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Strong rate of tamed Euler–Maruyama approximation for
stochastic differential equations with Hölder

continuous diffusion coefficient

Hoang-Long Ngo and Duc-Trong Luong
Hanoi National University of Education

Abstract. We study the strong rate of convergence of the tamed Euler–
Maruyama approximation for one-dimensional stochastic differential equa-
tions with superlinearly growing drift and Hölder continuous diffusion coef-
ficients.

1 Introduction

Let consider the following stochastic differential equation (SDE)

Xt = x0 +
∫ t

0
b(s,Xs) ds +

∫ t

0
σ(s,Xs) dWs, x0 ∈ R, t ∈ [0, T ], (1.1)

where (Wt)0≤t≤T is a standard Brownian motion defined on a filtered probability
space (�,F, (Ft )t≥0,P).

It is well known that when b and σ are Lipschitz continuous, the standard Euler–
Maruyama approximation scheme for (Xt) has a strong rate of convergence of or-
der 1/2 (see Kloeden and Platen (1992)). Recently, there have been extensive stud-
ies on the strong approximations of SDE (1.1) with non-Lipschitz coefficients. The
rates of Euler–Maruyama scheme for SDEs with Hölder continuous diffusion co-
efficients have been investigated by Yan (2002); Gyöngy and Rásonyi (2011); Ngo
and Taguchi (2016) (see also Alfonsi (2005); Berkaoui, Bossy and Diop (2008);
Dereich, Neuenkirch and Szpruch (2012) for many strong approximation schemes
proposed for Cox–Ingersoll–Ross type model). Hairer, Hutzenthaler and Jentzen
(2015) have given an example of SDE with globally bounded and smooth coef-
ficients such that the standard Euler–Maruyama approximation converges to the
exact solution of the SDE in both strong and weak senses but there is no posi-
tive polynomial rate of convergence. Moreover, Hutzenthaler, Jentzen and Kloeden
(2011) have showed that if b is superlinear growth then the absolute moments of
the standard Euler–Maruyama approximated solution may diverge to infinity while
the ones of the true solution are finite. Therefore, the standard Euler–Maruyama
scheme may fail to converge in Lp sense. There are basically two methods to over-
come this difficulty. The first method named implicit Euler–Maruyama scheme
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was introduced by Higham, Mao and Stuart (2002), and Hu (1996). A drawback
of the implicit scheme is that at each simulation step, one needs to solve an alge-
braic equation which may not have an explicit solution. Hutzenthaler, Jentzen and
Kloeden (2012) and Sababis (2013) have recently presented the second method
named the tamed Euler scheme. It is an explicit scheme in which the drift coeffi-
cient is modified so that it is bounded. It has been shown that when the diffusion
σ is Lipschitz continuous and the drift b is superlinear growth and one-sided Lip-
schitz, the tamed Euler scheme has a strong rate of order 1/2.

In this article, we study the strong convergence rate of the tamed Euler–
Maruyama schemes applied to the SDE (1.1) where b is superlinear growth and
σ is Hölder continuous. This partly generalizes the results in Gyöngy and Rásonyi
(2011); Hutzenthaler, Jentzen and Kloeden (2012) in the one-dimensional frame-
work. The main contributions of the current paper are:

• Establishing a new sufficient condition for the existence and uniqueness of the
strong solution for one-dimensional SDEs with locally Hölder continuous dif-
fusion coefficient and superlinearly growing drift coefficient;

• Showing the strong convergence (in Lp sense) of the tamed Euler–Maruyama
approximation for these SDEs;

• Obtaining the order of these approximation errors.

The rest of the paper is organized as follows. The next section introduces some
notations and assumptions. All main results are presented in Section 3 while the
proofs are given in Section 4.

2 Notations and assumptions

For integers n ≥ 1, we define ηn(s) : [0;T ] → [0;T ] by ηn(t) = kT
n

:= t
(n)
k if

t ∈ [ kT
n

; (k+1)T
n

). The tamed Euler–Maruyama approximation of equation (1.1) is
defined as follows

X
(n)
t = x0 +

∫ t

0
bn

(
s,X

(n)
ηn(s)

)
ds +

∫ t

0
σ

(
s,X

(n)
ηn(s)

)
dWs, t ∈ [0, T ] (2.1)

with bn(t, x) = b(t,x)

1+n−λ|b(t,x)| for some λ ∈ (0; 1
2 ]. Note that if b is replaced by bn

in (2.1) then X(n) is called the standard Euler–Maruyama approximation.
We will make the following assumptions:

A1. There exists a positive constant L such that

xb(t, x) ∨ ∣∣σ(t, x)
∣∣2 ≤ L

(
1 + |x|2)

for any x ∈ R and t ∈ [0;T ].
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A2. b is one-sided Lipschitz: there exists a positive constant L such that

(x − y)
(
b(t, x) − b(t, y)

) ≤ L|x − y|2
for any x, y ∈ R and t ∈ [0;T ].

