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Abstract. In many practical situations, it is desired to compare several pop-
ulations, find the best one and estimate some parametric functions associated
with the selected population. This has been recognized as an important prob-
lem that arises in various applications in agricultural, industrial and medi-
cal studies. This paper concerns unbiased estimation of a general parametric
function, say γ (θ), of selected populations under the squared error loss (SEL)
function. Examples of γ (·) include reliability function, odds ratio and vari-
ance, among others. Also, we obtain the uniformly minimum risk unbiased
estimators of the parameters of selected populations under some general class
of loss functions other than the commonly used SEL function. Furthermore,
we characterize some loss functions for which the risk unbiased estimators of
parameters of selected populations do not exist. Theoretical results are aug-
mented with various illustrations and examples.

1 Introduction

In many practical situations, the goal of the study is to compare several populations
in order to make a decision in the form of ranking these populations, finding the
best population and estimating the parameters of the selected population. Since
the ranking and selection are done first, the preceding estimation problem is called
estimation after selection. Estimation of a characteristic of the selected population
has been recognized as an important problem that arises in various applications in
agricultural, industrial and medical studies. For example,

(1) In industrial studies, researchers not only want to know which type of compo-
nent system will last longest, but also want an estimate of the expected lifetime
of the chosen system (Sackrowitz and Samuel-Cahn, 1986).

(2) In agricultural studies, researchers wish to select the best of k fertilizers and
estimate the mean yield produced by the selected fertilizer (Misra and Meulen,
2001).

(3) In microarray experiments, researchers are often interested in making infer-
ence for the parameters corresponding to the most extreme population (Qiu
and Hwang, 2007).
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In many cases, the characteristic of interest is the population mean. For example, in
clinical trial studies, one is interested in tracking the most promising compounds in
drug development by choosing the best treatment out of k which results in the max-
imum treatment mean and hence estimating the expected effect of selected treat-
ment (Bowden and Glimm, 2008, Sill and Sampson, 2009).The common practice
is to take independent samples from each population, compute respective sample
means and select the population which results in the largest sample mean. Having
selected the best population, one usually wants to estimate its mean. A natural es-
timator is the mean of the selected sample from the best population. Although the
sample mean is a good estimator of the population mean in a regular setting, most
of its optimal properties are no longer hold when the population is selected on the
basis of the sample rather than being specified in advance. For example, the mean
of the sample obtained from the selected population is a positively biased estimator
of the selected population mean (see (1.3) below). For the clinical trial example,
Bowden and Glimm (2008) showed that the naive estimator of a treatment’s effect
after selection can be severely hindered because selection mechanisms usually in-
troduce bias.

Let �1,�2, . . . ,�k be k(≥ 2) independent populations with associated prob-
ability density functions (p.d.f.) f (x|θi), i = 1,2, . . . , k, respectively, where θi

is the unknown parameter. Suppose Xi1, . . . ,Xini
, ni ≥ 2, are independent and

identically distributed (i.i.d.) samples from the ith population �i, i = 1, . . . , k.
Define Xi = gi(Xi1, . . . ,Xini

), where Xi is a suitable estimator of θi , and let
X(1) ≤ X(2) ≤ · · · ≤ X(k) denote the order statistics of X1,X2, . . . ,Xk . Suppose
we employ the natural selection following ranking rule, to select the best popula-
tion, according to which the population corresponding to X(1) or X(k) is selected.
Let θJ and θM be the parameters associated with selected populations, respectively.
Note that θJ and θM are random variables which can be formally defined as

θJ =
k∑

i=1

θi

{∏
j �=i

(
1 − I (Xi,Xj )

)}
and θM =

k∑
i=1

θi

{∏
j �=i

I (Xi,Xj )

}
, (1.1)

where

I (a, b) =
{

1 if a ≥ b,

0 if a < b.
(1.2)

For the case where E(Xi) = θi , since E(X(k)) ≥ E(Xi) = θi , one can easily show
that

E(X(k)) ≥ max
i

E(Xi) = E
(
max

i
θi

)
≥ E(θM). (1.3)

In other word, X(k), as the naive estimator of θM , by ignoring the fact that a prior
selection has been made, is a positively biased estimator of θM . In the past few
years, many studies have been done to construct good estimators of θJ and θM un-
der the squared error loss (SEL) function. Most of these results are obtained based
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on the U.V. method of Robbins (1988) or some of its generalizations. For example,
in estimation of the scale parameter θ after selection from a Gamma(α, θ) distri-
bution, Vellaisamy and Sharma (1989) derived the uniformly minimum variance
unbiased (UMVU) estimator of θM . Tappin (1992) derived the UMVU estimator
of the parameter of selected binomial population. Vellaisamy (1993) considered
the UMVU estimation of the parameter of one parameter continuous exponential
family of distributions. Mishra and Singh (1994) considered the UMVU estima-
tion of the location parameter of the selected exponential distribution. Misra and
Meulen (2001) derived the UMVU estimator of θM and θJ in non-regular family
of distributions. Kumar and Gangopadhyay (2005) derived the UMVU estimator
of the parameter of a selected Pareto distribution.

