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Abstract. Expected-posterior priors (EPPs) have been proved to be ex-
tremely useful for testing hypotheses on the regression coefficients of nor-
mal linear models. One of the advantages of using EPPs is that impropriety
of baseline priors causes no indeterminacy in the computation of Bayes fac-
tors. However, in regression problems, they are based on one or more training
samples, that could influence the resulting posterior distribution. On the other
hand, the power-expected-posterior priors are minimally-informative priors
that reduce the effect of training samples on the EPP approach, by combining
ideas from the power-prior and unit-information-prior methodologies. In this
paper, we prove the consistency of the Bayes factors when using the power-
expected-posterior priors, with the independence Jeffreys as a baseline prior,
for normal linear models, under very mild conditions on the design matrix.

1 Introduction

Pérez and Berger (2002) developed priors for model comparison, through utiliza-
tion of the device of “imaginary training samples” (Good, 2004; Spiegelhalter and
Smith, 1988; Iwaki, 1997). They defined the expected-posterior prior (EPP) as the
posterior distribution of a parameter vector for the model under consideration, av-
eraged over all possible imaginary samples y∗ coming from a “suitable” predictive
distribution m∗(y∗). Hence, the EPP for the parameter vector θ�, of any model
M� ∈ M, with M denoting the model space, is

πEPP
� (θ�) =

∫
πN

�

(
θ�|y∗)

m∗(
y∗)

dy∗, (1)

where πN
� (θ�|y∗) is the posterior of θ� for model M� using a baseline prior πN

� (θ�)

and data y∗.
An attractive option for m∗ arises from selecting a “reference” or “base” model

M0 for the training sample and defining m∗(y∗) = mN
0 (y∗) ≡ f (y∗|M0) to be the

prior predictive distribution, evaluated at y∗, for the reference model M0 under
the baseline prior πN

0 (θ0). For the variable-selection problem considered in this
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paper, the constant model (with no predictors) is used as a reference model, fol-
lowing the skeptical-prior approach described by Spiegelhalter, Abrams and Myles
(2004, Section 5.5.2). This selection simplifies computations, and makes the EPP
approach equivalent to the arithmetic intrinsic Bayes factor approach of Berger
and Pericchi (1996).

One of the advantages of using EPPs is that impropriety of baseline priors
causes no indeterminacy in the computation of Bayes factors. With EPPs, we can
use an improper baseline prior πN

� (θ�) in (1), since the arbitrary constants can-
cel out in the calculation of any Bayes factor. However, in regression problems,
EPPs are based on one or more training samples, that could influence the resulting
posterior distribution.

To diminish the effect of training samples on the EPP approach and simul-
taneously to produce a minimally-informative prior, Fouskakis, Ntzoufras and
Draper (2015) introduced the power-expected-posterior (PEP) priors, by combin-
ing ideas from the power-prior approach of Ibrahim and Chen (2000) and the unit-
information-prior approach of Kass and Wasserman (1995). As a first step, the
likelihoods involved in the EPP distribution are raised to the power 1/δ and then
are density-normalized. This power parameter δ is set equal to the size of the train-
ing sample n∗, to represent information equal to one data point. Regarding the size
of the training sample, n∗, this is set equal to the sample size n; in this way the
selection of a training sample and its effect on the posterior model comparison is
completely avoided.

In what follows, we examine variable-selection problems in Gaussian regression
models. Thus, for any model M�, with parameters θ� = (β�, σ

2
� ), the likelihood is

specified by (
Y|X�,β�, σ

2
� ,M�

) ∼ Nn

(
X�β�, σ

2
� In

)
, (2)

where Y = (Y1, . . . , Yn) is a vector containing the (real-valued) responses for all
subjects, X� is a n × d� design matrix containing the values of the explanatory
variables in its columns, In is the n × n identity matrix, β� is a vector of length d�

summarizing the effects of the covariates in model M� on the response Y and σ 2
� is

the error variance. Furthermore, we denote the imaginary/training data set by y∗,
their size by n∗, and the corresponding imaginary design matrix by X∗ of size n∗ ×
(p + 1), where p denotes the total number of available covariates. Following the
PEP methodology, we set n∗ = n and X∗ = X, where X is the original n × (p + 1)

design matrix.
For any model M� ∈ M, we denote by πN

� (β�, σ
2
� |X∗

�) the baseline prior for
model parameters β� and σ 2

� , with X∗
� being the imaginary design matrix under

model M�. Then the power-expected-posterior (PEP) prior, πPEP
� (β�, σ

2
� |X∗

�, δ),
takes the following form:

πPEP
�

(
β�, σ

2
� |X∗

�, δ
)

= πN
�

(
β�, σ

2
� |X∗

�

) ∫
mN

0 (y∗|X∗
0, δ)

mN
� (y∗|X∗

�, δ)
f

(
y∗|β�, σ

2
� ,M�;X∗

�, δ
)
dy∗, (3)



Consistency of the J-PEP Bayes factor 301

where f (y∗|β�, σ
2
� ,M�;X∗

�, δ) ∝ f (y∗|β�, σ
2
� ,M�;X∗

�)
1/δ is the likelihood, eval-

uated at y∗, under model M�, raised to the power of 1/δ and density-normalized,
that is,

f
(
y∗|β�, σ

2
� ,M�;X∗

�, δ
) = f (y∗|β�, σ

2
� ,M�;X∗

�)
1/δ

∫
f (y∗|β�, σ

2
� ,M�;X∗

�)
1/δ dy∗

= fNn∗ (y∗;X∗
�β�, σ

2
� In∗)1/δ

∫
fNn∗ (y∗;X∗

�β�, σ
2
� In∗)1/δ dy∗

= fNn∗
(
y∗;X∗

�β�, δσ
2
� In∗

); (4)

here fNd
(y;μ,�) is the density of the d-dimensional normal distribution with

mean μ and covariance matrix �, evaluated at y.
When the reference model M0 is nested in all other models (like in our case) the

EPP (and therefore the PEP prior) for the parameter vector under M0 is clearly the
same as the baseline prior, that is,

πPEP
0

(
β0, σ

2
0 |X∗

0, δ
) = πN

0
(
β0, σ

2
0 |X∗

0
)
,

with X∗
0 being the imaginary design matrix under model M0.

