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The extended generalized half-normal distribution

Jeniffer J. Duarte Sanchez, Wanessa W. da Luz Freitas
and Gauss M. Cordeiro

Universidade Federal de Pernambuco

Abstract. Fatigue is a structural damage which occurs when a material is ex-
posed to stress and tension fluctuations. We propose and study the extended
generalized half-normal distribution for modeling skewed fatigue life data.
The new model contains as special cases the half-normal and generalized
half-normal (Comm. Statist. Theory Methods 37 (2008) 1323–1337) distri-
butions. Various of its structural properties are derived, including the density
function, moments, quantile and generating functions, mean deviations and
order statistics. We investigate maximum likelihood estimation of the model
parameters. An application illustrates the potentiality of the new distribution.

1 Introduction

Broadly speaking, there has been an increased interest in defining new genera-
tors for univariate continuous families of distributions by introducing one or more
additional shape parameter(s) to a baseline distribution. This induction of param-
eter(s) has been proved useful in exploring tail properties and also for improving
the goodness-of-fit of the family under study. One of these generators is the ex-
ponentiated generalized (EG) class of distributions pioneered by Cordeiro, Ortega
and da Cunha (2013). For an arbitrary baseline cumulative distribution function
(c.d.f.) G(x), they defined the probability density function (p.d.f.) f (x) and the
c.d.f. F(x) by

f (x) = ab
[
1 − G(x)

]a−1[
1 − {

1 − G(x)
}a]b−1

g(x) (1.1)

and

F(x) = [
1 − {

1 − G(x)
}a]b

, (1.2)

respectively, where g(x) = dG(x)/dx and a > 0 and b > 0 are two extra shape
parameters to those of the G distribution. If X is a random variable with den-
sity (1.1), we write X ∼ EG-G(a, b). Except for special choices of the func-
tions g(x) and G(x), the density function f (x) could be very difficult to deal
in generality. One major benefit of the EG class is that it extends the exponenti-
ated type distributions. In fact, this class generalizes both exponentiated Lehmann

Key words and phrases. Exponentiated generalized class, generalized half-normal distribution,
Kwmaraswamy model, maximum likelihood estimation, survival function.

Received March 2014; accepted February 2015.

366

http://imstat.org/bjps/
http://dx.doi.org/10.1214/15-BJPS284
http://www.redeabe.org.br/


The EGHN model 367

types I and II distributions (Cordeiro, Ortega and da Cunha, 2013). Several of its
structural properties can be obtained from the exponentiated-G (“exp-G” for short)
distribution.

A physical interpretation of (1.1) whenever a and b are positive integers can
be given as follows. Consider a device made of b independent components in a
parallel system. Further, each component is made of a independent subcomponents
identically distributed according to G(x) in a series system. The device fails if all
b components fail and each component fails if any subcomponent fails. Then the
time to failure of the device follows the distribution (1.1).

Generalizations of continuous distributions have been studied in recent decades.
One reason for generalizing a well-known model is because its generalized form
can accommodate non-monotone forms of the hazard rate function (h.r.f.). The
fatigue process begins with an imperceptible fissure, the initiation, growth and
propagation of which produces a dominant crack in the specimen due to cyclic
patterns of stress, whose ultimate extension causes the rupture or failure of this
specimen. The failure occurs when the total extension of the crack exceeds a criti-
cal threshold for the first time. The most popular models used to describe the life-
time process under fatigue are the half-normal (HN) and Birnbaum–Saunders (BS)
distributions. When modeling monotone hazard rates, the HN and BS distributions
may be initial choices because of their negatively and positively skewed density
shapes. However, they do not provide a reasonable parametric fit for modeling
phenomenon with non-monotone failure rates. Cooray and Ananda (2008) defined
the generalized half-normal (GHN) distribution derived from a model for static
fatigue. The distributions for lifetime under fatigue which allow bathtub shaped
failure rates are rather complex and usually require five or more parameters. It is
important to describe the lifetime process under fatigue using simple generated
distributions. Following this idea, we propose a simple distribution which extends
the GHN and HN models.