A3. There exist positive constants L and l such that∣∣b(t, x) − b(t, y)
∣∣ ≤ L

(
1 + |x|l + |y|l)|x − y|,

and ∣∣b(t, x)
∣∣ ≤ L

(
1 + |x|l+1)

for any x, y ∈ R and t ∈ [0;T ].
A4. σ is (α + 1

2)-Hölder continuous: there exist positive constants L and α ∈
(0, 1

2 ] such that
∣∣σ(t, x) − σ(t, y)

∣∣ ≤ L|x − y|1/2+α

for any x, y ∈ R and t ∈ [0;T ].
A5. b is locally Lipschitz and locally bounded: for any R > 0, there exists a posi-

tive constant LR > 0 such that∣∣b(t, x) − b(t, y)
∣∣ ≤ LR|x − y|

and |b(t, x)| ≤ LR for all |x| ∨ |y| ≤ R and t ∈ [0, T ].
A6. σ is locally (α + 1

2)-Hölder continuous: for any R > 0, there exist positive
constants LR and α ∈ (0, 1

2 ] such that
∣∣σ(t, x) − σ(t, y)

∣∣ ≤ LR|x − y|1/2+α

for all |x| ∨ |y| ≤ R and t ∈ [0, T ].
It is clear that the assumptions A3 and A4 imply the assumptions A5 and A6,
respectively.

3 Main results

The existence and uniqueness of solution for SDEs with Hölder continuous diffu-
sion coefficient and bounded measurable drift has been established in Veretennikov
(1980) (see also Gyöngy and Krylov (1996); Yamada and Watanabe (1971)). In the
following, we show the existence and uniqueness of solution to equation (1.1) un-
der assumptions A1, A5 and A6.

Theorem 3.1.

(i) Suppose that A1, A5, A6 hold, and equation (1.1) has a solution (Xt)t∈[0,T ]
then it is the unique solution.
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(ii) Suppose that A1, A5, A6 hold, and there exist positive constants C and l

such that

sup
t∈[0,T ]

∣∣b(t, x)
∣∣ ≤ C

(
1 + |x|l),

then equation (1.1) has a strong solution.

Example 3.1. For clarity of exposition we consider the following SDE

Xt = x0 +
∫ t

0

(
aXs − bX3

s

)
ds +

∫ t

0
σ |Xs − K|1/2+α, (3.1)

where b is a non-negative constant, α ∈ [0, 1
2 ] and x0, a, σ,K ∈ R. It is straightfor-

ward to verify that coefficients of this SDE satisfy assumptions A1–A4. Therefore
equation (3.1) has a unique strong solution. If b > 0, it follows from Theorem 2.1
in Hutzenthaler, Jentzen and Kloeden (2011) that the standard Euler–Maruyama
approximated solution of (3.1) does not have a finite moment of any order p ≥ 1
while Xt ’s have finite moments of all order (Lemma 4.1). It means that the standard
Euler–Maruyama approximation for equation (3.1) does not converge in strong
sense.

In the following, we always assume that the equation (1.1) has a unique strong
solution. Moreover, we choose λ ∈ [α, 1

2 ] for the tamed Euler–Maruyama approx-
imation (2.1).

Theorem 3.2. Suppose that A1–A4 hold, then there is a constant C > 0 indepen-
dent of n such that

sup
τ∈T

E
[∣∣Xτ − X(n)

τ

∣∣] ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C

nα
, if α ∈

(
0,

1

2

]
,

C

logn
, if α = 0,

where T is the set of all stopping times τ with respect to the filtration (Ft ) satisfy-
ing τ ≤ T .

Corollary 3.3. Suppose that A1–A4 hold, then there is a constant C > 0 indepen-
dent of n such that

E

[
sup

0≤t≤T

∣∣Xt − X
(n)
t

∣∣] ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C

n2α2 , if α ∈
(

0,
1

2

]
,

C√
logn

, if α = 0.
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This proof is similar to the one of Corollary 2.3 in Gyöngy and Rásonyi (2011)
and will be omitted.

The following estimates for the moments of strong approximation errors play an
important role in designing a Multilevel Monte Carlo scheme to estimate E[F(X)]
for some function F defined on C[0, T ] (see Giles (2008)).

Theorem 3.4. Suppose that A1–A4 hold, then for all p > 0, there is a constant
Cp > 0 depend on p and independent of n such that

E

[
sup

0≤t≤T

∣∣Xt − X
(n)
t

∣∣p]
≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Cp

np/2 , if α = 1

2
,

Cp

nα
, if α ∈

(
0; 1

2

)
and p ≥ 2,

Cp

logn
, if α = 0 and p ≥ 2.

We note here that the strong rates of the tamed Euler–Maruyama approximation
obtained in Theorems 3.2, 3.4 and Corollary 3.3 are the same as the ones of the
standard Euler–Maruyama approximation applied to SDEs with Hölder continuous
diffusion coefficient and linear growth drift (see Gyöngy and Rásonyi (2011)).