The distribution mN
� (y∗|X∗

�, δ) appearing in (3) is the prior predictive distribu-
tion (or the marginal likelihood), evaluated at y∗, of model M�, using the power
likelihood defined in (4), under the baseline prior πN

� (β�, σ
2
� |X∗

�), that is,

mN
�

(
y∗|X∗

�, δ
) =

∫∫
fNn∗

(
y∗;X∗

�β�, δσ
2
� In∗

)
πN

�

(
β�, σ

2
� |X∗

�

)
dβ� dσ 2

� . (5)

Similarly, the distribution mN
0 (y∗|X∗

0, δ) appearing in (3) is the prior predictive
distribution, evaluated at y∗, of the reference model M0, using the power likelihood
defined in (4) (with � = 0), under the baseline prior πN

0 (β0, σ
2
0 |X∗

0), that is,

mN
0

(
y∗|X∗

0, δ
) =

∫∫
fNn∗

(
y∗;X∗

0β0, δσ
2
0 In∗

)
πN

0
(
β0, σ

2
0 |X∗

0
)
dβ0 dσ 2

0 . (6)

Here, we use the independence Jeffreys prior (or reference prior) as the baseline
prior distribution. Hence, for any M� ∈ M we have

πN
�

(
β�, σ

2|X∗
�

) = c�

σ 2
�

, (7)

where c� is an unknown normalizing constant; we refer to the resulting PEP prior
as J-PEP.

It is worth noting that our method works in a totally different fashion than frac-
tional Bayes factors (O’Hagan, 1995). In the latter, a fraction b of the full likeli-
hood is used to “properize” the baseline prior and the remaining fraction (1 − b)

of the full likelihood is used for model comparison. In contrast, with our approach,
the original likelihood is used only once, for simultaneous variable selection and
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posterior inference. Moreover, the fraction of the likelihood (power likelihood)—
used in the expected-posterior expression of our prior distribution—refers solely
to the imaginary data coming from a prior predictive distribution based on the
reference model.

2 The conditional J-PEP prior distribution

In the following, under any model M�, we denote by

H� = X�

(
XT

� X�

)−1XT
� and by P� = In − H�

and the corresponding measures based on X∗
� by H∗

� and P∗
� , respectively.

Under (7), the corresponding marginal likelihood, with response data y∗, design
matrix X∗

� and likelihood function raised to the power of 1/δ, is given by

mN
�

(
y∗|X∗

�, δ
) = c�π

(d�−n∗)/2∣∣XT
�

∗
X∗

�

∣∣−1/2
�

(
n∗ − d�

2

)
RSS∗

�
−(n∗−d�)/2

,

where RSS∗
� is the residual sum of squares given by RSS∗

� = y∗T P∗
�y∗. Similarly, in

the rest of the paper we denote by RSS� = yT P�y.
The J-PEP prior for the parameters of model M� is given by

π J-PEP
�

(
β�, σ

2
� |X∗

�, δ
)

=
∫

πN
�

(
β�, σ

2
� |y∗;X∗

�, δ
)
mN

0
(
y∗|X∗

0, δ
)
dy∗

=
∫

f
(
y∗|β�, σ

2
� ,M�;X∗

�, δ
)
πN (

β�, σ
2
� |X∗

�

)mN
0 (y∗|X∗

0, δ)

mN
� (y∗|X∗

�, δ)
dy∗

=
∫∫ [∫ (

f
(
y∗|β�, σ

2
� ,M�;X∗

�, δ
)
f

(
y∗|β0, σ

2
0 ,M0;X∗

0, δ
)
πN (

β�, σ
2
� |X∗

�

))

/(
mN

�

(
y∗|X∗

�, δ
))

dy∗
]

× πN
0

(
β0, σ

2
0 |X∗

0
)
dβ0 dσ 2

0

=
∫∫

π J-PEP
�

(
β�, σ

2
� |β0, σ

2
0 ;X∗

�, δ
)
πN

0
(
β0, σ

2
0 |X∗

0
)
dβ0 dσ 2

0

with the conditional J-PEP prior given by

π J-PEP
�

(
β�, σ

2
� |β0, σ

2
0 ;X∗

�, δ
)

=
∫

fNn∗ (y∗;X�β�, δσ
2
� In∗)fNn∗ (y∗;X0β0, δσ

2
0 In∗)c�/σ

2
�

c�π(d�−n∗)/2|X∗
�
T X∗

�|−1/2�((n∗ − d�)/2)RSS∗
�
−(n∗−d�)/2 dy∗
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= π−(d�−n∗)/2

σ 2
� �((n∗ − d�)/2)

∣∣X∗
�
T X∗

�

∣∣1/2

(8)
×

∫
RSS∗

�
(n∗−d�)/2

fNn∗
(
y∗;X�β�, δσ

2
� In∗

)
fNn∗

(
y∗;X�β0, δσ

2
0 In∗

)
dy∗,

where β0 = (βT
0 ,0T

d�−d0
)T and 0k being a vector of zeros of length k. The product

of the two normal densities involved in the integrand is given by

fNn∗
(
y∗;X�β�, δσ

2
� In∗

)
fNn∗

(
y∗;X�β0, δσ

2
0 In∗

)

= (2π)−(n∗−d�)/2[
δ
(
σ 2

0 + σ 2
�

)]−(n∗−d�)/2

(9)
× ∣∣X∗

�
T X∗

�

∣∣−1/2
fNn∗

(
y∗;E−1D,E−1)

× fNd�

(
β�;β0, δ

(
σ 2

� + σ 2
0
)(

X∗
�
T X∗

�

)−1)
with

E =
(

σ 2
� + σ 2

0

δσ 2
0 σ 2

�

)
In∗ and

(10)

D = 1

δσ 2
0

X∗
�β0 + 1

δσ 2
�

X∗
�β� = 1

δ
X∗

�

(
σ 2

�

σ 2
� + σ 2

0

β0 + σ 2
0

σ 2
� + σ 2

0

β�

)
.

