
exact discrete-time realization of X. Additional insights are provided in the Ap-
pendix.
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2 Basic notation

The following notations and abbreviations will be used frequently in the sequel.

• RV, DF, FDD, BM, and BB: abbreviations of “random variable,” “distribution
function,” “finite-dimensional distributions,” “Brownian motion,” and “Brown-
ian bridge,” respectively.

• T : fixed positive number or infinity.
• Nn ∼ Poisson(n), where n is a positive integer: total number of objects that enter

the system. The system starts empty at time 0.
• (τ i

1, τ
i
2), i = 1,2, . . .: sequence of i.i.d. absolutely continuous bivariate RVs, in-

dependent of Nn, such that, for each i, 0 < τi
1 < τi

2 < T . The RVs τ i
1 and τ i

2
represent the arrival and departure times of the ith object.

• ET := {(x, y) ∈ (0, T )2 : y > x}.
• f (·, ·): common joint density function of the (τ i

1, τ
i
2)’s, vanishing on the com-

plement of ET .
• Yi , i = 1,2, . . .: sequence of i.i.d. (not necessarily nonnegative) RVs with com-

mon mean μY ∈ R and finite variance σ 2
Y ≥ 0, independent of Nn and the

(τ i
1, τ

i
2)’s. The trivial case μ2

Y + σ 2
Y = 0 is excluded. Yi represents the size of

the ith object.
• ai = {ai(t) : t ∈ [0, T ]}, i = 1,2, . . .: sequence of i.i.d. stochastic processes de-

fined by

ai(t) = Yi1[τ i
1,τ i

2)(t), (2.1)

where 1 is the indicator function.
• SNn = {SNn(t) : t ∈ [0, T ]}: stochastic process defined by

SNn(t) =
Nn∑
i=1

ai(t). (2.2)

Thus, SNn(t) represents the system size at time t . (Obviously, SNn(0) =
SNn(T ) = 0.)

• R(·, ·): function defined for s, t ∈ [0, T ] with s ≤ t by

R(s, t) =
∫ s

0

∫ T

t
f (x, y)dy dx. (2.3)

Alternatively (and sometimes more usefully),

R(s, t) = P
(
τ i

1 ≤ s, τ i
2 > t

)
. (2.4)

• V (·): function defined for t ∈ [0, T ] by

V (t) = R(t, t) =
∫ t

0

∫ T

t
f (x, y)dy dx.

Thus, V (0) = V (T ) = 0.
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• Xn = {Xn(t) : t ∈ [0, T ]}: normalized process defined by

Xn(t) = SNn(t) − nμY V (t)√
n(σ 2

Y + μ2
Y )

. (2.5)

(Thus, Xn(0) = Xn(T ) = 0.)
• X = {X(t) : t ∈ [0, T ]}: centered Gaussian process (vanishing at the endpoints

0 and T ) with covariance function given, for 0 ≤ s ≤ t ≤ T , by E(X(s)X(t)) =
R(s, t).

• GH = {GH(t) : t ∈ [0, T ]}, where H is a DF such that H(0) = 0 and H(T ) = 1:
H -BB on [0, T ], that is, a centered Gaussian process with covariance function
given, for 0 ≤ s ≤ t ≤ T , by

E
(
GH(s)GH(t)

) = H(s)
(
1 − H(t)

)
.

When T = 1 and H is the uniform(0,1) DF, GH is a standard BB on [0,1], and
is denoted by B0.

• d→ and d=: notations for convergence and equality in distribution, respectively.

3 The main result

In order to study the behavior of the process SNn as n (the mean number of objects)
tends to infinity, it should be properly normalized. As shown below (Theorem 3.1),
the normalized process Xn converges in FDD to the centered Gaussian process X.
The following lemma accounts for the definition of Xn.

Lemma 3.1. For any 0 ≤ t ≤ T , it holds that

E
(
SNn(t)

) = nμY V (t) (3.1)

and

Var
(
SNn(t)

) = n
(
σ 2

Y + μ2
Y

)
V (t). (3.2)

Moreover, for any 0 ≤ s ≤ t ≤ T , it holds that

Cov
(
SNn(s), SNn(t)

) = n
(
σ 2

Y + μ2
Y

)
R(s, t). (3.3)

Proof. Since, for fixed 0 ≤ t ≤ T , the ai(t) are i.i.d. RVs, SNn(t) is a compound
Poisson RV with mean nE(ai(t)) and variance nE(a2

i (t)). It follows directly from
the definition of ai(t) that E(ai(t)) = μY V (t) and E(a2

i (t)) = (σ 2
Y +μ2

Y )V (t), thus
proving (3.1) and (3.2). To prove (3.3), first note that, for any 0 ≤ s ≤ t ≤ T ,

E
(
ai(s)aj (t)

) =
{(

σ 2
Y + μ2

Y

)
R(s, t), i = j ,

μ2
Y V (s)V (t), i 	= j .

(3.4)
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Then,

E
(
SNn(s)SNn(t)

) = E

(
Nn∑
i=1

ai(s)ai(t)

)
+ E

(
Nn∑

i,j=1,i 	=j

ai(s)aj (t)

)

= n
(
σ 2

Y + μ2
Y

)
R(s, t) +

∞∑
k=0

E

(
k∑

i,j=1,i 	=j

ai(s)aj (t)

)
e−nnk

k!

= n
(
σ 2

Y + μ2
Y

)
R(s, t) +

∞∑
k=0

(
k2 − k

)
μ2

Y V (s)V (t)
e−nnk

k!
= n

(
σ 2

Y + μ2
Y

)
R(s, t) + n2μ2

Y V (s)V (t),

from which (3.3) follows using (3.1). �

The following proposition is an immediate corollary of Lemma 3.1.

Proposition 3.1. For any 0 ≤ t ≤ T , it holds that

E
(
Xn(t)

) = 0 (3.5)

and

Var
(
Xn(t)

) = V (t). (3.6)

Moreover, for any 0 ≤ s ≤ t ≤ T , it holds that

Cov
(
Xn(s),Xn(t)

) = R(s, t). (3.7)

Thus, the covariance function of Xn is fully determined by the joint density
f (·, ·) of (τ i

1, τ
i
2). In particular, it follows from (3.7) that

Cov
(
Xn(v) − Xn(u),Xn(t) − Xn(s)

) =
∫ t

s

∫ v

u
−f (x, y)dy dx, (3.8)

for any 0 ≤ s < t ≤ u < v ≤ T , and thus Xn has nonpositively correlated incre-
ments, characterized by f . Obviously, though, the process behavior depends heav-
ily on n. The diffusion approximation of SNn is given in the following theorem,
the paper’s main result.

Theorem 3.1. As n → ∞, Xn converges in FDD to X.