Finally, we show the convergence of tamed Euler–Maruyama scheme under the
local Lipschitz condition on b and local Hölder continuous condition on σ .

Theorem 3.5. Suppose that A1, A5 and A6 hold. Then for any p > 0,

lim
n→∞E

[
sup

0≤t≤T

∣∣Xt − X
(n)
t

∣∣p]
= 0.

4 Proofs

In the following we will first prove Theorems 3.2–3.5. The proof of Theorem 3.1
will be given in Sections 4.5 and 4.6.

Throughout this section, C denotes some positive constants which may depend
on L, l, T ,α and x0 but independent of n and t . When C depends on p or R, we
denote C by Cp or CR , respectively.

4.1 Some auxiliary estimates

Denote U
(n)
t = X

(n)
t −X

(n)
ηn(t) and Y

(n)
t = Xt −X

(n)
t . We need the following bounds

on moments of X and X(n) which are direct consequences of Lemmas 3.1–3.3 in
Sababis (2013).
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Lemma 4.1. Suppose that A1 holds, then for any p > 0, there exists a constant
Cp > 0 such that

E

[
sup

0≤t≤T

|Xt |p
]
∨ sup

n≥1
E

[
sup

0≤t≤T

∣∣X(n)
t

∣∣p]
< Cp,

and

sup
0≤t≤T

E
[∣∣U(n)

t

∣∣p] ≤ Cp

np/2 . (4.1)

Lemma 4.2. Suppose that A1 and A3 hold, then for any p > 0, there exist a
constant Cp > 0 such that∫ T

0
E

[∣∣b(
s,X(n)

s

) − b
(
s,X

(n)
ηn(s)

)∣∣p]
ds ≤ Cp

np/2 .

Proof. It is enough to prove the lemma for p > 1. By A3, we have∣∣b(
s,X(n)

s

) − b
(
s,X

(n)
ηn(s)

)∣∣p ≤ Cp

(
1 + ∣∣X(n)

ηn(s)

∣∣lp + ∣∣U(n)
s

∣∣lp)∣∣U(n)
s

∣∣p.

According to Lemma 4.1,

E
[∣∣X(n)

ηn(s)

∣∣lp∣∣U(n)
s

∣∣p] ≤ 1

np/2E
[∣∣X(n)

ηn(s)

∣∣2lp] + np/2
E

[∣∣U(n)
s

∣∣2p] ≤ Cp

np/2 .

The lemma is proved completely. �

We borrow the following result form Gyöngy and Rásonyi (2011).

Lemma 4.3. Let (Xt)t≥0 be a nonnegative stochastic process and set Vt =
sups≤t Xs . Assume that for some p > 0, q ≥ 1, ρ ∈ [1, q] and constants K and
	 ≥ 0, it holds

E
[
V

p
t

] ≤ KE

(∫ t

0
Vs ds

)p

+ KE

(∫ t

0
Xρ

s

)p/q

+ 	 < ∞ for any t ≥ 0.

Then for each T ≥ 0, the following statements hold.

(i) If ρ = q , then there is a constant CT such that E[V p
T ] ≤ CT 	.

(ii) If p ≥ q or both ρ < q and p > q + 1 − ρ hold, then the exist constants C1
and C2 depending on K,T ,ρ, q and p such that E[V p

T ] ≤ C1	+C2
∫ T

0 E[Xs]ds.

We will repeatedly use the approximation technique of Yamada and Watan-
abe (see Yamada and Watanabe (1971); Gyöngy and Rásonyi (2011)). For each
δ > 1 and ε > 0, there exists a continuous function ψδε :R →R

+ with suppψδε ⊂
[ε/δ; ε] such that

∫ ε
ε/δ ψδε(z) dz = 1 and 0 ≤ ψδε(z) ≤ 2

z log δ
for z > 0. Define

φδε(x) :=
∫ |x|

0

∫ y

0
ψδε(z) dz dy, x ∈R.

It is easy to verify that φδε has the following useful properties: for any x ∈ R:
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(i) φ′
δε(x) = x

|x|φ
′
δε(|x|),

(ii) 0 ≤ |φ′
δε(x)| ≤ 1,

(iii) |x| ≤ ε + φδε(x),

(iv)
φ′

δε(|x|)
|x| ≤ δ

ε
,

(v) φ′′
δε(|x|) = ψδε(|x|) ≤ 2

|x| log δ
1[ε/δ;ε](|x|),

where φ′
δε and φ′′

δε denote the first and second order derivatives of φ with respect
to x, respectively.