There are several situations where one is interested in estimating some para-
metric functions of selected populations other than the population mean. For ex-
ample, in reliability testing one might be interested in estimating the reliability
function associated with the variable of interest in the selected population (Kumar
et al., 2009). In genomic studies, estimating the odds ratio is very important. In
this application, samples are usually obtained from selected populations which are
identified by using genome scans (Bowden and Dudbridge, 2009). Other exam-
ples include estimating quantiles (Kumar and Kar, 2001), variance and survival
function based on the variable of interest for the selected population.

On the other hand, one can easily argue that for some parametric functions, over-
estimation (under-estimation) could be more serious than under-estimation (over-
estimation). The most prevalent loss function for the evaluation of estimators is the
symmetric SEL function which assigns the same penalty to the over-estimation and
under-estimation of the same magnitude. This functional form is assumed because
mathematically is very tractable but from a practical point of view, it is not very
realistic. The choice of the loss function is fundamental to the construction of
an unbiased estimation of parametric functions of selected populations. There are
only a few works regarding the problem of estimation after selection under loss
functions other than SEL. For example, Nematollahi and Motamed-Shariati (2012,
2009) derived the risk unbiased and uniformly minimum risk unbiased (UMRU)
estimators of θJ and θM under the entropy and Stein loss functions. So, it is also
important to consider the problem of estimation after selection under more general
class of loss functions.

In this paper, we first consider the problem of unbiased estimation of some para-
metric functions, say γ (θ), of selected populations under the SEL function. In par-
ticular, we construct the UMVU estimators of general parametric functions γ (θ)

for some selected non-regular family of distributions under SEL function. Exam-
ples of γ (·) include reliability function, odds ratio and variance, among others.
Then we obtain the UMRU estimators of θM and θJ under some general classes
of loss functions other than the commonly used SEL function. Furthermore, we
characterize some loss functions for which the risk unbiased estimators of θJ or
θM do not exist.
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The outline of the paper is as follows. In Section 2, we give some preliminary
results and obtain a useful relationship between the unbiasedness under SEL func-
tion and risk-unbiasedness under a general class of loss functions. In Section 3,
for some non-regular family of distributions, we obtain the UMVU estimators of
γ (θJ ) and γ (θM) under the SEL function and construct UMRU estimators of θJ

and θM under some general classes of loss functions which satisfy an easy to verify
condition. In Section 4, we characterize some classes of loss functions for which
the risk unbiased estimators of θJ or θM do not exist. Finally, in Section 5 we give
some concluding remarks.

2 Preliminary results

Consider the problem of estimating a real valued function, say h(θ), of θ =
(θ1, . . . , θk). Dealing with unbiasedness, and following Lehmann (1951) an es-
timator δ of h(θ) is said to be risk unbiased if it satisfies

Eθ

[
L

(
h(θ), δ(X)

)] ≤ Eθ

[
L

(
h
(
θ ′), δ(X)

)] ∀θ ′ �= θ , (2.1)

where X = (X1, . . . ,Xk). Under the SEL function L(θ , δ) = (δ(X)−h(θ))2, (2.1)
reduces to the usual unbiasedness condition Eθ [δ(X)] = h(θ). Also, if h(θ) is
a random parameter such as h(θ) = θM or θJ in (1.1), then the risk unbiasedness
condition under the SEL function reduces to Eθ [δ(X)] = Eθ [h(θ)]. Hereafter, sup-
pose that h(θ) is the random parameter θJ or θM . We are concern with

(A) Unbiased estimation of γ (h(θ)) under the SEL function

L1(θ , δ) = (
δ(X) − γ

(
h(θ)

))2
, (2.2)

(B) Risk unbiased estimation of h(θ) under the γ -loss function

L2(θ , δ) = (
γ

(
δ(X)

) − γ
(
h(θ)