Proof. It is required to show that, as n → ∞,
(
Xn(t1), . . . ,Xn(tm)

) d→ (
X(t1), . . . ,X(tm)

)
,

for any m times 0 < t1 < · · · < tm < T . (Note that Xn and X vanish at the end-
points 0 and T .) Let J1, . . . , Jn be i.i.d. Poisson(1) RVs, independent of the Yi’s
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and (τ i
1, τ

i
2)’s, and represent Nn as Nn = J1 + · · · + Jn. Let Zi = (Zi

1, . . . ,Z
i
m),

i = 1, . . . , n, be n random vectors, with the kth component (k = 1, . . . ,m) given
by

Zi
k =

∑J1+···+Ji

j=J1+···+Ji−1+1 aj (tk) − μY V (tk)√
σ 2

Y + μ2
Y

.

The Zi are thus i.i.d. centered vectors, with

Cov
(
Zi

k1
,Zi

k2

) = R(tk1, tk2),

for all 1 ≤ k1 ≤ k2 ≤ m (cf. Proposition 3.1 in the case n = 1). Hence, by the
multivariate central limit theorem,

1√
n

n∑
i=1

(
Zi

1, . . . ,Z
i
m

) d→ (
X(t1), . . . ,X(tm)

)
.

Since the left-hand side equals (Xn(t1), . . . ,Xn(tm)), the proof is completed. �

Remark 3.1. Addressing the question of weak convergence of Xn is far beyond
the scope of this paper. On the other hand, continuity of X will be considered and
exemplified shortly.

Since each process ai is right-continuous with left limits, so is Xn. Moreover,
for any fixed t ∈ [0, T ], Xn is continuous at t with probability 1 (obviously, though,
it has 2Nn jump discontinuities a.s. if P(Yi 	= 0) = 1). A simple upper bound for
P(|Xn(t) − Xn(s)| ≥ ε), independent of n, is established next. By Chebyshev’s
inequality, for any ε > 0,

P
(∣∣Xn(t) − Xn(s)

∣∣ ≥ ε
) ≤ E(Xn(t) − Xn(s))

2

ε2 .

Assuming without loss of generality that 0 ≤ s < t ≤ T , it thus holds that

P
(∣∣Xn(t) − Xn(s)

∣∣ ≥ ε
) ≤ 1

ε2

[
V (t) + V (s) − 2R(s, t)

]

= 1

ε2

[∫ s

0

∫ t

s
f (x, y)dy dx +

∫ t

s

∫ T

t
f (x, y)dy dx

]
.

(Note that this upper bound tends to 0 as s ↑ t , for fixed t .) Of course, this last
result also holds for the limit process X. Moreover, the equality

E
(
X(t) − X(s)

)2 =
∫ s

0

∫ t

s
f (x, y)dy dx +

∫ t

s

∫ T

t
f (x, y)dy dx, (3.9)

where 0 ≤ s < t ≤ T , is important in view of the following standard lemma. (See,
e.g., Covo and Elalouf (2015); the unnecessary restriction of r below to (0,1]
naturally corresponds to (3.9).)
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Lemma 3.2. Let ξ = {ξ(t) : t ≥ 0} be a centered Gaussian process such that

E
(
ξ(t) − ξ(s)

)2 ≤ c|t − s|r ,
for all s, t ≥ 0 and some constants c > 0 and r ∈ (0,1]. Then ξ has a continuous
modification ξ̃ , which is locally Hölder continuous of any order γ ∈ (0, r/2), that
is, for any given M > 0,

sup
{ |ξ̃ (t) − ξ̃ (s)|

|t − s|γ : s, t ∈ [0,M], s 	= t

}
< ∞.

Thus, for example, if T < ∞ and f (·, ·) is bounded on ET , then, by (3.9), X has
a continuous modification which is Hölder continuous of any order γ ∈ (0,1/2)

(as is the case, e.g., for standard BM). Some other cases are considered in the next
section.

4 Examples

The first example below involves the H -BB on [0, T ], GH . This process can be
expressed in terms of the standard BB on [0,1], B0, as follows:

GH(t) = B0(
H(t)

)
. (4.1)

Since B0 is simply expressed in terms of standard BM, so is GH . In particular,
simulation of GH is straightforward.

Example 4.1. Let ξ1 and ξ2 be i.i.d. RVs from an absolutely continuous distribu-
tion on (0, T ), say with density h and DF H . If

(
τ i

1, τ
i
2
) d= (

min(ξ1, ξ2),max(ξ1, ξ2)
)
,

then f (·, ·) is given by f (x, y) = 2h(x)h(y), (x, y) ∈ ET , and, hence,

R(s, t) = 2H(s)
[
1 − H(t)

]
, (4.2)

for all 0 ≤ s ≤ t ≤ T . It thus follows from Theorem 3.1 that Xn converges in FDD
to the process X = √

2GH . Clearly, in view of (4.1), X can be assumed continuous.
Moreover, by (3.9),

E
(
X(t) − X(s)

)2 = 2H(s)
[
H(t) − H(s)

] + 2
[
H(t) − H(s)

][
1 − H(t)

]
= 2

[
H(t) − H(s)

][
H(s) + 1 − H(t)

]
≤ 2

[
H(t) − H(s)

]
,

for all 0 ≤ s < t ≤ T . Hence, by Lemma 3.2, if it holds that

H(t) − H(s) ≤ c(t − s)r ,
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for all 0 ≤ s < t ≤ T and some constants c > 0 and r ∈ (0,1], X can be assumed
to be (locally, if T = ∞) Hölder continuous of any order γ ∈ (0, r/2). In the par-
ticular case when ξ1, ξ2 ∼ uniform(0, T ), T < ∞, Xn converges in FDD to the
process {√2B0(t/T ) : t ∈ [0, T ]}. An interesting generalization is given in the
next example.

Example 4.2. For fixed m ≥ 2, let ξ1, . . . , ξm be i.i.d. uniform RVs on (0, T ),
T < ∞. If (

τ i
1, τ

i
2
) d= (

min(ξ1, . . . , ξm),max(ξ1, . . . , ξm)
)
,

then

f (x, y) = m(m − 1)

T m
(y − x)m−2, (4.3)

for (x, y) ∈ ET , and, hence,

R(s, t) =
∫ s

0

∫ T

t

m(m − 1)

T m
(y − x)m−2 dy dx

(4.4)

= 1

T m

[
T m − (T − s)m + (t − s)m − tm

]
,

for all 0 ≤ s ≤ t ≤ T . For m = 2, R(s, t) can be written, correspondingly to (4.2),
as R(s, t) = 2(s/T )(1 − t/T ); however, it is readily concluded that R(s, t) cannot
be factorized analogously for m ≥ 3. [The importance of this issue is discussed
in Section 6; cf. equation (6.2).] Since f (·, ·) in (4.3) is bounded, the diffusion
approximation X has a continuous modification which is Hölder continuous of
any order γ ∈ (0,1/2).