Note that (9) was obtained using the property

fNn(y;Mξ1,A1)fNn(y;Mξ2,A2)

= (2π)−(n−p)/2|A1 + A2|−1/2∣∣MT (A1 + A2)
−1M

∣∣−1/2

(11)
× fNn

(
y;E−1

1 D1,E−1
1

)
fNn(ξ1; ξ2,A1 + A2)

with

E1 = A−1
1 + A−1

2 and D1 = A−1
1 Mξ1 + A−1

2 Mξ2.

In (11), M is a n × p matrix of rank p (p ≤ n), ξ1 and ξ2 are vectors of length p

and A1 and A2 are positive definite matrices of dimension n × n. Expression (11)
can be easily obtained using the identity:

(y − Mξ1)
T A−1

1 (y − Mξ1) + (y − Mξ2)
T A−1

2 (y − Mξ2)

= yT Ey − 2yT (
A−1

1 Mξ1 + A−1
2 Mξ2

) + ξT
1

+ MT A−1
1 Mξ1 + ξT

2 + MT A−1
2 Mξ2

= [
CT y − C−1D

]T [
CT y − C−1D

]
+ (ξ2 − ξ1)

T MT (A1 + A2)
−1M(ξ2 − ξ1),
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with C being a n × n lower triangular matrix (the Cholesky decomposition) with
nonzero elements in the diagonal such that E1 = CCT .

Replacing (9) in (8), we obtain

π J-PEP
�

(
β�, σ

2
� |β0, σ

2
0 ;X∗

�, δ
)

= π−(d�−n∗)/2

σ 2
� �((n∗ − d�)/2)

∣∣X∗
�
T X∗

�

∣∣1/2
(2π)−(n∗−d�)/2

× [
δ
(
σ 2

0 + σ 2
�

)]−(n∗−d�)/2∣∣X∗
�
T X∗

�

∣∣−1/2 (12)

× fNn∗
(
β�;β0, δ

(
σ 2

� + σ 2
0
)(

X∗
�
T X∗

�

)−1)

×
∫ (

y∗T P∗
�y∗)(n∗−d�)/2

fNn∗
(
y∗;E−1D,E−1)

dy∗,

with E and D given in (10).
We set

z = E1/2(
y∗ − E−1D

) = ζ 1/2(
y∗ − X∗

��
)
,

where ζ = (
σ 2

� +σ 2
0

δσ 2
0 σ 2

�

) and � = (ζ δ)−1(
σ 2

�

σ 2
� +σ 2

0
β0 + σ 2

0
σ 2

� +σ 2
0
β�). Therefore we have

y∗ = ζ−1/2z + X∗
��, dy∗ = ζ−n∗/2 dz and

fNn∗
(
y∗;E−1D,E−1)

dy∗ = fNn∗ (z;0n∗, In∗) dz

since the term ζ−n∗/2, coming from the Jacobian of the transformation, cancels out
with the determinant of the variance, that is |E|1/2 = ζ n∗/2. Moreover,

y∗T P∗
�y∗ = (

ζ−1/2z + X∗
��

)T P∗
�

(
ζ−1/2z + X∗

��
)

= ζ−1zT P∗
�z + ζ−1/2zT P∗

�X∗
��

+ �T X∗
�
T P∗

�ζ
−1/2z + �T X∗

�
T P∗

�X∗
��

= ζ−1zT P∗
�z (13)

since X∗
�
T P∗

� = P∗
�X∗

� = 0.
Returning back to (12), we obtain

π J-PEP
�

(
β�, σ

2
� |β0, σ

2
0 ;X∗

�, δ
)

= 2−(n∗−d�)/2
[
σ 2

� �

(
n∗ − d�

2

)]−1[
δ
(
σ 2

0 + σ 2
�

)]−(n∗−d�)/2

× fNn∗
(
β�;β0, δ

(
σ 2

� + σ 2
0
)(

X∗
�
T X∗

�

)−1)

× ζ−(n∗−d�)/2
∫ (

zT P∗
�z

)(n∗−d�)/2
fNn∗ (z;0n∗, In∗) dz
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= 2−(n∗−d�)/2
[
�

(
n∗ − d�

2

)]−1[
δ
(
σ 2

0 + σ 2
�

)]−(n∗−d�)/2
δ(n∗−d�)/2

× (
σ 2

0
)(n∗−d�)/2(

σ 2
�

)(n∗−d�)/2−1(
σ 2

0 + σ 2
�

)−(n∗−d�)/2

× fNn∗
(
β�;β0, δ

(
σ 2

� + σ 2
0
)(

X∗
�
T X∗

�

)−1)

× E
[(

zT P∗
�z

)(n∗−d�)/2]

= 2−(n∗−d�)/2
[
�

(
n∗ − d�

2

)]−1(
σ 2

0
)(n∗−d�)/2

× (
σ 2

�

)(n∗−d�)/2−1(
σ 2

0 + σ 2
�

)−(n∗−d�)

× fNn∗
(
β�;β0, δ

(
σ 2

� + σ 2
0
)(

X∗
�
T X∗

�

)−1)
2(n∗−d�)/2

× �((n∗ − d�)/2 + (n∗ − d�)/2)

�((n∗ − d�)/2)
,

since

E
[(

xT Kx
)h] = 2h �(h + r/2)

r/2
,

where h > 0, K is a n × n symmetric and idempotent matrix of rank r , x ∼
Nn(0n, In) and, therefore, xT Kx ∼ χ2

r .
Thus, (14) becomes

π J-PEP
�

(
β�, σ

2
� |β0, σ

2
0 ;X∗

�, δ
)

= �(n∗ − d�)

�((n∗ − d�)/2)2

(
σ 2

0
)−(n∗−d�)/2(

σ 2
�

)(n∗−d�)/2−1
(

1 + σ 2
�

σ 2
0

)−(n∗−d�)

(14)
× fNd�

(
β�;β0, δ

(
σ 2

� + σ 2
0
)(

X∗
�
T X∗

�

)−1)
.