The GHN p.d.f. (Cooray and Ananda, 2008) with shape parameter α > 0 and
scale parameter θ > 0 is given by

g(z) =
√

2

π

(
α

z

)(
z

θ

)α

exp
[
−1

2

(
z

θ

)2α]
, z > 0. (1.3)

Its c.d.f. depends on the error function

G(z) = 2�

[(
z

θ

)α]
− 1 = erf

(
(z/θ)α√

2

)
, (1.4)

where

�(z) = 1

2

[
1 + erf

(
z√
2

)]
and erf(z) = 2√

π

∫ z

0
e−t2

dt.

The nth moment of (1.3) is given by Cooray and Ananda (2008) E(Zn) =√
2n/α

π
�(n+α

2α
)θn, where �(·) is the gamma function.
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In this paper, we study a new four-parameter model, named the extended gener-
alized half-normal (EGHN) distribution, whose p.d.f. is obtained by inserting the
c.d.f. and p.d.f. of the GHN model in equation (1.1). We have

f (x) = ab

√
2

π

(
α

x

)(
x

θ

)α

exp
[
−1

2

(
x

θ

)2α]{
2 − 2�

[(
x

θ

)α]}a−1

(1.5)

×
[
1 −

{
2 − 2�

[(
x

θ

)α]}a]b−1

.

If X is a random variable with p.d.f. (1.5), we write X ∼ EGHN(α, θ, a, b).
The new model contains some important sub-models. For a = b = 1, it becomes
the GHN distribution. For α = 1, it gives the extended half-normal (EHN) distri-
bution. For b = 1, it leads to the Lehmann type II generalized half-normal distribu-
tion. Further, if a = b = 1, in addition to α = 1, it reduces to the HN distribution.
The major benefit of the EGHN distribution for modeling fatigue lifetimes is that
it can have bathtub failure rates and allow for greater flexibility of its tails. The two
additional parameters can promote very different levels of asymmetry and kurtosis.
Further, the EGHN model is a very competitive distribution to the beta generalized
half-normal model (BGHN) pioneered by Pescim et al. (2010). In fact, we prove
in Section 10 by means of a real data set that the EGHN model provides a better
fit than the BGHN model.

The c.d.f. and h.r.f. corresponding to (1.5) are

F(x) =
[
1 −

{
1 − erf

(
(x/θ)α√

2

)}a]b

, (1.6)

and

τ(x) =
(
ab

√
2

π

(
α

x

)(
x

θ

)α

exp
[
−1

2

(
x

θ

)2α]{
2 − 2�

[(
x

θ

)α]}a−1

×
[
1 −

{
2 − 2�

[(
x

θ

)α]}a]b−1)
(1.7)

×
(

1 −
[
1 −

{
1 − erf

(
(x/θ)α√

2

)}a]b)−1

,

respectively. Plots of p.d.f. and h.r.f. of X for selected parameter values are dis-
played in Figures 1 and 2, respectively. The plots in Figure 2 indicate that the
GHN distribution can have bathtub failure rates.

Let x = Q(u) be the EGHN quantile function (q.f.) derived by inverting (1.6).
If x = QN(u) = �−1(u) denotes the standard normal q.f., we can obtain

Q(u) = θQN

(
2 − [1 − u1/b]1/a

2

)1/α

. (1.8)
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Figure 1 Plots of the p.d.f. (1.5) for some parameter values.

Figure 2 Plots of the h.r.f. (1.7) for some parameter values.
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Clearly, the EGHN distribution is easily simulated by X = Q(U), where U is
a uniform random variable on the unit interval (0,1). The paper is organized as
follows. In Section 2, we derive an expansion for the EGHN density function. In
Section 3, we study the behavior of the Bowley skewness and Moors kurtosis. In
Section 4, we obtain the moments of X. We derive power series expansions for
the quantile and generating functions in Sections 5 and 6, respectively. Incomplete
moments and mean deviations are determined in Section 7. Expansions for the
density of the order statistics and their moments are given in Section 8. Maximum
likelihood estimation is discussed in Section 9. In Section 10, we illustrate the
importance of the new distribution applied to a real data set. Finally, concluding
remarks are addressed in Section 11.

2 Expansion for the density function

For any real non-integer β , we consider the power series

(1 − z)β−1 =
∞∑

k=0

(−1)k
(

β − 1
k

)
zk, (2.1)

which is valid for |z| < 1. Applying (2.1) in equation (1.2) twice gives

F(x) =
∞∑

j=0

wj+1Hj+1(x), (2.2)

where Hj+1(x) = G(x)j+1 and the coefficients wj are

wj+1 = wj+1(a, b) =
∞∑

k=1

(−1)k+j+1
(

b

k

)(
ka

j + 1

)
.