The next example corresponds to the infinite server model of Louchard (1988).
(Comparison will be made in the next section.)

Example 4.3. Let Q and W be independent, positive, absolutely continuous RVs
with densities fQ and gW , respectively; let FQ and GW denote the corresponding
DFs. Suppose that Q + W < T (for all ω in the sample space), so that (Q,Q +
W) ∈ ET . If (

τ i
1, τ

i
2
) d= (Q,Q + W), (4.5)

then

f (x, y) = fQ(x)gW(y − x), (4.6)

for (x, y) ∈ ET . However, in this case, R(s, t) is more readily obtained using the
alternative definition (2.4): for all 0 ≤ s ≤ t ≤ T ,

R(s, t) = P(Q ≤ s,Q + W > t)

=
∫ s

0
P(W > t − x)fQ(x)dx (4.7)

=
∫ s

0

[
1 − GW(t − x)

]
fQ(x)dx.
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Suppose that, for some constants c1, c2 > 0 and r1, r2 ∈ (0,1], the following two
conditions are satisfied:

FQ(t) − FQ(s) ≤ c1(t − s)r1, (4.8)

GW(t) − GW(s) ≤ c2(t − s)r2, (4.9)

for all 0 ≤ s < t ≤ T . Then, the diffusion approximation X has a modification
which is (locally, if T = ∞) Hölder continuous of any order γ ∈ (0, r ′/2), where
r ′ = min(r1, r2). Indeed, by (3.9), it holds that

E
(
X(t) − X(s)

)2 =
∫ s

0
fQ(x)

∫ t−x

s−x
gW (y)dy dx +

∫ t

s
fQ(x)

∫ T −x

t−x
gW (y)dy dx

≤
∫ s

0
fQ(x)min

(
1, c2(t − s)r2

)
dx +

∫ t

s
fQ(x)dx

≤ min
(
1, c2(t − s)r2

) + min
(
1, c1(t − s)r1

)
≤ (2 + c1 + c2)(t − s)r

′
,

for all 0 ≤ s < t ≤ T . Hence, the assertion follows from Lemma 3.2. A special
important case is given in the next example.

Example 4.4. When W above is Exponential(λW ), so that T = ∞ and GW(x) =
1 − e−λW x , x ≥ 0, (4.7) yields

R(s, t) =
(∫ s

0
eλW xfQ(x)dx

)
e−λW t , (4.10)

for all 0 ≤ s ≤ t ≤ ∞, where, by definition, R(s, t) = 0 if s = t = ∞. Thus, the
diffusion approximation X can be represented in terms of standard BM B as

X(t) = b(t)B
(
a(t)/b(t)

)
, (4.11)

for t ≥ 0, with X(∞) := 0, where a(t) = ∫ t
0 eλW xfQ(x)dx and b(t) = e−λW t .

(A general discussion is provided in Section 6.) In particular, X can be assumed
continuous on [0,∞) (note that its variance function, V (t) = a(t)b(t), tends to
0 as t → ∞). Moreover, since the condition (4.9) is satisfied with r2 = 1 (and
c2 = λW ), if it holds that

FQ(t) − FQ(s) ≤ c(t − s)r , (4.12)

for all 0 ≤ s < t < ∞ and some constants c > 0 and r ∈ (0,1] (i.e., the condi-
tion (4.8) is satisfied), X can be assumed to be locally Hölder continuous of any
order γ ∈ (0, r/2). In the particular case when Q is Exponential(λQ), (4.10) yields

R(s, t) =
⎧⎪⎨
⎪⎩

(
λQ

exp[(λW − λQ)s] − 1

λW − λQ

)
e−λW t , λQ 	= λW ,

(λQs)e−λW t , λQ = λW ,

(4.13)
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for all 0 ≤ s ≤ t ≤ ∞, where R(∞,∞) := 0. The correspondence with (4.11) is
obvious. Moreover, here (4.12) holds with r = 1 (and c = λQ), and so X can be
assumed to be locally Hölder continuous of any order γ ∈ (0,1/2).

Remark 4.1. It should be stressed that the general case considered in Example 4.3
is just a special case of the general setting. That is, (τ i

1, τ
i
2) cannot in general be

represented in the form (4.5) (indeed, τ i
2 − τ i

1 is generally not independent of τ i
1).

5 Comparison with existing works

This section emphasizes the attractiveness of the new model by considering the
pertinent works Louchard (1988) and Steinsaltz (1996). The issue will be further
developed in the subsequent sections.

The work Steinsaltz (1996) is considered first. Keeping the notation of Sec-
tion 2, define, for n ∈ N arbitrary but fixed, the process Sn = {Sn(t) : t ∈ [0, T ]}
by

Sn(t) =
n∑

i=1

ai(t). (5.1)

This is the same process as the process SNn conditioned on Nn = n. Thus, Sn(t)

represents the system size at time t in the case of n arrivals. The random, indepen-
dent càdlàg functions ai play the same role as the functions fi in Steinsaltz (1996)
(as a special case). Identifying the functions fi with the functions ai , define, as in
Steinsaltz (1996), the stochastic processes Fn and F̃n by

Fn(t) = 1

n

n∑
i=1

ai(t),

F̃n(t) = √
n
(
Fn(t) − F̄n(t)

)
,

where F̄n(t) := E(Fn(t)). By (5.1) and E(ai(t)) = μY V (t),

F̃n(t) = Sn(t) − nμY V (t)√
n

. (5.2)

Thus, the stochastic process F̃n of Steinsaltz (1996) plays the same role as the
process Xn in the present paper (cf. (2.5)). The following lemma, analogous to
Lemma 3.1, is readily verified using (3.4).

Lemma 5.1. For any 0 ≤ t ≤ T , it holds that

E
(
Sn(t)

) = nμY V (t)

and

Var
(
Sn(t)

) = n
[(

σ 2
Y + μ2

Y

)
V (t) − μ2

Y V 2(t)
]
.
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Moreover, for any 0 ≤ s ≤ t ≤ T , it holds that

Cov
(
Sn(s), Sn(t)

) = n
[(

σ 2
Y + μ2

Y

)
R(s, t) − μ2

Y V (s)V (t)
]
.

Thus, fixing the number of arrivals results in a considerably less elegant expression
for the covariance function (cf. Lemma 3.1).

Remark 5.1. When μY = 0 (and σ 2
Y > 0), the processes SNn and Sn have zero

mean and the same covariance function; hence, in this special case only, there is
no essential difference between the models (for large n).

The following proposition, analogous to Proposition 3.1, is an immediate corol-
lary of Lemma 5.1.