Applying Itô’s formula for φδε(Y
(n)
t ) and using (iii), we get

∣∣Y (n)
t

∣∣ ≤ ε +
∫ t

0
φ′

δε

(
Y (n)

s

)[
b(s,Xs) − bn

(
s,X

(n)
ηn(s)

)]
ds

+ 1

2

∫ t

0
φ′′

δε

(
Y (n)

s

)[
σ(s,Xs) − σ

(
s,X

(n)
ηn(s)

)]2
ds (4.2)

+
∫ t

0
φ′

δε

(
Y (n)

s

)[
σ(s,Xs) − σ

(
s,X

(n)
ηn(s)

)]
dWs.

The estimate (4.2) will play a central role in our argument.

4.2 Proof of Theorem 3.2

We will use the estimate (4.2) to bound E[|Xτ − X
(n)
τ |] = E[|Y (n)

τ |]. Since the
expectation of the last integral on the right-hand side of (4.2) is zero, we only need
to bound the first and second integrals. We rewrite the first integral in (4.2) as

S1 =
∫ t

0

φ′
δε(|Y (n)

s |)
|Y (n)

s |
(
Xs − X(n)

s

)[
b(s,Xs) − b

(
s,X(n)

s

)]
ds

+
∫ t

0
φ′

δε

(
Y (n)

s

)[
b
(
s,X(n)

s

) − b
(
s,X

(n)
ηn(s)

)]
ds

+
∫ t

0
φ′

δε

(
Y (n)

s

)[
b
(
s,X

(n)
ηn(s)

) − bn

(
s,X

(n)
ηn(s)

)]
ds.

It follows from assumptions A2, A3, and the estimate (ii) that

S1 ≤ L

∫ t

0

φ′
δε(|Y (n)

s |)
|Y (n)

s |
∣∣Y (n)

s

∣∣2 ds +
∫ t

0

∣∣b(
s,X(n)

s

) − b
(
s,X

(n)
ηn(s)

)∣∣ds

+
∫ t

0

n−λ|b(s,X
(n)
ηn(s))|2

1 + n−λ|b(s,X
(n)
ηn(s))|

ds

≤ L

∫ t

0

∣∣Y (n)
s

∣∣ds +
∫ T

0

∣∣b(
s,X(n)

s

) − b
(
s,X

(n)
ηn(s)

)∣∣ds (4.3)

+ 2L2

nλ

∫ T

0

(
1 + ∣∣X(n)

ηn(s)

∣∣2l+2)
ds.
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Next, thanks to condition A4 and the estimate (v), the second integral in (4.3) is
bounded by

∫ t

0

22αL2

|Y (n)
s log δ|1[ε/δ≤|Y (n)

s |≤ε]
[∣∣Y (n)

s

∣∣1+2α + ∣∣U(n)
s

∣∣1+2α]
ds

(4.4)

≤ 22αL2ε2αT

log δ
+

∫ T

0

22αL2δ

ε log δ

∣∣U(n)
s

∣∣1+2α
ds.

It follows from (4.2), (4.3) and (4.4) that

∣∣Y (n)
t

∣∣ ≤ ε + L

∫ t

0

∣∣Y (n)
s

∣∣ds +
∫ T

0

∣∣b(
s,X(n)

s

) − b
(
s,X

(n)
ηn(s)

)∣∣ds

+ 2L2

nλ

∫ T

0

(
1 + ∣∣X(n)

ηn(s)

∣∣2l+2)
ds

(4.5)

+ 22α+1L2
[
ε2αT

log δ
+

∫ T

0

δ

ε log δ

∣∣U(n)
s

∣∣1+2α
ds

]

+
∫ t

0
φ′

δε

(
Y (n)

s

)[
σ(s,Xs) − σ

(
s,X

(n)
ηn(s)

)]
dWs.

Let Z
(n)
t := |Y (n)

t∧τ | for any stopping time τ ≤ T . It implies from (4.5) that

E
[
Z

(n)
t

] ≤ ε + C

[∫ t

0
E

[
Z(n)

s

]
ds +

∫ T

0
E

[∣∣b(
s,X(n)

s

) − b
(
s,X

(n)
ηn(s)

)∣∣]ds

]

+ Cn−λ

[∫ T

0

(
1 +E

[∣∣X(n)
ηn(s)

∣∣2l+2])
ds

]

+ C

[
ε2α

log δ
+

∫ T

0

δ

ε log δ
E

[∣∣U(n)
s

]∣∣1+2α
ds

]
.

Thanks to Lemmas 4.1 and 4.2, we have

E
[
Z

(n)
t

] ≤ ε + C

{∫ t

0
E

[
Z(n)

s

]
ds + 1

nλ
+ ε2α

log δ
+ δ

ε log δ

1

n1/2+α

}
.

By Gronwall’s inequality

E
[
Z

(n)
t

] ≤ C

{
ε + 1

nλ
+ ε2α

log δ
+ δ

ε log δ

1

n1/2+α

}
.

Case 1: α ∈ (0; 1
2 ]. By choosing ε = 1√

n
and δ = 2, we obtain E[Z(n)

t ] ≤ C
nα .