Equation (2.2) gives the generated c.d.f. F(x) distribution as a linear combi-
nation of exp-G c.d.f.s with positive powers 1,2, . . . . By differentiating (2.2), we
obtain

f (x) =
∞∑

j=0

wj+1hj+1(x), (2.3)

where hj+1(x) = (j + 1)g(x)G(x)j is the exp-G p.d.f. with power parameter
j + 1.

Equation (2.3) reveals that the EG p.d.f. is a linear combination of exp-G
p.d.f.s. Thus, some structural properties of the EG class can be obtained from well-
established properties of the exp-G distributions, which have been studied by many
authors (see Nadarajah and Kotz, 2006).



The EGHN model 371

Let Tj+1 be a random variable having the exponentiated-GHN (exp-GHN) dis-
tribution with power parameter j + 1. The density function of Tj+1 is obtained
from (1.3) and (1.4) as

h(j+1)(t) = (j + 1)

√
2

π

(
α

t

)(
t

θ

)α

exp
[
−1

2

(
t

θ

)2α]
erf

(
(t/θ)α√

2

)j

. (2.4)

Based on the density function (2.3), the p.d.f. of X can be expressed as

f (x) = g(x)

∞∑
r=0

tr+1

{
erf

(
(x/θ)α√

2

)}r

, (2.5)

where tr+1 = tr+1(a, b) = (r + 1)wr+1. Equations (2.4) and (2.5) are the main
expansions to obtain structural properties of the EGHN model. They and other
expansions in this paper can be evaluated in classic symbolic computation software
which have the ability to deal with complex expressions.

3 Quantile measures

The effect of the shape parameters a and b on the skewness and kurtosis of the
EGHN distribution can be investigated based on quantile measures determined
from (1.8). The Bowley skewness (Kenney and Keeping, 1962) is one of the earli-
est skewness measures defined by

B = Q(3/4) + Q(1/4) − 2Q(1/2)

Q(3/4) − Q(1/4)
.

The Moors kurtosis (see Moors, 1998) based on octiles is defined by

M = Q(7/8) − Q(5/8) + Q(3/8) − Q(1/8)

Q(6/8) − Q(2/8)
.

Figures 3 and 4 display plots of the measures B and M for the EGHN distribu-
tion for some parameter values. The upper plots indicate (b fixed) that the Bowley
skewness can increase or decrease, and then increase for increasing values of a,
whereas the under plots indicate (a fixed) that the Bowley skewness can decrease,
or decrease and then increase for increasing values of a. On the other hand, the
Moors kurtosis can increase or decrease, and then increase (b fixed) for increas-
ing values of a, and decrease and then increase, or, increase and then decrease
(a fixed) for increasing values of b. So, these plots indicate that both measures can
be very sensitive to the extra shape parameters, thus indicating the importance of
the EGHN distribution.
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Figure 3 The EGHN Bowley skewness as a function of b for some values of a and as a function of
a for some values of b.

Figure 4 The EGHN Moors kurtosis as a function of b for some values of a and as a function of a

for some values of b.
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4 Moments

The nth moment of X follows from (2.5) by setting u = (x/θ)α as

E
(
Xn) = θn

√
2

π

∞∑
r=0

tr+1I

(
n

α
, r

)
,

where

I

(
n

α
, r

)
=

∫ ∞
0

un/αe−u2/2
[
erf

(
u√
2

)]r

du.

Then

E
(
Xn) = θn

√
2

π

∞∑
r=0

tr+1I

(
n

α
, r

)
, (4.1)

where

I

(
n

α
, r

)

= π−r/22r+(n/(2α))−1/2 (4.2)

×
∞∑

m1,...,mr=0

(−1)m1+···+mr �(m1 + · · · + mr + (r + n/α + 1)/2)

(m1 + 1/2) · · · (mr + 1/2)m1! · · ·mr ! .

Further, if r + n
α

is even, the integral I ( n
α
, r) can be expressed in terms of the

Lauricella function of type A (Aarts, 2000) defined by

F
(n)
A (a;b1, . . . , bn; c1, . . . , cn;x1, . . . , xn)

=
∞∑

m1=0

. . .