Proposition 5.1. For any 0 ≤ t ≤ T , it holds that

E
(
F̃n(t)

) = 0

and

Var
(
F̃n(t)

) = (
σ 2

Y + μ2
Y

)
V (t) − μ2

Y V 2(t).

Moreover, for any 0 ≤ s ≤ t ≤ T , it holds that

Cov
(
F̃n(s), F̃n(t)

) = (
σ 2

Y + μ2
Y

)
R(s, t) − μ2

Y V (s)V (t).

The effect of fixing the number of arrivals is even more pronounced here (cf.
Proposition 3.1).

The diffusion approximation of Sn is given in the following proposition.

Proposition 5.2. As n → ∞, F̃n converges in FDD to the centered Gaussian pro-
cess X̃ with covariance function given, for 0 ≤ s ≤ t ≤ T , by

E
(
X̃(s)X̃(t)

) = (
σ 2

Y + μ2
Y

)
R(s, t) − μ2

Y V (s)V (t).

Proof. It is required to show that, as n → ∞,

(
F̃n(t1), . . . , F̃n(tm)

) d→ (
X̃(t1), . . . , X̃(tm)

)
,

for any m times 0 < t1 < · · · < tm < T . (Note that F̃n and X̃ vanish at the endpoints
0 and T .) Let the random vectors Zi = (Zi

1, . . . ,Z
i
m), i = 1, . . . , n, be defined by

Zi = (
ai(t1) − E

(
ai(t1)

)
, . . . , ai(tm) − E

(
ai(tm)

))
.

The Zi are thus i.i.d. centered vectors, with

Cov
(
Zi

k1
,Zi

k2

) = (
σ 2

Y + μ2
Y

)
R(tk1, tk2) − μ2

Y V (tk1)V (tk2),
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for all 1 ≤ k1 ≤ k2 ≤ m. Hence, by the multivariate central limit theorem,

1√
n

n∑
i=1

(
Zi

1, . . . ,Z
i
m

) d→ (
X̃(t1), . . . , X̃(tm)

)
.

Since the left-hand side equals (F̃n(t1), . . . , F̃n(tm)), the proof is completed. �

Remark 5.2. It should be stressed that the setting of Steinsaltz (1996) is much
more general than that considered here; see, in particular, Corollary 5.7 of that
paper. Thus, for example, Steinsaltz (1996) does not contain any result similar to
Proposition 5.2 above.

Remark 5.3. It may be easily concluded from the forms of the respective covari-
ance functions that the diffusion approximation of SNn , that is, X, is fundamentally
simpler than that of Sn, that is, X̃. This point will be made clearer in the sequel.

The infinite server model of Louchard (1988) is considered next, following the
brief description in the above introduction (third paragraph) but using the notation
of the present paper. Let Q, W , fQ, gW , FQ, and GW be as in Example 4.3, and

assume that (4.5) is satisfied, that is, (τ i
1, τ

i
2)

d= (Q,Q + W). Thus, FQ represents
the common DF of customers’ arrival time, with density fQ, and GW that of cus-
tomers’ service time, with density gW . (In Louchard (1988), these functions are
denoted F , f , G, and g, respectively; however, G is not necessarily assumed to be
absolutely continuous.) In this special case, μY = 1 and σ 2

Y = 0 (object size is 1).
Thus, with the process F̃n as given by (5.2) above, the diffusion approximation of
Sn, that is, the limit, in the sense of FDD, of F̃n, is the centered Gaussian process,
X̃, with covariance function

E
(
X̃(s)X̃(t)

) = R(s, t) − V (s)V (t), (5.3)

for 0 ≤ s ≤ t ≤ T (Proposition 5.2), where, by (4.7),

R(s, t) =
∫ s

0

[
1 − GW(t − x)

]
fQ(x)dx.

Thus, V (t) is given by

V (t) =
∫ t

0

[
1 − GW(t − x)

]
fQ(x)dx.

With f := fQ and G := GW , the above expressions of R(s, t) and V (t) match
exactly those of zL(s, t) and z(t), respectively, as defined in Louchard (1988),
p. 478. Further, with Q̃ := X̃, (5.3) can be written

E
(
Q̃(s)Q̃(t)

) = zL(s, t) − z(s)z(t). (5.4)

Indeed, the process denoted Q̃ in Louchard (1988) plays the same role as X̃ above,
i.e., the diffusion approximation of Sn (in Louchard (1988), Sn is denoted by Qn,



A new stochastic model 75

and its normalization, F̃n, by Q̃n; the convergence in FDD of Q̃n to Q̃ is estab-
lished in Louchard (1988), Theorem 1).

Whereas, as will be demonstrated in Sections 6 and 7, the diffusion approxima-
tion X can be very easily understood and constructed, its counterpart X̃ is quite
involved, even in the special setting of Louchard (1988), as shown (somewhat in-
formally) next. In order to understand the process Q̃(= X̃), it is decomposed in
Louchard (1988) (Theorem 3) into a sum of two independent, centered Gaussian
processes: Q̃ = Q̃1 + Q̃2. A stochastic integral representation of Q̃1 is presented
in Louchard (1988), equation (9); with f and G as above, and with γ := 1 − G

and τ := F/(1 − F), where F := FQ, it is

Q̃1(t) =
∫ t

0

[
γ (t − u)

√
f (u) − √

τ ′(u)zR(u, t)
]
B1(du), (5.5)

where zR(u, t) := ∫ t
u γ (t − v)f (v)dv and B1 is a standard BM. It is further stated

that “From (9), we derive after some tedious but simple manipulations:”

E
(
Q̃1(s)Q̃1(t)

) =
∫ s

0
γ (s − u)γ (t − u)f (u)du − z(s)z(t) (5.6)

(for 0 ≤ s ≤ t ≤ T ). Turning to the second term in the decomposition of Q̃, that is,
Q̃2, according to Louchard (1988), equation (12) (and with the same notation) it
can be represented

Q̃2(t) =
∫ t

0

√
f (u)γ (t − u)

∫ t

0

√
ρ′(v − u)BT0(du,dv), (5.7)

where ρ := (1−γ )/γ and BT0 is a standard two-parameter BM (Brownian sheet),
independent of B1, from which it is readily concluded (Louchard (1988), equa-
tion (13)) that

E
(
Q̃2(s)Q̃2(t)

) =
∫ s

0
f (u)γ (t − u)

[
1 − γ (s − u)

]
du (5.8)

(for 0 ≤ s ≤ t ≤ T ). From (5.6) and (5.8), it follows (by independence) that

E
[(

Q̃1(s) + Q̃2(s)
)(

Q̃1(t) + Q̃2(t)
)] =

∫ s

0
f (u)γ (t − u)du − z(s)z(t)

= zL(s, t) − z(s)z(t),

as required. While the decomposition Q̃ = Q̃1 + Q̃2 is useful in view of repre-
sentations (5.5) and (5.7), it is evidently quite involved. Returning to the general
setting of the present paper, where σ 2

Y may be strictly positive and (4.5) is not nec-
essarily satisfied, the above suggests that the diffusion approximation X̃ of Sn is
not very attractive.