Let t ↑ T then

sup
τ∈T

E
[∣∣Xτ − X(n)

τ

∣∣] ≤ C

nα
.
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Case 2: α = 0. By choosing ε = 1
logn

and δ = n1/3, we obtain E[Z(n)
t ] ≤ C

logn
.

Let t ↑ T then

sup
τ∈T

E
[∣∣Xτ − X(n)

τ

∣∣] ≤ C

logn
,

and, thus we get the desired result.

4.3 Proof of Theorem 3.4

The proof of this theorem is similar to the one of Theorem 3.2, except the fact that
we need to take care of the supremum of the stochastic integral in (4.2).

It is enough to prove the theorem for p ≥ 2. By (4.5), Hölder’s inequality, we
have

E

[
sup

0≤u≤t

∣∣Y (n)
u

∣∣p]

≤ Cpεp + Cp

[
E

[(∫ t

0
sup

0≤u≤s

∣∣Y (n)
u

∣∣ds

)p]

+
∫ T

0
E

[∣∣b(
s,X(n)

s

) − b
(
s,X

(n)
ηn(s)

)∣∣p]
ds

]

(4.6)

+ Cpn−pλ

[∫ T

0

(
1 +E

[∣∣X(n)
ηn(s)

∣∣p(2l+2)])
ds

]

+ Cp

[
ε2pα

(log δ)p
+

∫ T

0

δp

εp(log δ)p
E

[∣∣U(n)
s

∣∣p(1+2α)]
ds

]

+ CpE

[
sup

0≤u≤t

∣∣∣∣
∫ u

0
φ′

δε

(
Y (n)

s

)[
σ(s,Xs) − σ

(
s,X

(n)
ηn(s)

)]
dWs

∣∣∣∣
p]

.

Applying Burkholder–Davis–Gundy’s inequality, Hölder’s inequality and Lem-
ma 4.1, the last expectation in (4.6) is less than

E

[∣∣∣∣
∫ t

0

[
φ′

δε

(
Y (n)

s

)]2[
σ(s,Xs) − σ

(
s,X

(n)
ηn(s)

)]2
ds

∣∣∣∣
p/2]

≤ Cp

{
E

[∫ t

0

∣∣Y (n)
s

∣∣1+2α
ds

]p/2

+ 1

np(1+2α)/4

}
.

This estimate together with Lemmas 4.1 and 4.2 implies

E

[
sup

0≤u≤t

∣∣Y (n)
u

∣∣p]

≤ Cp

{
εp +E

[∫ t

0
sup

0≤u≤s

∣∣Y (n)
u

∣∣ds

]p

+ 1

npλ
+ ε2pα

(log δ)p
(4.7)
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+ δp

εp(log δ)p
· 1

np(1+2α)/2

+E

[∫ t

0

∣∣Y (n)
s

∣∣1+2α
ds

]p/2

+ 1

np(1+2α)/4 + 1

np/2

}
.

By choosing ε = 1√
n

and δ = 2 when α ∈ (0, 1
2 ]; and ε = 1

logn
and δ = n1/3 when

α = 0 and applying Lemma 4.3 together with Theorem 3.2, we get the desired
result.

4.4 Proof of Theorem 3.5

We will use a localization technique. For each R > 0, we denote τR = inf{t ≥
0 : |Xt | ≥ R}, ρnR = inf{t ≥ 0 : |X(n)

t | ≥ R} and νnR = τR ∧ ρnR , and χ(n)(s) =
Y

(n)
s∧νnR

= Xs∧νnR
− X

(n)
s∧νnR

. We recall the following result form Sababis (2013).

Lemma 4.4. Suppose that A1 holds. Then for any R > 0, q > p > 2 and κ > 0,
one has

E

[
sup

0≤t≤T

∣∣Y (n)
t

∣∣p]
≤ κp

q
Cq + q − p

qκp/(q−p)Rp
Cp +E

[
sup

0≤t≤T

∣∣χ(n)
t

∣∣p]
.

Furthermore, suppose that A4 holds. Then for any R > 0, there is a Cp(R) > 0
such that ∫ T

0
E

[∣∣b(
s,X(n)

s

) − b
(
s,X

(n)
ηn(s)

)∣∣p1(s≤νnR)

]
ds ≤ CpL

p
R

np/2 .

The proof of Theorem 3.5 is divided into three steps.

Step 1: We will show that sup0≤t≤T E[|χ(n)(t)|] → 0 as n → ∞. Indeed,
from (4.2) we have

∣∣χ(n)
t

∣∣ ≤ ε +
∫ t

0
φ′

δε

(
Y (n)

s

)[
b(s,Xs) − bn

(
s,X

(n)
ηn(s)

)]
1[s≤νnR] ds

+ 1

2

∫ t

0
φ′′

δε

(
Y (n)

s

)[
σ(s,Xs) − σ

(
s,X

(n)
ηn(s)

)]21[s≤νnR] ds (4.8)

+
∫ t

0
φ′

δε

(
Y (n)

s

)[
σ(s,Xs) − σ

(
s,X

(n)
ηn(s)

)]
1[s≤νnR] dWs.