∞∑
mn=0

(a)m1+···+mn(b1)m1 · · · (bn)mn

(c1)m1 · · · (cn)mn

x
m1
1 · · ·xmn

n

m1! · · ·mn! ,

where (a)k = a(a+1) · · · (a+k−1) is the ascending factorial (with the convention
that (a)0 = 1). Numerical routines for the direct computation of the Lauricella
function of type A are available; see Mathematica (Trott, 2006). Hence, E(Xn)

can be given in terms of the Lauricella functions of type A

E
(
Xn) = θn

√
2

π

∞∑
r=0

CrF
(r)
A

(
r + n/α + 1

2
; 1

2
, . . . ,

1

2
; 3

2
, . . . ,

3

2
;−1, . . . ,−1

)
,

where

Cr = tr+1π
−r/222r+n/(2α)−1/2�

(
r + n/α + 1

2

)
.

This equation is an infinite sum of Lauricella functions of type A which vanish
when r + n/α is odd.
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An alternative expression for E(Xn) can be obtained from (2.3) as

E
(
Xn) =

∞∑
j=0

wj+1E
(
T n

j+1
)
, (4.3)

where Tj+1 ∼ exp-GHN(j + 1) and wj+1 is defined in Section 2.
Equation (4.3) gives the EGHN moments in terms of an infinite linear combi-

nation of exp-GHN moments.

5 Quantile expansion

Here, we obtain a power series for the q.f. of X. By expanding the binomial terms
in (1.8), we can write

1

2

{
2 − (

1 − u1/b)]1/a} =
∞∑

k=0

mku
k/b, (5.1)

where m0 = 1/2 and mk = [(−1)k
(

1/a
k+1

)
]/2 for k ≥ 1.

Following Steinbrecher (2002), the standard normal q.f. can be expanded as

QN(u) =
∞∑

k=0

bkw
2k+1, (5.2)

where w = √
2π(u−1/2) and the quantities bk can be calculated recursively from

bk+1 = 1

2(2k + 3)

k∑
r=0

(2r + 1)(2k − 2r + 1)brbk−r

(r + 1)(2r + 1)
.

Here, b0 = 1, b1 = 1/6, b2 = 7/120, b3 = 127/7560, . . . . The function QN(u) can
be expressed as a power series

QN(u) =
∞∑

r=0

dru
r, (5.3)

where

dr =
∞∑

k=r

(−1

2

)k−r (
k

r

)
ek,

and the quantities ek are defined from the coefficients in (5.2) by ek = 0 for
k = 0,2,4, . . . and ek = (2π)k/2b(k−1)/2 for k = 1,3,5, . . . .

Combining (5.1) and (5.3), we obtain

QN

({
2 − [

1 − u1/b]1/a}
/2

) =
∞∑

r=0

dr

( ∞∑
k=0

mku
k/b

)r

. (5.4)
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We use throughout an equation of Gradshteyn and Ryzhik (2000) for a power
series raised to a positive integer j( ∞∑

i=0

aix
i

)j

=
∞∑
i=0

cj,ix
i, (5.5)

where the coefficients cj,i (for i = 1,2, . . .) are determined from the recurrence
equation

cj,i = (ia0)
−1

i∑
m=1

[
m(j + 1) − i

]
amcj,i−m, (5.6)

and cj,0 = a
j
0 . From equations (5.4) and (5.5), we have

QN

({
2 − [

1 − u1/b]1/a}
/2

) =
∞∑

k=0

pku
k/b,

where pk = ∑∞
r=0 drgr,k and the quantities gr,k come from (5.6) as gr,0 = mr

0 and
gr,k = (km0)

−1 ∑k
s=1[s(r + 1) − k]msgr,k−s for k ≥ 1. The argument of the stan-

dard normal q.f. implies that the sum
∑∞

k=0 pku
k/b belongs to the interval (−4,4).

Setting hk = pk/5, the EGHN q.f. becomes

Q(u) = θ51/α

( ∞∑
k=0

hku
k/b

)1/α

, (5.7)

and then it does involve a power series in the interval (0,1). We can obtain an
expansion for G(x)β (β > 0 real non-integer) given by

G(x)β =
∞∑

r=0

sr(β)G(x)r , (5.8)

where

sr(β) =
∞∑

j=r

(−1)r+j

(
β

j

)(
j

r

)
.