The general form of the covariance function of X, that is, R(s, t) for 0 ≤ s ≤
t ≤ T , along with Examples 4.1–4.4 already indicate the simplicity, elegance and
importance of this process, that is, the diffusion approximation of SNn . As demon-
strated in the next sections, the special form of R(s, t), as defined in (2.3), provides
a fundamental merit to the process X.
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6 General representations

As shown in (3.8), the process Xn (the normalization of SNn ) has nonpositively
correlated increments. Since Xn and X have the same covariance function, it also
holds that

E
[(

X(v) − X(u)
)(

X(t) − X(s)
)] =

∫ t

s

∫ v

u
−f (x, y)dy dx, (6.1)

for any 0 ≤ s < t ≤ u < v ≤ T . Thus, X belongs to the class, henceforth denoted
NPCI , of centered Gaussian processes with nonpositively correlated increments.
As demonstrated below, the class NPCI is of fundamental importance.

A particularly simple but important subclass of NPCI is the class of centered
Gaussian processes ξ = {ξ(t) : t ∈ I } (where I is an arbitrary interval of the ex-
tended real line) with covariance function Rξ(·, ·) of the form

Rξ(s, t) = a(s)b(t), (6.2)

for all s, t ∈ I such that s ≤ t , where a(·) and b(·) are, respectively, nondecreasing
and nonincreasing nonnegative continuous functions on I . For any such process ξ ,
it holds that

E
[(

ξ(v) − ξ(u)
)(

ξ(t) − ξ(s)
)] = [

a(t) − a(s)
][

b(v) − b(u)
] ≤ 0, (6.3)

for any s, t, u, v ∈ I such that s < t ≤ u < v. So, indeed, ξ ∈ NPCI . It may
be worth noting here that, under mild regularity conditions (and with s, t, u, v as
above),

E
[(

ξ(v) − ξ(u)
)(

ξ(t) − ξ(s)
)] =

∫ t

s

∫ v

u
a′(x)b′(y)dy dx

=
∫ t

s

∫ v

u

∂2

∂x ∂y
Rξ (x, y)dy dx.

Examples of diffusion approximations X with covariance function as in (6.2) ap-
peared in Examples 4.1 and 4.4. The process X = √

2GH of Example 4.1 (where
GH is the H -BB on [0, T ]) has covariance function of the form (6.2) with, say,
a(t) = 2H(t) and b(t) = 1 − H(t), t ∈ [0, T ] (cf. (4.2)). The factorization corre-
sponding to the diffusion approximation of Example 4.4 was partially indicated
in that example; the functions a(·) and b(·) defined below (4.11) indeed satisfy
the required properties stated below (6.2). Another example (which may be some-
how related to (4.13)) is provided by the stationary OU process, that is, the cen-
tered Gaussian process ξ with covariance function Rξ(s, t) = αe−β(t−s) for s ≤ t

(α,β > 0 fixed); here, say, a(t) = αeβt and b(t) = e−βt .
A centered Gaussian process with covariance of the form (6.2) can be simply

expressed in terms of standard BM, B . Indeed, letting

ξ(t) =
{

b(t)B
(
a(t)/b(t)

)
, b(t) > 0,

0, b(t) = 0,
(6.4)
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it is readily verified that E(ξ(s)ξ(t)) = a(s)b(t) for all s, t ∈ I such that s ≤ t .
A simple implication of representation (6.4) is that the process ξ is Markovian.
Further discussion is provided in the Appendix.

In general, however, processes in NPCI do not have covariance as in (6.2).
This is easily concluded for the diffusion approximations X of this paper. Indeed,
formally differentiating R(s, t), for 0 < s < t < T , gives

∂2

∂s ∂t
R(s, t) = −f (s, t). (6.5)

Then, in view of (6.2), writing

−f (s, t) = a′(s)b′(t)

confirms the above assertion about X. [In the “exceptional” Examples 4.1 and 4.4,
f takes the special form f (x, y) = 2h(x)h(y) and f (x, y) = λWfQ(x)eλW xe−λW y,
(x, y) ∈ ET , respectively.]

Despite the previous paragraph, the general form of R(s, t) is simple enough.
In particular, it corresponds to a biconvex covariance, as it satisfies the following
defining conditions (Berman (1978), equations (1.1)–(1.4)):

• R(s, t) ≥ 0 for all s and t in its domain.
• R(s, t) is, for fixed t , nondecreasing in s for s < t .
• R(s, t) is, for fixed s, nonincreasing in t for t > s.
• R(s+h, t +k)−R(s, t +k)−R(s+h, t)+R(s, t) ≤ 0 for s < s+h ≤ t < t +k.

The first three conditions are trivially satisfied; the fourth condition is satisfied
by (6.1). Suppose, as in Berman (1978), Section 2 (with a = 0 and b = T ), that
the function R(s, t) (continuous, defined for 0 ≤ s ≤ t ≤ T ) has the following
derivatives for 0 < s < t < T :

R1 := ∂R

∂s
, R2 := ∂R

∂t
, R12 := ∂2R

∂s∂t
= ∂2R

∂t∂s
. (6.6)

Then, according to Berman (1978), p. 32, the preceding set of conditions on R(s, t)

is equivalent to the following one:

• R(0, T ) ≥ 0.
• R1(s, T ) ≥ 0 for all s.
• R2(0, t) ≤ 0 for all t .
• R12(s, t) ≤ 0 for all s < t .

In the above,

R1(s, T ) := lim
t→T

R1(s, t), R2(0, t) := lim
s→0

R2(s, t). (6.7)
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For R(s, t) as defined in (2.3), it is readily seen that, under mild regularity condi-
tions,

R(0, T ) = 0,

R1(s, T ) = lim
t→T

∫ T

t
f (s, y)dy = 0,

(6.8)
R2(0, t) = lim

s→0
−

∫ s

0
f (x, t)dx = 0,

R12(s, t) = −f (s, t) ≤ 0,

holds for all s < t , in agreement with the preceding set of conditions.
The key result relating to biconvex covariances is Theorem 2.1 of Berman

(1978). Let Z be a N(0,1) RV, B1 and B2 standard BMs on [0, T ], and W a stan-
dard two-parameter BM (Brownian sheet) on [0, T ] × [0, T ], that is, a centered
Gaussian process {W(t1, t2) : t1, t2 ∈ [0, T ]} with covariance given by

E
[
W(s1, s2)W(t1, t2)

] = (s1 ∧ t1)(s2 ∧ t2). (6.9)

It is assumed that Z, B1, B2, and W are mutually independent. By Theorem 2.1
of Berman (1978), in the special case where a = 0 and b = T , and where R(s, t)

corresponds to a general biconvex covariance of a centered Gaussian process X,
the process X admits the representation

X(t) = Z
√

R(0, T ) +
∫ t

0

√
R1(u,T )B1(du)

(6.10)

+
∫ T

t

√−R2(0, v)B2(dv) +
∫ t

0

∫ T

t

√−R12(u, v)W(dv,du),

for 0 ≤ t ≤ T . For R(s, t) as defined in (2.3), where, by (6.8), the first three terms
on the right-hand side of (6.10) are all zero and −R12(s, t) = f (s, t), Theorem 2.1
of Berman (1978) yields as a corollary the following result, which highlights the
general simplicity of the diffusion approximation X considered in this paper.