A similar argument as in (4.3) and condition A5 imply that∫ t

0
φ′

δε

(
Y (n)

s

)[
b(s,Xs) − bn

(
s,X

(n)
ηn(s)

)]
1[s≤νnR] ds

≤ LR

∫ t

0

∣∣χ(n)
s

∣∣ds +
∫ T

0

∣∣b(
s,X(n)

s

) − b
(
s,X

(n)
ηn(s)

)∣∣1[s≤νnR] ds (4.9)

+ CR

nλ
.



34 H.-L. Ngo and D.-T. Luong

Thanks to condition A6, we have∫ t

0
φ′′

δε

(
Y (n)

s

)[
σ(s,Xs) − σ

(
s,X

(n)
ηn(s)

)]21[s≤νnR] ds

(4.10)

≤ CRε2α

log δ
+

∫ T

0

CRδ

ε log δ

∣∣U(n)
s

∣∣1+2α
ds.

It follows from (4.8), (4.9) and (4.10) that
∣∣χ(n)

t

∣∣ ≤ ε + CR

[∫ t

0

∣∣χ(n)
s

∣∣ds +
∫ T

0

∣∣b(
s,X(n)

s

) − b
(
s,X

(n)
ηn(s)

)∣∣1[s≤νnR] ds

]

+ CR

[
n−λ + ε2α

log δ
+

∫ T

0

δ

ε log δ

∣∣U(n)
s

∣∣1+2α
ds

]
(4.11)

+
∫ t

0
φ′

δε

(
Y (n)

s

)[
σ(s,Xs) − σ

(
s,X

(n)
ηn(s)

)]
1[s≤νnR] dWs.

Taking expectation both sides of (4.11) and applying Lemmas 4.1 and 4.4, we get

E
[∣∣χ(n)

t

∣∣] ≤ ε + CR

[∫ t

0
E

[∣∣χ(n)
s

∣∣]ds + 1

nλ
+ ε2α

log δ
+ δ

εn1/2+α log δ

]
.

By Gronwall’s inequality

E
[∣∣χ(n)

t

∣∣] ≤ CR

[
ε + 1

nλ
+ ε2α

log δ
+ δ

εn1/2+α log δ

]
.

Letting n → ∞ and then ε → 0, we conclude step 1.
Step 2: We will show that limn→∞E[sup0≤t≤T |χ(n)

t |p] = 0. It follows
from (4.11), Lemmas 4.1, 4.4 and Burkholder–Davis–Gundy’s inequality that
E[sup0≤s≤t |χ(n)

s |p] is less than

CR,p

[
ε +

∫ t

0
sup

0≤u≤s

E
[∣∣χ(n)

u

∣∣p]
ds + 1

npλ
+ ε2pα

(log δ)p
+ δp

εp(log δ)pnp(1/2+α)

]

(4.12)

+ CR,pE

[∣∣∣∣
∫ t

0

[
φ′

δε

(
Y (n)

s

)[
σ(s,Xs) − σ

(
s,X

(n)
ηn(s)

)]
1[s≤νnR]

]2
ds

∣∣∣∣
p/2]

.

Thanks to assumption A6, the last expectation is less than

E

[∣∣∣∣
∫ t

0

∣∣Xs − X
(n)
ηn(s)

∣∣1+2α1[s≤νnR] ds

∣∣∣∣
p/2]

≤ CR,pE

[∣∣∣∣
∫ t

0

∣∣Y (n)
s

∣∣1+2α1[s≤νnR] ds

∣∣∣∣
p/2]

(4.13)

+ CR,p

∫ t

0
E

[∣∣U(n)
s

∣∣p(1/2+α)
ds

]

≤ CR,pE

[∣∣∣∣
∫ t

0

∣∣χ(n)
s

∣∣1+2α
ds

∣∣∣∣
p/2]

+ CR,p

np(1+2α)/4 .
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It follows from (4.12) and (4.13) that E[sup0≤s≤t |χ(n)
s |p] is bounded by

CR,p

(
ε +

∫ t

0
sup

0≤u≤s

E
[∣∣χ(n)

u

∣∣p ds
] +E

[∣∣∣∣
∫ t

0

∣∣χ(n)
s

∣∣1+2α
ds

∣∣∣∣
p/2]

+ 1

npλ
+ ε2pα

(log δ)p
+ δp

εp(log δ)pnp(1/2+α)
+ CR,p

np(1+2α)/4

)
.

By applying Lemma 4.3 and following a similar argument as in Step 1, we finish
Step 2.

Step 3: We will show that limn→∞E[sup0≤t≤T |Y (n)
t |p] = 0. It follows from

Lemma 4.4 and Step 2 that

lim sup
n→∞

E

[
sup

0≤t≤T

∣∣Y (n)
t

∣∣p]
≤ κp

q
Cq + q − p

qκp/(q−p)Rp
Cp.