3 The J-PEP Bayes factor

The Bayes factor of any model M� (� �= 0) versus the reference model M0, under
the J-PEP prior approach, is given by

BFJ-PEP
�0 =

∫
fNn(y;X�β�, σ

2
� In)π J-PEP

� (β�, σ
2
� |X∗

�, δ) dβ� dσ 2
�∫

fNn(y;X0β0, σ
2
0 In)πN

0 (β0, σ
2
0 |X∗

0) dβ0 dσ 2
0

with the denominator given by

mN
0 (y|X0) = c0π

(d0−n)/2∣∣XT
0 X0

∣∣−1/2
�

(
n − d0

2

)
RSS−(n−d0)/2

0 .
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Using (14), the numerator is given by

mJ-PEP
�

(
y|X�,X∗

�, δ
)

=
∫∫∫∫

fNn

(
y;X�β�, σ

2
� In

)
π J-PEP

�

(
β�, σ

2
� |β0, σ

2
0 ;X∗

�, δ
)

× πN
0

(
β0, σ

2
0 |X∗

0
)
dβ� dσ 2

� dβ0 dσ 2
0

=
∫∫∫∫

c0

σ 2
0

C�fNn

(
y;X�β�, σ

2
� In

)

× fNd�

(
β�;β0, δ

(
σ 2

� + σ 2
0
)(

X∗
�
T X∗

�

)−1)
dβ� dσ 2

� dβ0 dσ 2
0 ,

with

C� = (
σ 2

0
)−(n∗−d�)/2(

σ 2
�

)(n∗−d�)/2−1
(

1 + σ 2
�

σ 2
0

)−(n∗−d�) �(n∗ − d�)

�((n∗ − d�)/2)2 . (15)

Integrating out β�, we obtain

mJ-PEP
�

(
y|X�,X∗

�, δ
) =

∫∫∫
c0

σ 2
0

C�

[
fNn

(
y;X�β0,	

′
�

)]
dβ0 dσ 2

� dσ 2
0 ,

with

	′
� = σ 2

� In + δ
(
σ 2

� + σ 2
0
)
X�

(
X∗

�
T X∗

�

)−1XT
� .

The above expression was obtained using the following formula:∫
fNn(y;Mξ1,A1)fNp(ξ1; ξ2,A3) dξ1 = fNn

(
y;Mξ2,A1 + MA3MT )

,

with M being a n × p matrix of rank p (p ≤ n), ξ1 and ξ2 being vectors of length
p and A1 and A3 being positive definite matrices of dimensions n × n and p × p,
respectively.

Moreover,

mJ-PEP
�

(
y|X�,X∗

�, δ
) =

∫∫∫
c0

σ 2
0

C�

[
fNn

(
y;X�β0,	

′
�

)]
dβ0 dσ 2

� dσ 2
0

=
∫∫∫

c0

σ 2
0

C�

[
fNn

(
y;X0β0,	

′
�

)]
dβ0 dσ 2

� dσ 2
0

=
∫∫

c0

σ 2
0

C�

[
(2π)−(n−d0)/2∣∣	′

�

∣∣−1/2∣∣XT
0 	′

�
−1X0

∣∣−1/2

× exp
{
−1

2
yT A	y

}]
dσ 2

� dσ 2
0 ,

where

A	 = 	′
�
−1 − 	′

�
−1X0

[
XT

0 	′
�
−1X0

]−1XT
0 	′

�
−1

,



Consistency of the J-PEP Bayes factor 307

since∫
fNn(y;Mξ1,A1) dξ1 = (2π)−(n−p)/2|A1|−1/2∣∣MT A−1

1 M
∣∣−1/2

× exp
{
−1

2
yT [

A−1
1 − A−1

1 M
(
MT A−1

1 M
)−1MT A−1

1

]
y
}

with M being a n × p matrix of rank p (p ≤ n), ξ1 being a vector of length p and
A1 being a positive definite matrix of dimension n × n.

Substituting expression (15), we obtain

mJ-PEP
�

(
y|X�,X∗

�, δ
)

=
∫∫

c0

σ 2
0

(
σ 2

0
)−(n∗−d�)/2(

σ 2
�

)(n∗−d�)/2−1
(

1 + σ 2
�

σ 2
0

)−(n∗−d�) �(n∗ − d�)

�((n∗ − d�)/2)2

×
[
(2π)−(n−d0)/2∣∣	′

�

∣∣−1/2∣∣XT
0 	′

�
−1X0

∣∣−1/2 exp
{
−1

2
yT A	y

}]
dσ 2

� dσ 2
0

= c0(2π)−(n−d0)/2 �(n∗ − d�)

�((n∗ − d�)/2)2

×
∫∫ (

σ 2
0
)−2

(
σ 2

�

σ 2
0

)(n∗−d�)/2−1(
1 + σ 2

�

σ 2
0

)−(n∗−d�)

(16)

× ∣∣	′
�

∣∣−1/2∣∣XT
0 	′

�
−1X0

∣∣−1/2 exp
{
−1

2
yT A	y

}
dσ 2

� dσ 2
0 .