Proposition 6.1. The diffusion approximation X admits the representation

X(t) =
∫ t

0

∫ T

t

√
f (u, v)W(dv,du), (6.11)

for 0 ≤ t ≤ T , where W is a Brownian sheet on [0, T ] × [0, T ].
Actually, the proof of this proposition can be established, indirectly but instruc-

tively, following the proof of Berman (1978), Theorem 2.1, as follows. The covari-
ance function corresponding to∫ t

0

∫ T

t

√−R12(u, v)W(dv,du)
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is given by

−
∫ s

0

∫ T

t
R12(u, v)dv du,

or

R(s, t) + R(0, T ) − R(s, T ) − R(0, t).

Since the last three terms are all zero, it thus follows, using that −R12(s, t) =
f (s, t), that the covariance function corresponding to the right-hand side of (6.11)
is given by R(s, t), as required.

Remark 6.1. The importance of the class of Gaussian processes with biconvex
covariances is highlighted in the thorough paper Berman (1978). Particularly im-
portant there is Example 2.2 (for its relation to fractional BM with parameter
H < 1/2), to be considered in the Appendix.

Alternatively to representation (6.11), and somewhat more instructively, the dif-
fusion approximation X can be represented in terms of a “modified” inhomoge-
neous Brownian sheet, as described next. Let

CT = {
(x, y) ∈ [0, T )2 : y ≥ x

}
. (6.12)

Define a measure νf on CT by

νf (dx,dy) = f (x, y)dx dy. (6.13)

Then, (CT ,B(CT ), νf ), where B(CT ) is the Borel σ -algebra on CT , is a measure
space with total measure 1 (in particular, finite). Thus, there exists a random set
function Wf : B(CT ) →R such that, for all A,B ∈ B(CT ),

(i) Wf (A) ∼ N(0, νf (A)).
(ii) If A ∩ B = ∅, then Wf (A ∪ B) = Wf (A) + Wf (B) a.s.

(iii) If A ∩ B = ∅, then Wf (A) and Wf (B) are independent.

Indeed, by definition (see, e.g., Adler and Taylor (2007), p. 24), Wf is a Gaussian
white noise (GWN) on CT based on νf . It is directly verified from the defining
conditions that

E
(
Wf (A)Wf (B)

) = νf (A ∩ B), (6.14)

for all A,B ∈ B(CT ). In fact, the symmetric function Rf on B(CT ) × B(CT )

defined by Rf (A,B) = νf (A ∩ B) is nonnegative definite, and hence there exists
a centered Gaussian process on B(CT ) with covariance function Rf ; this process
satisfies (i)–(iii) above, and so can (and will) be identified with the GWN Wf (see,
e.g., Adler and Taylor (2007), Theorem 1.4.3, for the general GWN case).

Now, a two-parameter “modified” inhomogeneous Brownian sheet

Wf = {
Wf (t1, t2) : (t1, t2) ∈ CT

}
(6.15)
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can be defined by means of the GWN {Wf (A) : A ∈ B(CT )} by letting

Wf (t1, t2) = Wf ([0, t1] × [t2, T )
)
, (6.16)

for (t1, t2) ∈ CT . (The term “modified” refers to the “non-typical” rectangles
[0, t1] × [t2, T ).) This defines a centered Gaussian process with covariance

E
[
Wf (s1, s2)W

f (t1, t2)
] = νf ([0, s1 ∧ t1] × [s2 ∨ t2, T )

)
, (6.17)

for (s1, s2), (t1, t2) ∈ CT . (Note that it can be assumed to vanish on the y-axis.)
Finally, the following counterpart of Proposition 6.1 holds.

Proposition 6.2. The diffusion approximation X can be represented in terms of
the “modified” inhomogeneous Brownian sheet Wf , as follows:

X(t) =
{

Wf (t, t), t ∈ [0, T ),

0, t = T .
(6.18)

Indeed, the right-hand side defines a centered Gaussian process on [0, T ] with
covariance

E
[
Wf (s, s)Wf (t, t)

] = νf ([0, s] × [t, T )
)

=
∫ s

0

∫ T

t
f (x, y)dy dx (6.19)

= R(s, t),

for 0 ≤ s ≤ t < T , and, trivially, E(X(s)X(t)) = R(s, t)(= 0) if t = T .

7 Discrete-time construction

The “white noise” representation of Proposition 6.2 gives rise to a very simple
algorithm for generating an exact (up to numerical precision) discrete-time real-
ization of X. Given times

0 = t0 < t1 < t2 < · · · < tm < T,

the aim of this section is to construct a random vector (X1, . . . ,Xm) such that

(X1, . . . ,Xm)
d= (

X(t1), . . . ,X(tm)
)
. (7.1)

This will be done in Algorithm 1, provided that the integrals defining σ 2
i,j in (7.4)

below can be evaluated exactly. [Of course, in special cases (as those of Exam-
ples 4.1 and 4.4) where X can be simply expressed in terms of standard BM, the
construction is straightforward.]

Let, for any i = 1, . . . ,m and j = 1, . . . ,m + 1 − i,

Ai,j =
{

Wf
([ti−1, ti] × [tm+1−j , tm+2−j ]), j > 1,

Wf
([ti−1, ti] × [tm, T )

)
, j = 1,

(7.2)
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where Wf is the GWN from which X is constructed in Proposition 6.2. Note that,
by (6.14),

E(Ai,jAi′,j ′) = 0,

for any distinct pairs (i, j) and (i ′, j ′). Being pairwise uncorrelated and jointly
normal, the Ai,j are mutually independent N(0, σ 2

i,j ) RVs, where

σ 2
i,j =

{
νf ([ti−1, ti] × [tm+1−j , tm+2−j ]), j > 1,

νf ([ti−1, ti] × [tm, T )
)
, j = 1,

(7.3)

that is,

σ 2
i,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ ti

ti−1

∫ tm+2−j

tm+1−j

f (x, y)dy dx, j > 1,

∫ ti

ti−1

∫ T

tm

f (x, y)dy dx, j = 1.
(7.4)

Next, let, for any i = 1, . . . ,m and j = 1, . . . ,m + 1 − i,

Si,j = Wf ([0, ti] × [tm+1−j , T )
)
, (7.5)

and set S0,j = Si,0 = S0,0 = 0. Then, it holds that

Si,j
a.s.= Si−1,j + Si,j−1 − Si−1,j−1 + Ai,j . (7.6)

With X as defined in (6.18), it thus follows from

Si,m+1−i = Wf ([0, ti] × [ti , T )
) = X(ti) (7.7)

that (X(t1), . . . ,X(tm)) admits an O(m2) construction. Moreover, by (7.5), the
(Si,j ) can be used for constructing the “modified” inhomogeneous Brownian sheet
Wf (·, ·) at the points (ti, tm+1−j ). These results are described conveniently in Al-
gorithm 1.