Let R → ∞, then lim supn→∞E[sup0≤t≤T |Y (n)
t |p] ≤ κp

q
Cq . Finally, let κ ↓ 0, we

have limn→∞E[sup0≤t≤T |Y (n)
t |p] = 0. The theorem is completely proved.

4.5 Proof of Theorem 3.1(i)

Assume that X′
t is another solution of equation (1.1), we will show that E[|Xt −

X′
t |] = 0 for all t ∈ [0, T ], which implies the uniqueness of solution.
By following Lemma 4.1, we have

E

[
sup

0≤t≤T

|Xt |p
]
∧E

[
sup

0≤t≤T

∣∣X′
t

∣∣p]
≤ Cp, (4.14)

where p > 0 and Cp is a positive constant. For any R > 0, we put θR = inf{t ≥ 0 :
|Xt | ∨ |X′

t | ≥ R}. Since Xt,X
′
t are solutions of (1.1),

Xt − X′
t =

∫ t

0

[
b(s,Xs) − b

(
s,X′

s

)]
ds +

∫ t

0

[
σ(s,Xs) − σ

(
s,X′

s

)]
dWs.

Apply Itô’s formula for φδε(Xt − X′
t ) and use property (iii), we have

∣∣Xt∧θR
− X′

t∧θR

∣∣
≤ ε +

∫ t

0
φ′

δε

(
Xs − X′

s

)[
b(s,Xs) − b

(
s,X′

s

)]
1{s≤θR} ds

(4.15)

+ 1

2

∫ t

0
φ′′

δε

(
Xs − X′

s

)[
σ(s,Xs) − σ

(
s,X′

s

)]21{s≤θR} ds

+
∫ t∧θR

0
φ′

δε

(
Xs − X′

s

)[
σ(s,Xs) − σ

(
s,X′

s

)]
dWs.
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Use assumption A5 and property (ii) of φδε(x) then
∫ t

0
φ′

δε

(
Xs − X′

s

)[
b(s,Xs) − b

(
s,X′

s

)]
1{s≤θR} ds

(4.16)

≤ LR

∫ t

0

∣∣Xs∧θR
− X′

s∧θR

∣∣ds.

From assumption A6 and property (v) of φδε(x), we have
∫ t

0
φ′′

δε

(
Xs − X′

s

)[
σ(s,Xs) − σ

(
s,X′

s

)]21[s≤θR] ds ≤ CRε2α

log δ
. (4.17)

From (4.15), (4.16) and (4.17), we have

∣∣Xt∧θR
− X′

t∧θR

∣∣ ≤ ε + LR

∫ t

0

∣∣Xs∧θR
− X′

s∧θR

∣∣ds + CRε2α

log δ

+
∫ t∧θR

0
φ′

δε

(
Xs − X′

s

)[
σ(s,Xs) − σ

(
s,X′

s

)]
dWs.

Taking the expectation of both sides, we get

E
[∣∣Xt∧θR

− X′
t∧θR

∣∣] ≤ ε + LR

∫ t

0
E

[∣∣Xs∧θR
− X′

s∧θR

∣∣]ds + CRε2α

log δ
.

By choosing δ = 2 and letting ε → 0, we get

E
[∣∣Xt∧θR

− X′
t∧θR

∣∣] ≤ LR

∫ t

0
E

[∣∣Xs∧θR
− X′

s∧θR

∣∣]ds.

By Gronwall’s inequality, E[|Xt∧θR
− X′

t∧θR
|] = 0. It means Xt∧θR

= X′
t∧θR

al-
most surely. This leads to E[|Xt − X′

t |] = E[|Xt − X′
t |1[θR≤t]]. Applying Young’s

inequality for q = 2 and (4.14), we obtain

E
[∣∣Xt − X′

t

∣∣] ≤ 1

2R
E

∣∣Xt − X′
t

∣∣2 + R

2
P[θR ≤ T ]

≤ 1

2R
E

∣∣Xt − X′
t

∣∣2 + 1

2R

(
E

[
sup

0≤t≤T

|Xt |2
]
+E

[
sup

0≤t≤T

∣∣X′
t

∣∣2])

≤ 1

2R
E

∣∣Xt − X′
t

∣∣2 + C

R
.

Let R → ∞ we obtain E[|Xt − X′
t |] = 0. It means Xt = X′

t almost surely. The
proof is complete.

4.6 Proof of Theorem 3.1(ii)

We will use the following result.
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Lemma 4.5 (Gyöngy and Krylov (1996); Gyöngy and Rásonyi (2011)). Assume
that b(t, x) is Lipschitz in x and σ(t, x) is (1/2 + α)-Hölder continuous in x for
some α ∈ [0, 1

2 ], and b(t,0), σ (t,0) are bounded on [0, T ]. Then there exists a
unique strong solution of equation (1.1).