Using (5.8), we can write( ∞∑
k=0

hku
k/b

)1/α

=
∞∑

r=0

sr
(
α−1)( ∞∑

k=0

hku
k/b

)r

,

where sr(α
−1) = ∑∞

j=r (−1)r+j
(

α−1

j

)(
j
r

)
. Combining this equation and (5.5)

gives a very neat way of writing the q.f. of X, namely

Q(u) =
∞∑

k=0

vku
k/b, (5.9)
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where vk = θ51/α ∑∞
r=0 sr(α

−1)qr,k for k ≥ 0, qr,k = (kh0)
−1 ∑k

m=1[m(r + 1) −
k]hmqr,k−m for k ≥ 1 and qr,0 = hr

0. Equation (5.9) is the main result of this sec-
tion.

6 Generating function

The moment generating function (mgf) of X can be obtained from (2.5) by setting
u = (x/θ)α as

M(s) =
√

2

π

∞∑
r=0

tr+1

∞∑
m=0

θmsm

m!
∫ ∞

0
um/αe−u2/2

[
erf

(
u√
2

)]r

du.

Following similar lines of Section 4, M(s) can be expanded as

M(s) =
∞∑

m=0

Amsm

m! , (6.1)

where

Am =
√

2

π
θm

∞∑
r=0

tr+1π
−r/22r+m/(2α)−1/2I

(
m

α
, r

)
,

where I (m
α
, r) is given by (4.2). Evidently, Am denotes a second representation for

the mth moment of X.
An alternative equation for M(s) can be derived using equation (5.9). We can

write from (5.5)

M(s) =
∫ 1

0
exp

{
sQ(u)

}
du =

∫ 1

0

∞∑
k=0

sk(
∑∞

n=0 vnu
n/b)k

k! du =
∞∑

k=0

Bks
k

k! , (6.2)

where Bk = ∑∞
n=0 dk,n/(n + 1) for k = 0,1, . . . , and dk,n can be determined from

(5.6) as dk,0 = vk
0 and dk,n = (kv0)

−1 ∑n
m=1[m(k + 1) − n]vmdk,n−m for k ≥ 1.

Clearly, Bk gives a third representation for the kth moment of X. Equations (6.1)
and (6.2) are the main results of this section.

7 Incomplete moments

The nth incomplete moments of X is given by J (q,n) = ∫ q
0 xnf (x) dx. This inte-

gral can be obtained from (2.5) by setting u = (x/θ)α as

J (q,n) = θn

√
2

π

∞∑
r=0

tr+1

∫ (q/θ)α

0
un/αe−u2/2

[
erf

(
u√
2

)]r

du.
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The error function erf( u√
2
) admits the expansion

∑∞
k=0 aku

k , where a2k+1 =
(−1)k21−k√
2π(2k+1)k! and a2k = 0 for k ∈ N. Thus,

J (q,n) = θn

√
2

π

∞∑
r,k=0

tr+1cr,k

∫ (qθ−1)α

0
uk+n/αe−u2/2 du,

where the quantities cr,k are determined from the ak’s above using (5.6). Setting
v = u2/2, we write

J (q,n) = θn

√
π

∞∑
r,k=0

tr+12(k+nα−1)/2cr,k

∫ (qθ−1)2α/2

0
v(k+nα−1−1)/2e−v dv.

For λ > 0, ∫ x

0
vλ−1e−αv dv = α−λγ (λ,αx),

where γ (a, x) = ∫ x
0 ta−1e−t dt is the incomplete gamma function and then

J (q,n) = θn

√
π

∞∑
r,k=0

tr+12(k+nα−1)/2cr,kγ
[(

k + nα−1 + 1
)
/2,

(
qθ−1)2α

/2
]
. (7.1)

We can derive the mean deviations about the mean μ = E(X) and about the median
M from

δ1 = 2
[
μF(μ) − J (μ,1)

]
and δ2 = μ − 2J (M,1), (7.2)

where M is the solution of the non-linear equation Q(M) = 1/2 obtained from
(1.8) and J (q,n) is given by (7.1). From equations (7.1) and (7.2), we obtain the
mean deviations. The first incomplete moment gives the Bonferroni and Lorenz
curves which have applications in several areas. For a given probability π , they
are defined by B(π) = J (q,1)/(πμ) and L(π) = J (q,1)/μ, respectively, where
q = Q(π). Using (7.1) with n = 1, we have B(π) and L(π).