We now set

r =
√

σ 2
0 + σ 2

� and φ = arctan
(√√√√σ 2

�

σ 2
0

)

for r ∈ [0,+∞) and φ ∈ [0, π/2]. The inverse transformations are given by

σ 2
0 = r2 cos2 φ and σ 2

� = r2 sin2 φ (17)

while the Jacobian is

J (r,φ) =

∣∣∣∣∣∣∣∣

∂σ 2
0

∂r

∂σ 2
0

∂φ

∂σ 2
�

∂r

∂σ 2
�

∂φ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

∂(r2 cos2 φ)

∂r

(∂r2 cos2 φ)

∂φ

∂(r2 sin2 φ)

∂r

(∂r2 sin2 φ)

∂φ

∣∣∣∣∣∣∣∣
=

∣∣∣∣ 2r cos2 φ −2r2 cosφ sinφ

2r sin2 φ 2r2 sinφ cosφ

∣∣∣∣
= 4r3 sinφ cosφ

(
cos2 φ + sin2 φ

) = 4r3 sinφ cosφ. (18)
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Then the matrix 	′
� becomes equal to

	′
� = σ 2

� In + δ
(
σ 2

� + σ 2
0
)
X�

(
X∗

�
T X∗

�

)−1XT
�

= r2 sin2 φIn + r2δX�

(
X∗

�
T X∗

�

)−1XT
�

= r2B(φ) (19)

with B(φ) being a n × n matrix given by

B(φ) = sin2 φIn + δX�

(
X∗

�
T X∗

�

)−1XT
� (20)

while A	 can be rewritten as

A	 = 	′
�
−1 − 	′

�
−1X0

[
XT

0 	′
�
−1X0

]−1XT
0 	′

�
−1

= r−2B−1(φ) − r−2B−1(φ)X0
[
XT

0 r−2B−1(φ)X0
]−1XT

0 r−2B−1(φ)

= r−2[
B−1(φ) − B−1(φ)X0A

−1(φ)XT
0 B−1(φ)

]

with

A(φ) = XT
0 B−1(φ)X0 (21)

being a d0 × d0 matrix. Moreover, we have that

yT A	y = r−2D(φ) (22)

with

D(φ) = yT [
B−1(φ) − B−1(φ)X0A

−1(φ)XT
0 B−1(φ)

]
y (23)

being a scalar. Finally, the first three terms in the integrand of (16) can be written
as

(
σ 2

0
)−2

(
σ 2

�

σ 2
0

)(n∗−d�)/2−1(
1 + σ 2

�

σ 2
0

)−(n∗−d�)

= (
r2 cos2 φ

)−2
(

sin2 φ

cos2 φ

)(n∗−d�)/2−1

×
(

r2 cos2 φ + r2 sin2 φ

r2 cos2 φ

)−(n∗−d�)

= (
r2 cos2 φ

)−2
(

sin2 φ

cos2 φ

)(n∗−d�)/2−1(
cos2 φ

)n∗−d�

= r−4(sinφ cosφ)n
∗−d�−2. (24)
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Using the transformation (17) and the corresponding Jacobian given by (18), as
well as expressions (19), (22) and (24), the marginal likelihood (16) now becomes

mJ-PEP
�

(
y|X�,X∗

�, δ
)

= c0(2π)−(n−d0)/2 �(n∗ − d�)

�((n∗ − d�)/2)2

×
∫ π/2

0

∫ ∞
0

r−4(sinφ cosφ)n
∗−d�−2

|r2B(φ)|1/2|r−2XT
0 B−1(φ)X0|1/2

× exp
{
−1

2
r−2D(φ)

}
4r3 sinφ cosφ dr dφ

= 4c0(2π)−(n−d0)/2
∫ π/2

0

(sinφ cosφ)n
∗−d�−1

|B(φ)|1/2|XT
0 B−1(φ)X0|1/2

(25)

×
∫ ∞

0
r−n+d0−1 exp

{
−1

2
r−2D(φ)

}
dr dφ.

We now set w = 1/r (⇔ r = w−1 and dr = (−1)w−2 dw), resulting in

mJ-PEP
�

(
y|X�,X∗

�, δ
)

= 4c0(2π)−(n−d0)/2 �(n∗ − d�)

�((n∗ − d�)/2)2

×
∫ π/2

0

(sinφ cosφ)n
∗−d�−1

|B(φ)|1/2|A(φ)|1/2

∫ ∞
0

wn−d0+1 exp
{
−1

2
w2D(φ)

}
w−2 dw dφ

= 4c0(2π)−(n−d0)/2 �(n∗ − d�)

�((n∗ − d�)/2)2

×
∫ π/2

0

(sinφ cosφ)n
∗−d�−1

|B(φ)|1/2|A(φ)|1/2D(φ)

×
∫ ∞

0
wn−d0−2 w

D(φ)−1 exp
{
− w2

2D(φ)−1

}
dw dφ

= 4c0(2π)−(n−d0)/2 �(n∗ − d�)

�((n∗ − d�)/2)2

×
∫ π/2

0

(sinφ cosφ)n
∗−d�−1

|B(φ)|1/2|A(φ)|1/2D(φ)

∫ ∞
0

wn−d0−2fR

(
w;D(φ)−1)

dw dφ

= 4c0(2π)−(n−d0)/2 �(n∗ − d�)

�((n∗ − d�)/2)2

×
∫ π/2

0

(sinφ cosφ)n
∗−d�−1

|B(φ)|1/2|A(φ)|1/2D(φ)
ER

(
wn−d0−2;D(φ)−1)

dφ,
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where fR(w; s2) is the density function of the Rayleigh distribution with scale
parameter s2 (which here is equal to D(φ)−1) and variance s2(4−π)/2. Moreover,
by ER(wk; s2) we denote the corresponding kth moment about zero which is given
by sk2k/2�(1 + k/2). Therefore, we have:

mJ-PEP
�

(
y|X�,X∗

�, δ
)

= 4c0(2π)−(n−d0)/2 �(n∗ − d�)

�((n∗ − d�)/2)2

×
∫ π/2

0

(sinφ cosφ)n
∗−d�−12(n−d0−2)/2�(1 + (n − d0 − 2)/2)

|B(φ)|1/2|A(φ)|1/2[D(φ)]1+(n−d0−2)/2 dφ

= 4c0(2π)−(n−d0)/2 �(n∗ − d�)

�((n∗ − d�)/2)2 2(n−d0)/2−1�

(
n − d0

2

)

×
∫ π/2

0

(sinφ cosφ)n
∗−d�−1

|B(φ)|1/2|A(φ)|1/2[D(φ)](n−d0)/2 dφ

= 2c0π
−(n−d0)/2 �(n∗ − d�)�((n − d0)/2)

�((n∗ − d�)/2)2

×
∫ π/2

0

(sinφ cosφ)n
∗−d�−1

|B(φ)|1/2|A(φ)|1/2[D(φ)](n−d0)/2 dφ.