For each N > 0, set

bN(t, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b(t, x), if |x| ≤ N ,

b

(
t,

Nx

|x|
)(

N + 1 − |x|), if N < |x| < N + 1,

0, if |x| ≥ N + 1,

and

σN(t, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ(t, x), if |x| ≤ N ,

σ

(
t,

Nx

|x|
)(

N + 1 − |x|), if N < |x| < N + 1,

0, if |x| ≥ N + 1.

It is straightforward to verify that bN and σN satisfying the assumptions of
Lemma 4.5. Thus, the equation

XN(t) = x0 +
∫ t

0
bN

(
s,XN(s)

)
ds +

∫ t

0
σN

(
s,XN(s)

)
dWs (4.18)

has a unique strong solution XN(t). We will show that when N → ∞, XN will
converge in probability to a process X which satisfies equation (1.1).

For each N > 0, put

θN = T ∧ inf
{
t ∈ [0;T ] : ∣∣XN(t)

∣∣ ≥ N
}
.

Because the uniqueness of equation (4.18), XN(t) = XM(t) almost surely for any
t < θN and N < M . Next, we will show that θN = T almost surely for all N large
enough. Indeed, because of assumption A1,

xbN(t, x) ∨ ∣∣σN(t, x)
∣∣2 ≤ 2L

(
1 + |x|2)

for any x ∈R.

Therefore, bN(x) and σN(t, x) also satisfy assumption A1. Apply Lemma 4.1,
there exists a constant Cp > 0 which does not depend neither on N nor on n, such
that

E

[
sup

0≤t≤T

∣∣XN(t)
∣∣p]

≤ Cp for any N > 0.

Therefore,

Cp ≥ E

[
sup

0≤t≤T

∣∣XN(t)
∣∣2]

≥ E

[
sup

0≤t≤T

∣∣XN(t)
∣∣21[θN<T ]

]
≥ N2

P[θN < T ].
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It leads to
∑∞

N=1 P(θN < T ) < ∞. By Borel–Cantelli lemma,

P

[
lim sup

N

{θN < T }
]
= 0.

Because (θN)N is increasing, so θN = T for all N large enough. It means
limN→∞ XN(t) = X(t) exists almost surely and X(t) = XM(t) almost surely for
any t < θN and M ≥ N . On the other hand, for any κ > 0, q > k > 1, by Young’s
inequality

E
[∣∣XN+k(t ∧ θN+k) − XN(t ∧ θN)

∣∣p]
≤ E

[[∣∣XN+k(t)
∣∣p + ∣∣XN(t)

∣∣p]
1{θN<T }

]

≤ Cp,q

{
κE

[∣∣XN+k(t)
∣∣q + ∣∣XN(t)

∣∣q] + P[θN < T ]
κp/(q−p)

}
.

First, let N → ∞ and then let η → 0, we get

E
[∣∣XN+p(t ∧ θN+p) − XN(t ∧ θN)

∣∣p] → 0 as N → ∞.

It means

XN(t ∧ θN)
Lp−→ X(t) as N → ∞. (4.19)

Furthermore, for all p > 0 there exists a constant C′
p > 0 such that

sup
0≤t≤T

E
[∣∣X(t)

∣∣p] ≤ C′
p.

From the definition of bN(t, x), we have

E

∣∣∣∣
∫ t∧θN

0

[
bN

(
s,XN(s)

) − b
(
s,X(s)

)]
ds

∣∣∣∣
2

= 0.

Moreover, since b is polynomially bounded,

E

[∣∣∣∣
∫ t

t∧θN

b
(
s,X(s)

)
ds

∣∣∣∣
2]

≤ C

∫ t

0
E

[[
1 + ∣∣X(s)

∣∣2l]1{s≥θN }
]
ds

≤ κC

∫ T

0
E

[
1 + ∣∣X(s)

∣∣2l]2
ds + CP[θN < T ]

κ

≤ κC + CP[θN < T ]
κ

.

First let N → ∞ and then let κ → 0, we have

lim
N→∞E

[∣∣∣∣
∫ t

t∧θN

b
(
s,X(s)

)
ds

∣∣∣∣
2]

= 0.

Therefore,∫ t∧θN

0
bN

(
s,XN(s)

)
ds

L2−→
∫ t

0
b
(
s,X(s)

)
ds as N → ∞. (4.20)
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In the same manner, we can see that
∫ t∧θN

0
σN

(
s,XN(s)

)
dWs

L2−→
∫ t

0
σ

(
s,X(s)

)
dWs as N → ∞. (4.21)

Combining (4.18)–(4.21), we get

Xt = x0 +
∫ t

0
b
(
s,X(s)

)
ds +

∫ t

0
σ

(
s,X(s)

)
dWs,

almost surely for all t ∈ [0, T ]. It means (Xt)t∈[0,T ] is a solution of equation (1.1).
The proof is complete.
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