Figure 5 displays the B(π) and L(π) curves. The B(π) curve can increase or
decrease depending on the parameter values. On the other hand, the L(π) curve
increases for any parameters values.

8 Order statistics

The density function fi : n(x) of the ith order statistic, for i = 1, . . . , n, from i.i.d.
random variables X1, . . . ,Xn following any EG-G distribution is simply given by

fi : n(x) = f (x)

B(i, n − i + 1)
F (x)i−1(

1 − F(x)
)n−i

,

where B(·, ·) denotes the beta function.
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Figure 5 The B(π) and L(π) curves of the EGHN model.

Cordeiro, Ortega and da Cunha (2013) presented the density of the EG-G or-
der statistics as a linear combination of exp-G densities. This result enables us to
derive the ordinary moments of the order statistics as an infinite weighted sum of
probability weighted moments (PWMs) of the G distribution. They demonstrated
that

fi : n(x) = ab

B(i, n − i + 1)
g(x)

∞∑
l=0

slG(x)l, (8.1)

where the coefficients sl are given by

sl =
n−i∑
k=0

∞∑
r=0

(−1)k+r+l

(
n − i

k

)(
(i + k)b − 1

r

)(
(r + 1)a − 1

l

)
.

Equation (8.1) can be rewritten in terms of the exp-G density functions as

fi : n(x) = ab

B(i, n − i + 1)

∞∑
l=0

vl+1hl+1(x), (8.2)

where vl+1 = sl/(l + 1).
For example, the sth moment of the order statistics, say E(Xs

i : n), can be ob-
tained from (8.2) as

E
(
Xs

i : n

) = ab

B(i, n − i + 1)

∞∑
l=0

vl+1E
(
T s

l+1
)
,

where Tl+1 ∼ EGHN(l + 1) and the constants vl+1 are defined in (2.4) and (8.2),
respectively. Clearly, equations (8.1) and (8.2) should be used numerically with a
large number instead of infinity.
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9 Estimation and inference

We consider the estimation of the parameters of the proposed model by the method
of maximum likelihood. Several approaches for parameter point estimation were
proposed in the literature but the maximum likelihood method is the most com-
monly employed. The maximum likelihood estimates (MLEs) enjoy desirable
properties and can be used when constructing confidence intervals and regions
and also in test statistics. Large sample theory for these estimates delivers simple
approximations that work well in finite samples. Let Y have the EGHN distribu-
tion with vector of parameters λ = (α, θ, a, b)T . The log-likelihood for the model
parameters from a single observation y of Y is given by

�(λ) = log(a) + log(b) + log
(√

2

π

)

+ log(α) − log(y) + α log
(

y

θ

)
− 1

2

(
y

θ

)2α

+ (a − 1) log
{

2 − 2�

[(
y

θ

)α]}

+ (b − 1) log
[
1 −

{
2 − 2�

[(
y

θ

)α]}a]
, y > 0.

The components of the unit score vector U = ( ∂�
∂α

, ∂�
∂θ

, ∂�
∂a

, ∂�
∂b

)T are given in the
Appendix.

For a sample y = (y1, . . . , yn)
T of size n from Y , the total log-likelihood is

�n = �n(λ) = ∑n
i=1 �(i)(λ), where �(i)(λ) is the log-likelihood for the ith obser-

vation (i = 1, . . . , n). The total score function is Un = ∑n
i=1 U(i), where U(i)

has the form given before for i = 1, . . . , n. The MLE λ̂ of λ is the solution of
the system of non-linear equations Un = 0. These equations cannot be solved
analytically, and statistical softwares are required to solve them numerically. It
is usually more convenient to adopt non-linear optimization algorithms such as
quasi-Newton algorithm to numerically maximize the log-likelihood function or
functions such as the BFGS, L-BFGS-B, Nelder–Mead and simulated annealing
methods. Alternatively, we can use the AdequacyModel script version 1.0.8
available for the programming language R. The script is currently maintained by
one of the authors of this paper and more information can be obtained from http:
//cran.rstudio.com/web/packages/AdequacyModel/index.html. The package is dis-
tributed under the terms of the licenses GNU General Public License (GPL-2 or
GPL-3). We can take as starting values the estimates for the HN model. The final
MLEs are usually robust to these initial values.