Hence, the Bayes factor of model M� (� �= 0) versus the reference model M0,
under the J-PEP prior approach, is given by

BFJ-PEP
�0 = 2c0π

−(n−d0)/2((�(n∗ − d�)�((n − d0)/2))/(�((n∗ − d�)/2)2))

c0π(d0−n)/2|XT
0 X0|−1/2�((n − d0)/2)RSS−(n−d0)/2

0

×
∫ π/2

0

(sinφ cosφ)n
∗−d�−1

|B(φ)|1/2|A(φ)|1/2[D(φ)](n−d0)/2 dφ

= 2
�(n∗ − d�)

�((n∗ − d�)/2)2

∣∣XT
0 X0

∣∣1/2RSS(n−d0)/2
0

(26)

×
∫ π/2

0

(sinφ cosφ)n
∗−d�−1

|B(φ)|1/2|A(φ)|1/2[D(φ)](n−d0)/2 dφ.

Under the J-PEP approach, we set (X∗
�
T X∗

�) = (XT
� X�), n∗ = n and δ = n, and

thus

B(φ) = sin2 φIn + δX�

(
XT

� X�

)−1XT
�

= sin2 φIn + δH�.
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Moreover,

B−1(φ) = [
sin2 φIn + δH�

]−1 = 1

sin2 φ

[
In + δ

sin2 φ
X�

(
XT

� X�

)−1XT
�

]−1

= 1

sin2 φ

[
I−1
n − I−1

n

δ

sin2 φ
X�

([(
XT

� X�

)−1]−1 + δ

sin2 φ
XT

� X�

)−1

XT
� I−1

n

]

= 1

sin2 φ

[
In − δ

sin2 φ

sin2 φ

δ + sin2 φ
H�

]

= 1

sin2 φ

[
In − δ

δ + sin2 φ
H�

]

= 1

sin2 φ

δ

δ + sin2 φ
[In − H�] + 1

sin2 φ

sin2 φ

δ + sin2 φ
In

= δ

sin2 φ(δ + sin2 φ)
P� + 1

δ + sin2 φ
In (27)

and |B(φ)| = | sin2 φIn + δH�| = (sin2 φ)n|In + δ

sin2 φ
H�| = (sin2 φ)n|Id�

+ δ

sin2 φ
×

(XT
� X�)(XT

� X�)
−1| resulting in

∣∣B(φ)
∣∣ = (

sin2 φ
)n(

1 + δ

sin2 φ

)d�

= (
sin2 φ

)n−d�
(
δ + sin2 φ

)d� .

Also yT B−1(φ)y = δ

sin2 φ(δ+sin2 φ)
yT [In − H�]y + 1

δ+sin2 φ
yT y = 1

δ+sin2 φ
×

( δ

sin2 φ
RSS� + yT y). From (21), A(φ) is now given by

A(φ) = XT
0 B−1(φ)X0 = 1

sin2 φ
XT

0

[
In − δ

δ + sin2 φ
H�

]
X0

= 1

sin2 φ

[
XT

0 X0 − δ

δ + sin2 φ
XT

0 H�X0

]

= 1

sin2 φ

[
XT

0 X0 − δ

δ + sin2 φ
XT

0 X0

]

= 1

δ + sin2 φ
XT

0 X0

since H� is idempotent and XT
0 H� = X0 for any model M0 nested in M�. This

comes from the blockwise formula where for any X� = [X0,X�\0] we have

H� = H0 + H(In−H0)X�\0 ⇔
XT

0 H� = XT
0 H0 + XT

0 HP0X�\0
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= XT
0 + XT

0 P0X�\0
{[P0X�\0]T P0X�\0

}−1[P0X�\0]T

= XT
0 + (

XT
0 − XT

0 H0
)
X�\0

{[P0X�\0]T P0X�\0
}−1[P0X�\0]T = XT

0 .

Therefore, |A(φ)| = (δ + sin2 φ)−d0 |XT
0 X0| and X0A

−1(φ)X0 = (δ + sin2 φ)H0.

From (23), we obtain that

D(φ) = yT B−1(φ)y − yT B−1(φ)X0A
−1(φ)XT

0 B−1(φ)y

= 1

δ + sin2 φ

(
δ

sin2 φ
RSS� + yT y

)

− yT B−1(φ)
[(

δ + sin2 φ
)
H0

]
B−1(φ)y

= 1

δ + sin2 φ

(
δ

sin2 φ
RSS� + yT y

)
− (

δ + sin2 φ
)
yT

×
[

1

sin2 φ

(
In − δ

δ + sin2 φ
H�

)]

× H0

[
1

sin2 φ

(
In − δ

δ + sin2 φ
H�

)]
y

= 1

δ + sin2 φ

(
δ

sin2 φ
RSS� + yT y

)

− δ + sin2 φ

sin4 φ
yT

(
In − δ

δ + sin2 φ
H�

)
H0

(
In − δ

δ + sin2 φ
H�

)
y

= 1

δ + sin2 φ

(
δ

sin2 φ
RSS� + yT y

)