Appendix

This Appendix contains some brief discussions pertinent to the overall paper.
Consider the stochastic processes ai , defined in (2.1). By the definition of

(τ i
1, τ

i
2), it holds that

1[0,t]×[t,T )

(
τ i

1, τ
i
2
) ≡ 1[τ i

1,τ i
2](t),

for t ∈ [0, T ]. Thus, alternatively to (2.1), ai could be defined by

ai(t) = Yi1[0,t]×[t,T )

(
τ i

1, τ
i
2
)
. (A.1)

While (A.1) is not identical to (2.1) (since 1[τ i
1,τ i

2](t) 	≡ 1[τ i
1,τ i

2)(t)), the two defini-
tions are essentially the same (the only difference being the value of the process at
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Algorithm 1: Discrete realization of X and the associated “modified” inho-
mogeneous Brownian sheet Wf

Data: Times 0 = t0 < t1 < t2 < · · · < tm < T .

Result: Arrays X[1..m] and S[0..m,0..m] such that (X[i]) d= (X(ti)) and

(S[i, j ]) d= (Wf (ti, tm+1−j )), i = 1, . . . ,m, j = 1, . . . ,m + 1 − i.
Initialize arrays std[1..m,1..m] and S[0..m,0..m] by setting std[i, j ] equal to√

σ 2
i,j , i = 1, . . . ,m, j = 1, . . . ,m+ 1 − i, and S[i,0] = S[0, j ] = S[0,0] = 0.

for i = 1 to m do
for j = 1 to m + 1 − i do

S[i, j ] = S[i −1, j ]+S[i, j −1]−S[i −1, j −1]+std[i, j ]∗ randn();
/* randn() generates standard normal variates */

end
X[i] = S[i,m + 1 − i];

end

the random time τ i
2, i.e. ai(τ

i
2) = Yi or ai(τ

i
2) = 0, respectively). Accordingly, the

process representing the system size at time t , that is, SNn , could be represented

SNn(t) =
Nn∑
i=1

Yi1[0,t]×[t,T )

(
τ i

1, τ
i
2
)
. (A.2)

With this representation, the process SNn can be described as follows. Suppose that
Nn points are placed independently in the set ET , with the ith point (i = 1, . . . ,Nn)
being placed at (τ i

1, τ
i
2). Associate with each point (τ i

1, τ
i
2) the size Yi . Then the

total size in the rectangle [0, t] × [t, T ) is given by SNn(t). Normalizing (A.2) as
in the definition (2.5) of Xn, the connection to the “white noise” representation
of X in Proposition 6.2 can be easily seen. To emphasize this point, note that
SNn , while being a one-parameter process, can be seen as a two-parameter process
along the diagonal (t, t), t ∈ [0, T ) (with SNn(T ) = 0, by definition); indeed, with
CT as defined in (6.12), the corresponding two-parameter process is the process
(cf. (6.15)–(6.16))

ZNn = {
ZNn(t1, t2) : (t1, t2) ∈ CT

}
defined by

ZNn(t1, t2) =
Nn∑
i=1

Yi1[0,t1]×[t2,T )

(
τ i

1, τ
i
2
)
,

for (t1, t2) ∈ CT . (Thus, ZNn(t, t) = SNn(t) for t ∈ [0, T ).)
The usefulness of considering two-parameter processes along paths (parameter-

ized curves) has been demonstrated in Covo (2011). In fact, Section 5.2 of Covo
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(2011) has inspired the present work. Moreover, that paper has also inspired the
work Covo and Elalouf (2015) (which is most pertinent to Sections 6 and 7 above)
as described briefly below (and as described in Covo and Elalouf (2015) itself,
where further details are given).

As in Covo (2011) (but using different notation), define a decreasing path in
R

2+ as a parameterized curve (a(t), b(t)), t ∈ I , where I is a given interval of
the real line and a(·) and b(·) are, respectively, nondecreasing and nonincreasing
(continuous) functions on I , both strictly positive in the interior of I , and at least
one is not identically constant. Now, let W be a standard two-parameter Brownian
sheet, that is, a centered Gaussian process {W(t1, t2) : t1, t2 ≥ 0} with covariance as
given in (6.9). Then, the one-parameter process {W(a(t), b(t)) : t ∈ I } is referred
to as the Brownian sheet W along the path (a(t), b(t)), t ∈ I . This process is
centered Gaussian with covariance function given, for s, t ∈ I with s ≤ t , by

E
[
W

(
a(s), b(s)

)
W

(
a(t), b(t)

)] = a(s)b(t). (A.3)

(Note that it can be assumed to have continuous paths.)
Brownian sheets along decreasing paths form an important class of centered

Gaussian processes, as indicated by the second and third paragraphs of Section 6
above. (A detailed account is given in Covo (2011), Section 3.) Denote this class
by WDP. By Covo (2011), Theorem 4.1, processes in WDP typically have nonsta-
tionary increments. Particularly notable exceptions are the BB, which, in standard
form, can be represented {W(t,1 − t) : t ∈ [0,1]}, and the stationary OU process,
which can be represented {W(α1eβt , α2e−βt ) : t ∈ I } (say I = R or I = R+). Be-
ing in the class WDP, both processes have nonpositively correlated increments,
corresponding to (6.3) (thus negatively correlated here). Further, they are not mar-
tingales (as is the case in general for processes in WDP when the component b(·)
is not a constant function; cf. Covo (2011), Corollary 2.2). Now, fractional BM
(FBM) with parameter H < 1/2 is also a continuous centered Gaussian process
having stationary and negatively correlated increments, and is not a martingale.
However, it does not belong to the class WDP (indeed, it is not Markovian).