For interval estimation and tests of hypotheses on the parameters in λ, we
require the 4 × 4 unit observed information matrix K = K(λ) = {κij }, where

http://cran.rstudio.com/web/packages/AdequacyModel/index.html
http://cran.rstudio.com/web/packages/AdequacyModel/index.html
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i, j = α, θ, a, b, whose elements can be computed numerically. The method of
the resampling bootstrap can be used for correcting the biases of the MLEs of
the model parameters. Good interval estimates may also be obtained through the
bootstrap percentile method.

The estimated multivariate normal N4(0, n−1K(λ̂)−1) distribution can be used
to construct approximate confidence intervals for the model parameters. An
asymptotic confidence interval with significance level γ for each parameter λr

is given by

ACI
(
λr,100(1 − γ )%

) = (
λ̂r − zγ/2

√
κ̂λr ,λr , λ̂r + zγ/2

√
κ̂λr ,λr

)
,

where κ̂λr ,λr is the r th diagonal element of K(λ̂)−1, for r = 1, . . . ,4, and zγ/2 is
the quantile 1 − γ /2 of the standard normal distribution.

The likelihood ratio (LR) statistic is useful for comparing the new distribution
with some of its special models. For example, we may use the LR statistic to
check if the fit using the EGHN distribution is statistically “superior” to a fit using
the GHN distribution for a given data set. In any case, considering the partition
λ = (λT

1 ,λT
2 )T , tests of hypotheses of the type H0 :λ1 = λ

(0)
1 versus HA :λ1 �= λ

(0)
1

can be performed using the LR statistic w = 2{�(λ̂) − �(λ̃)}, where λ̂ and λ̃ are
the MLEs of λ under HA and H0, respectively. Under the null hypothesis H0,

w
d→ χ2

q , where q is the dimension of the vector λ1 of interest. The LR test rejects
H0 if w > ξγ , where ξγ denotes the upper 100γ % point of the χ2

q distribution.

10 Application

Here, for the purpose of illustration, we analyze the data given by Sharafi and Be-
hboodian (2008), which were compiled in 1971 by a large insurance company in
order to investigate its selection procedures for claims adjusters. The data set con-
cerns OTIS IQ Scores for 52 minority (non-white) males hired by the company.
One of the key questions of the study was the predictability of job performance
when the OTIS test was applied. Following them, we fit the GHN, BGHN, Ku-
maraswamy generalized half-normal (KwGHN) and EGHN distributions to these
data.

The BGHN p.d.f. with the four parameters α, θ a and b, say BGHN(α, θ , a, b),
is defined by

π1(x) =
√

2/π(α/x)(x/θ)αe−(1/2)(x/θ)2α

B(a, b)

×
[
2�

((
x

θ

)α)
− 1

]a−1[
2 − 2�

((
x

θ

)α)]b−1

,
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whereas the KwGHN p.d.f. with the same parameters is given by

π2(x) = ab

√
2

π

(
α

x

)(
x

θ

)α

exp
[
−1

2

(
x

θ

)2α]{
2�

[(
x

θ

)α]
− 1

}a−1

×
[
1 −

{
2�

[(
x

θ

)α]
− 1

}a]b−1

.

We fit the above models to the current data and compute the MLEs, their stan-
dard errors (given in parentheses) and the following statistics: Akaike Informa-
tion Criterion (AIC), Bayesian Information Criterion (BIC), Consistent Akaike
Information Criterion (CAIC) and Crámer–von Mises (W) and Anderson–Darling
(A) (Chen and Balakrishnan, 1995). The computations are performed using the
AdequacyModel script in R package. We also perform a non-parametric boot-
strap simulation with 500 trials to compute the biases of the MLEs and of the
statistics AIC, BIC, CAIC, W and A. Table 1 provides the MLEs, SEs, the biases
of the estimates and of the test statistics from the fitted EGHN, KwGHN, BGHN
and GHN models. The better the fit of the model, the smaller the values of the
corresponding statistics. The biases of the MLEs and of the test statistics are also
reported in this table. The results indicate that the EGHN model has the smallest
values of these statistics among all fitted models. So, it could be chosen as the best
fitted model. The biases of the test statistics are quite small.