− δ + sin2 φ

sin4 φ
yT

(
H0 − δ

δ + sin2 φ
H�H0 − δ

δ + sin2 φ
H0H�

+
[

δ

δ + sin2 φ

]2

H�H0H�

)
y

(H0H�=H0)= 1

δ + sin2 φ

(
δ

sin2 φ
RSS� + yT y

)
− δ + sin2 φ

sin4 φ

[
sin2 φ

δ + sin2 φ

]2

yT H0y

= 1

δ + sin2 φ

(
δ

sin2 φ
RSS� + yT y − yT H0y

)

= 1

δ + sin2 φ

(
δ

sin2 φ
RSS� + RSS0

)
.
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By substituting the above equations in (26), we obtain

BFJ-PEP
�0 = 2

�(n − d�)

�((n − d�)/2)2

∣∣XT
0 X0

∣∣1/2RSS(n−d0)/2
0

×
∫ π/2

0

(sinφ cosφ)n−d�−1

|B(φ)|1/2|A(φ)|1/2[D(φ)](n−d0)/2 dφ

= 2
�(n − d�)

�((n − d�)/2)2

∣∣XT
0 X0

∣∣1/2RSS(n−d0)/2
0

×
∫ π/2

0

(
(sinφ cosφ)n−d�−1(

n + sin2 φ
)(n−d0)/2

×
(

n

sin2 φ
RSS� + RSS0

)−(n−d0)/2)

/((
sin2 φ

)(n−d�)/2(
n + sin2 φ

)d�/2(
n + sin2 φ

)−d0/2∣∣XT
0 X0

∣∣1/2)
dφ

= 2
�(n − d�)

�((n − d�)/2)2

×
∫ π/2

0

(
(sinφ cosφ)n−d�−1(

n + sin2 φ
)(n−d0)/2

× (
sin2 φ

)(n−d0)/2
(
n

RSS�

RSS0
+ sin2 φ

)−(n−d0)/2)

/((
sin2 φ

)(n−d�)/2(
n + sin2 φ

)d�/2(
n + sin2 φ

)−d0/2)
dφ

= 2
�(n − d�)

�((n − d�)/2)2

(28)

×
∫ π/2

0

(sinφ)n−d0−1(cosφ)n−d�−1(n + sin2 φ)(n−d�)/2

(n(RSS�/RSS0) + sin2 φ)(n−d0)/2
dφ.

For large n, we can write

(
n + sin2 φ

)(n−d�)/2 = (
n + sin2 φ

)n/2(
n + sin2 φ

)−d�/2

= nn/2
(

1 + sin2 φ/2

n/2

)n/2(
n + sin2 φ

)−d�/2

≈ nn/2(
n + sin2 φ

)−d�/2 exp
(

sin2 φ

2

)

≈ n(n−d�)/2 exp
(

sin2 φ

2

)
.
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Similarly,

(
n

RSS�

RSS0
+ sin2 φ

)(n−d0)/2

=
[
n

RSS�

RSS0

](n−d0)/2(
1 + 1/2 sin2 φ(RSS0/RSS�)

n/2

)n/2

×
(

1 + sin2 φ(RSS0/RSS�)

n

)−d0/2

≈
[
n

RSS�

RSS0

](n−d0)/2

exp
(

1

2
sin2 φ

RSS0

RSS�

)
.

Moreover, for large z we have

log�(z) ≈
(
z − 1

2

)
log z − z + 1

2
log(2π).

Hence,

log�(n − d�)

≈
(
n − d� − 1

2

)
log(n − d�) − (n − d�) + 1

2
log(2π),

log�

(
n − d�

2

)

≈
(

n − d� − 1

2

)
log

(
n − d�

2

)
−

(
n − d�

2

)
+ 1

2
log(2π),

log�(n − d�) − 2 log�

(
n − d�

2

)

≈
(
n − d� − 1

2

)
log(n − d�) − (n − d�) + 1

2
log(2π)

− 2
(

n − d� − 1

2

)
log

(
n − d�

2

)

+ 2
(

n − d�

2

)
− 2

1

2
log(2π)

≈ 1

2
log(n − d�) − 1

2
log(2π) + (n − d� − 1) log 2

≈ 1

2
log(n) + n log 2.
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From the above, we obtain that

log BFJ-PEP
�0

≈ 1

2
log(n − d�) − 1

2
log(2π) + (n − d�) log 2

+ log
∫ π/2

0

(sinφ)n−d0−1(cosφ)n−d�−1n(n−d�)/2 exp((sin2 φ)/2)

[n(RSS�/RSS0)](n−d0)/2 exp((1/2) sin2 φ(RSS0/RSS�))
dφ

≈ 1

2
log(n − d�) − 1

2
log(2π) + (n − d�) log 2

+ n − d�

2
logn − n − d0

2
logn log 2 − n − d0

2
log

RSS�

RSS0

+ log
∫ π/2

0

(sinφ)n−d0−1(cosφ)n−d�−1 exp((sin2 φ)/2)

exp((1/2) sin2 φ(RSS0/RSS�))
dφ

≈ 1

2
log(n − d�) − 1

2
log(2π) + (n − d�) log 2 − d� − d0

2
logn

− n − d0

2
log

RSS�

RSS0

+ log
∫ π/2

0

(sinφ)n−d0−1(cosφ)n−d�−1 exp((sin2 φ)/2)

exp((1/2) sin2 φ(RSS0/RSS�))
dφ

≈ 1

2
logn + n log 2 − d� − d0

2
logn − n

2
log

RSS�

RSS0
(29)

since the integral
∫ π/2

0

(sinφ)n−d0−1(cosφ)n−d�−1 exp((sin2 φ)/2)

exp((1/2) sin2 φ(RSS0/RSS�))
dφ

≤
∫ π/2

0
exp

(
sin2 φ

2

[
1 − RSS0

RSS�

])
dφ

when n ≥ d0 + 1 and n ≥ d� + 1. The latter integral has a finite value for all n

according to Casella et al. (2009, p. 1216). Hence, the integral involved in the
BFJ-PEP

�0 has also a finite value for all n.
If we compare any two models M� and Mk (both of them different than the

reference model) we have that

−2 log BFJ-PEP
�k ≈ n log

RSS�

RSSk

+ (d� − dk) logn = BIC� − BICk. (30)

Therefore, the J-PEP approach has the same asymptotic behavior as the BIC-
based variable-selection procedure. The following lemma is a direct result of (30)
and of Theorem 4 of Casella et al. (2009).
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Lemma 1. Let M� ∈ M be a normal regression model of type (2) such that

lim
n→∞

XT (In − X�(XT
� X�)

−1XT
� )XT

n
is a positive semidefinite matrix,

with XT being the design matrix of the true data generating regression model
MT �= M�. Then the variable selection procedure based on J-PEP Bayes factor is
consistent since BFJ -PEP

�T → 0 as n → ∞.