Let BH = {BH(t) : t ≥ 0} denote a FBM with parameter H ∈ (0,1), that is, a
centered Gaussian process with covariance function given, for 0 ≤ s ≤ t , by

E
[
BH(s)BH (t)

] = 1

2

[
s2H + t2H − (t − s)2H ]

. (A.4)

[For H = 1/2, BH is a standard BM, and so has independent increments; for H ∈
(1/2,1), BH has positively correlated increments. Hence, the focus will be on
the case H ∈ (0,1/2), where BH has negatively correlated increments.] While
the covariance function of BH cannot be factorized in the form (A.3), it is still
relatively simple. Thus, in view of the previous paragraph, it is natural to check
whether BH , for H < 1/2, can be represented as an inhomogeneous Brownian
sheet along a decreasing path. This is what inspired the paper Covo and Elalouf
(2015), whose main results are considered briefly next.
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First, observe that the term s2H/2 on the right-hand side of (A.4) corresponds
to the covariance function of the process YH = {YH (t) : t ≥ 0} defined by

YH (t) = B
(
t2H/2

)
, (A.5)

where B is a standard BM. [Thus, YH is a (nonlinearly) scaled BM.] It is shown
in Covo and Elalouf (2015) that the complementary term in (A.4), that is, [t2H −
(t − s)2H ]/2, corresponds to a covariance function (of a Gaussian process) for
H < 1/2 but not for H > 1/2. Hence, the following decomposition in law holds
true in the H < 1/2 case:

BH d= YH + ZH, (A.6)

where ZH = {ZH(t) : t ≥ 0} is a centered Gaussian process with covariance func-
tion given, for 0 ≤ s ≤ t , by

E
[
ZH(s)ZH (t)

] = 1

2

[
t2H − (t − s)2H ]

. (A.7)

[In (A.6), d= means equality in FDD.] Clearly, the process ZH can be considered
as the fundamental part of FBM BH .

Remark A.1. Despite its notable simplicity, decomposition (A.6) appears to be
unrecognized in the literature. This point is highlighted in Covo and Elalouf (2015)
by comparison with known decompositions of BH (in particular the stochastic
integral decomposition by which BH is commonly defined). However, see Re-
mark A.2 below.

Now, let (t, ϕ(t)), t ≥ 0, be a decreasing path (consider e.g., ϕ(t) = e−t ). Under
mild assumptions on ϕ, it is shown in Covo and Elalouf (2015) that ZH can be
represented as

ZH(t) = WνH
ϕ

([0, t] × [
0, ϕ(t)

])
, (A.8)

with WνH
ϕ a GWN based on a specified measure νH

ϕ depending on H and ϕ. While
this representation has the advantage of working with “typical” rectangles (i.e., of
the form [0, t1] × [0, t2]), the general form of νH

ϕ is rather cumbersome and not
instructive. [For certain choices of ϕ, e.g., ϕ(t) = e−t , νH

ϕ has a relatively simple
expression.] In any case, as demonstrated in Covo and Elalouf (2015), the under-
lying function ϕ has no intrinsic meaning; in particular, Algorithm 1 of Covo and
Elalouf (2015) for generating discrete realization of ZH based on representation
(A.8) is invariant to the choice of ϕ.

The study related to representation (A.8) has led Covo and Elalouf (2015) to the
counterpart representation

ZH(t) = WνH ([0, t] × [t,∞)
)
, (A.9)
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with WνH
a GWN based on the measure νH concentrated on {(x, y) : y > x > 0}

and given there by

νH (dx,dy) = αH (y − x)2H−2 dx dy, (A.10)

where

αH = H(1 − 2H).

While this representation has the drawback of working with the “non-typical” rect-
angles [0, t] × [t,∞), it is overall very simple and instructive. It leads to the same
algorithm for generating discrete realization of ZH as its counterpart (A.8).

Thus, with (A.9), ZH admits the same type of “white noise” representation as
does the diffusion approximation X in Proposition 6.2. There is, however, one
essential difference between the two cases. Whereas the underlying measure νf in
(6.13) is finite—with total measure 1, being simply the distribution of (τ i

1, τ
i
2)—

its counterpart νH in (A.10) is infinite on any neighborhood of each point of the
diagonal (x, x), x ≥ 0.

Not surprisingly in view of the first sentence of the previous paragraph, Algo-
rithm 1 of the present paper is, up to the definition of the variance coefficients σ 2

i,j ,

the same as Algorithm 1 of Covo and Elalouf (2015). Moreover, the σ 2
i,j as defined

(explicitly) in Covo and Elalouf (2015) can be expressed implicitly (analogously
to (7.3) above) as

σ 2
i,j =

{
νH ([ti−1, ti] × [tm+1−j , tm+2−j ]), j > 1,

νH ([ti−1, ti] × [tm,∞)
)
, j = 1.

Thus, those algorithms are the same up to the underlying measures, νH and νf .
A key point indicated briefly in the Addendum of Covo and Elalouf (2015) is

considered next. Denote by R̃ the covariance function of BH . Suppose, as above,
that H < 1/2. Using the partial derivatives notation of Section 6 ((6.6), (6.7)), it
holds that

R̃(0,∞) := lim
t→∞ R̃(0, t) = 0,

R̃1(s,∞) = lim
t→∞

[
Hs2H−1 + H(t − s)2H−1] = Hs2H−1 ≥ 0,

(A.11)
R̃2(0, t) = lim

s→0
H

[
t2H−1 − (t − s)2H−1] = 0,

R̃12(s, t) = −αH (t − s)2H−2 ≤ 0,

for all s < t , thus showing that R̃ is biconvex. Then, by (6.10) (i.e., Theorem 2.1
of Berman (1978)), BH admits the representation

BH(t) =
∫ t

0

√
R̃1(u,∞)B(du) +

∫ t

0

∫ ∞
t

√
−R̃12(u, v)W(dv,du)

(A.12)

=
∫ t

0

√
Hu2H−1B(du) +

∫ t

0

∫ ∞
t

√
αH (v − u)2H−2W(dv,du),
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where W is a standard Brownian sheet independent of standard BM B . Note that
decomposition (A.12) of BH corresponds to the decomposition BH = YH + ZH ,
with YH the scaled BM defined in (A.5) and ZH as represented in (A.9). Decom-
position (A.12), it should be stressed, has not been noted explicitly in Covo and
Elalouf (2015).

Remark A.2. Actually, the fact that the covariance function of FBM BH , for H <

1/2, is biconvex implicitly appears in Example 2.2 of Berman (1978). Indeed, for
this process, all the required assumptions in that example are satisfied, as follows.
First, it is centered Gaussian with stationary increments, and BH(0) = 0 almost
surely. Second, define g(t) = E[(BH (t))2], so that, with R̃ as above,

R̃(s, t) = 1

2

[
g(t) + g(s) − g(t − s)

]
.

Finally, since g(t) = t2H , g is concave and nondecreasing. Then, as shown in
Berman (1978), Example 2.2, it follows that R̃ is biconvex.
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