Further, we compute the corrected W ∗ and A∗ statistics (Chen and Balakrish-
nan, 1995) given by:

W ∗ = W 2(1 + 0.5/n) and A∗ = A2(
1 + 0.75/n + 2.25/n2)

.

The corrected versions of the statistics W ∗ and A∗ are adopted since they are more

Table 1 MLEs, their SEs and biases, and some statistics for the fitted models to the current data

Model a b α θ AIC BIC CAIC W A

EGHN 0.225 15.287 2.644 58.299 373.727 381.532 374.578 0.109 0.652
(SE) (0.045) (5.629) (0.103) (0.078)

Bias 0.238 −0.567 0.449 6.426 0.303 0.303 0.303 0.042 0.283
KwGHN 5.077 0.041 1.186 20.909 507.776 515.581 508.627 0.131 0.759
(SE) (0.031) (0.006) (0.001) (0.007)

Bias 0.000 0.004 −0.005 0.004 −0.369 −0.369 −0.369 0.044 0.279
BGHN 7.874 0.040 0.767 8.289 549.782 557.587 550.632 0.119 0.701
(SE) (5.244) (0.005) (0.004) (0.003)

Bias 0.440 0.006 0.070 1.559 −5.104 −5.104 −5.104 0.048 0.309
GHN 1.000 1.000 9.956 112.425 383.409 387.311 383.654 0.382 2.150
(SE) – – (1.096) (1.238)

Bias – – 0.242 0.294 −1.415 −1.415 −1.415 0.041 0.262
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Figure 6 Histogram of the data and four fitted densities.

appropriate to discriminate among non-nested models fitted to the same data set
and become more widely used nowadays. Then we obtain

• EGHN: W ∗ = 0.0044, A∗ = 0.1379;
• KwGHN: W ∗ = 0.0076, A∗ = 0.2333;
• BGHN: W ∗ = 0.0050, A∗ = 0.1559;
• GHN: W ∗ = 0.1170, A∗ = 3.618.

We can note that the GHN distribution gives the worst fit, and the EGHN distri-
bution provides the best fit among the four fitted models.

Figure 6 displays the histogram of the data and the fitted EGHN, KwGHN,
BGHN and GHN densities.

A non-parametric bootstrap simulation is performed to verify the precision of
the estimates. The initial values used for each distribution in each bootstrap repli-
cation are the same. Based on the biases and standard errors of the estimates, we
can conclude that the estimates are consistent and independent of the bootstrap
replication.

11 Conclusions

We propose a new four-parameter model named the extended generalized half
normal (EGHN) distribution to extend the generalized half-normal (GHN) dis-
tribution. We derive an expansion for its density function and explicit expressions
for the ordinary moments, quantile and generating functions, incomplete moments
and order statistics. The model parameters are estimated by maximum likelihood.
An application of the new distribution to a real data set demonstrates that it can
be used quite effectively to provide better fits than other competing models. We
hope that this generalization may attract wider applications in the literature of the
fatigue life distributions.
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Appendix: The components of the score function

∂�

∂α
= 1

α
+ log

(
y

θ

)
− log

(
y

θ

)(
y

θ

)2α

+ 2(a − 1)√
2π

{
v log(y/θ)

2 − 2�[(y/θ)α]
}

+ 2a(b − 1)√
2π

{
v log(y/θ)[2 − 2�[(y/θ)α]]a−1

1 − [2 − 2�[(y/θ)α]]a
}
,

∂�

∂θ
= α

θ

(
y

θ

)2α

−
(

α

θ

)
+ 2(a − 1)√

2π

{
v(α/θ)

2 − 2�[(y/θ)α]
}

+ 2a(1 − b)√
2π

{
v(α/θ)[2 − 2�[(y/θ)α]]a−1

1 − [2 − 2�[(y/θ)α]]a
}
,

∂�

∂a
= 1

a
+ log

{
2 − 2�

[(
y

θ

)α]}

+ (1 − b)

{{2 − 2�[(y/θ)α]}a log{2�[(y/θ)α] − 2}
1 − [2 − 2�[(y/θ)α]]a

}
,

∂�

∂b
= 1

b
+ log

[
1 −

{
2 − 2�

[(
y

θ

)α]}a]
,

where v = exp[−1
2(

y
θ
)2α](y

θ
)α .
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