4 Simulation study

In this section, we perform a simulation comparison that studies the behavior of the
proposed method as the sample size increases. We compare the performance of our
method with that of the “most established” Bayesian variable selection techniques:
the g-prior (Zellner, 1976), the hyper-g prior (Liang et al., 2008), the Zellner and
Siow (1980) prior and the BIC (Schwarz, 1978). All competing methods were
implemented using the BAS package in R; we set g = n in the g-prior to corre-
spond to the unit information prior (Kass and Wasserman, 1995) and α = 3 in the
hyper-g prior as recommended by Liang et al. (2008). For the implementation of
our approach, we used the second Monte Carlo scheme presented in Section 3 of
Fouskakis, Ntzoufras and Draper (2015).

We consider 100 simulated data-sets of sample sizes n = 30, 50, 100, 500, 1000
and p = 10 covariates generated from a standardized normal distribution, while
the response is generated from

Yi ∼ N
(
0.3Xi3 + 0.5Xi4 + Xi5,2.52)

for i = 1, . . . , n. (31)

Figure 1 depicts the between-samples distribution of the posterior probability of
the true model for the Bayesian variable selection techniques under comparison.
It is clear that for small sample sizes all competitive methods fail to provide high
posterior evidence in favor of the true model. As the sample size gets larger, all
methods increase their posterior support toward the true model, with the proposed
J-PEP method to perform slightly better than the Zellner’s g-prior and the BIC.
This is sensible since these three methods are converging to the same Bayes factors
as n grows but with J-PEP constantly supporting more parsimonious models. On
the other hand, the hyper-g prior gives the lowest support toward the true model
due to its hierarchical structure which increases the posterior uncertainty on the
model space. Practically, the hyper-g prior needs larger sample size than the rest of
the methods, in order to fully a-posteriori support the true generating mechanism.

Looking now at the posterior inclusion probabilities of each covariate in Fig-
ure 2, we observe that all methods successfully identify X5 (with true effect equal
to one) as an important component of the model, even for small sample sizes, with
the exception of the Zellner’s g-prior. Furthermore, the between-samples variabil-
ity of the posterior inclusion probabilities reduces as the sample size increases. Re-
turning back to the Zellner’s g-prior, it fails to a-posteriori support X5 for n = 30
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Figure 1 Boxplots (per 100 simulated datasets of different sample sizes) of the posterior probability
of the true model for different variable selection methods.

and n = 50. Generally, the g-prior demonstrates much larger between-sample vari-
ability than the rest of the methods and it seems to be unable to identify the true
effects for small sample sizes in this simulation study.

Similar is the picture for the posterior inclusion probabilities of the other two
covariates with nonzero effects, X3 and X4, but with slower rates of convergence
toward to one. For the latter covariate (with true effect equal to 0.5), we observe
large between-samples uncertainty concerning the importance of this effect for
n ≤ 100 under all methods. For n ≥ 500, all methods successfully identify the
importance of this covariate with small between-samples variability. In general,
the hyper-g method supports this covariate with the highest inclusion probabilities
while the J-PEP with the lowest inclusion probabilities. This is due to the char-
acteristics of the two methods, with the first supporting more complicated models
while the latter more parsimonious ones. We reach to similar conclusions for co-
variate X3 (with true effect equal to 0.3) but with the addition that the Zellner’s
g-prior does not spot the effect of this covariate as important, even for samples of
size n = 500. Moreover, we need to increase the sample size to n = 1000, for all
methods, in order to obtain high posterior inclusion probabilities with relatively
low between-samples variability.

Reasonably, the between-samples distribution of the posterior inclusion proba-
bilities is similar for all covariates with zero true effects. It is noticeable that all
methods, except the hyper-g prior, identify, really fast, that these covariates should
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Figure 2 Boxplots (per 100 simulated datasets of different sample sizes) of posterior inclusion
probabilities for each covariate under the different variable selection methods.
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have low posterior inclusion probabilities with the between-samples variability
considerably to decrease as n gets larger. On the other hand, the posterior inclusion
probabilities under the hyper-g prior setup are systematically higher (close to 0.5)
than the corresponding ones under the other competing methods. This increases
the posterior uncertainty on the model space and results to lower probabilities of
identifying the true model as the maximum a-posteriori model. It is also noticeable
that these posterior inclusion probabilities, under the hyper-g prior setup, both in
terms of median values and in terms of between-samples variability, seem to con-
verge very slowly toward zero as n gets larger.

To sum up, in this simulation study the J-PEP prior methodology identifies the
true model structure with (slightly) higher posterior probability than the rest of
the methods. It provides posterior inclusion probabilities close to zero for nonim-
portant effects (even for small sample sizes) and high inclusion probabilities for
the important effects (although these are smaller than the ones obtained under the
competing methods for small sample sizes).

5 Discussion

Under the power-expected-posterior prior (PEP) approach, ideas from the power-
prior and unit-information-prior methodologies are combined. As a result, the PEP
priors are minimally-informative and the effect of training samples is reduced.
When using the independence Jeffreys as a baseline prior for normal linear models,
we prove that the J-PEP approach has the same asymptotic behavior as the BIC-
based variable-selection procedure. Therefore, under very mild conditions on the
design matrix, it is a consistent variable selection technique.
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