))2
, (2.3)

where γ (·) is a monotone differentiable function. As we show in Proposition 1,
and it was previously mentioned in Jafari Jozani and Marchand (2007), loss func-
tions L1 and L2 are mathematically equivalent, but stem from separate practical
problems. Loss L2 produces a very large class of loss functions such as SEL with
γ (x) = x, squared log error loss (SLEL) with γ (x) = ln(x) and exponential loss
(EL) function with γ (x) = exp(x). Using (2.1), δ∗(X) is an unbiased estimator of
the random parameter γ (h(θ)) under SEL function L1 if

Eθ

[
δ∗(X)

] = Eθ

[
γ

(
h(θ)

)]
. (2.4)

Also, δ(X) is a risk unbiased estimator of h(θ) under the γ -loss function L2 if

Eθ

[
γ

(
δ(X)

)] = Eθ

[
γ

(
h(θ)

)]
. (2.5)

Comparing (2.4) and (2.5), we have the following proposition.
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Table 1 Some classes of loss functions with risk-unbiasedness condition as in (2.5)

Loss function L(θ , δ(X)) γ (·)

Stein’s Loss (SL) δ(X)
h(θ)

− ln δ(X)
h(θ)

− 1 γ (x) = x

Entropy Loss (EL) h(θ)
δ(X)

− ln h(θ)
δ(X)

− 1 γ (x) = 1
x

General Entropy Loss (GEL) (
h(θ)
δ(X)

)q − q ln h(θ)
δ(X)

− 1, q �= 0 γ (x) = 1
xq

LINEX loss ea(δ(X)−h(θ)) − a(δ(X) − h(θ)) − 1, a ∈ R γ (x) = eax

Intrinsic Loss (IL) ln β(h(θ))
β(δ(X))

+ (δ(X) − h(θ))
β ′(h(θ))
β(h(θ))

γ (x) = x

Proposition 1. The estimator δ∗(X) = γ (δ(X)) is an unbiased estimator of
the random parameter γ (h(θ)) under SEL function L1 if and only if δ(X) =
γ −1(δ∗(X)) is a risk unbiased estimator of h(θ) under γ -loss function L2.

In Sections 3 and 4, we show that the unbiasedness condition (2.4) is useful
for deriving unbiased estimators of parametric functions γ (θ), such as the survival
function γ (θ) = Pθ (X > x), odds ratio γ (θ) = Pθ (X<x)

1−Pθ (X<x)
or the variance γ (θ) =

Varθ (X) of selected population, among others. Also, as the risk unbiased condition
(2.5) holds for some famous loss functions, finding an unbiased estimator δ∗(X)

of γ (h(θ)) which satisfy (2.4), leads to γ −1(δ∗(X)) as a risk unbiased estimator
of h(θ) under general classes of loss functions as in Table 1.

The intrinsic loss function in Table 1 is the Kullback–Leibler divergence be-
tween the true model f (x|h(θ)) and the model f (x|δ(x)) when the distribution of
X belongs to the one-parameter exponential family of distributions with p.d.f.

f (x|θ) = β(θ)t (x)e−θr(x), (2.6)

where r(x) > 0, β(θ)t (x) > 0 and θ is the unknown real-valued natural parameter
of the model (Jafari Jozani and Jafari Tabrizi, 2013).

Before pursuing, we make a note about the relationship between the selection
after ranking rules for the parameter θ and parametric function γ (θ) with mono-
tone γ (·). Since for any function γ (·), θi ∈ R, and Zi ∈ {0,1} with

∑n
i=1 Zi = 1

we have

γ

(
n∑

i=1

θiZi

)
=

n∑
i=1

γ (θi)Zi,

one can easily verify that

γ (θM) =
k∑

i=1

γ (θi)

{∏
j �=i

I (Xi,Xj )

}
and

(2.7)

γ (θJ ) =
k∑

i=1

γ (θi)

{∏
j �=i

(
1 − I (Xi,Xj )

)}
.
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So, for estimating γ (θ) after selection with monotone γ (·) one can either perform
ranking and selection rule based on Xi or γ (Xi), i = 1, . . . , n.

3 UMVU and UMRU estimation in non-regular family of distributions

In this section, we study the UMVU estimation of γ (θJ ) and γ (θM) under SEL
function (2.2) for two non-regular family of distributions studied in Misra and
Meulen (2001). Then we show how these results can be used to construct UMRU
estimators of θJ and θM under γ -loss function (2.3) or more generally any
loss function which has a risk unbiasedness condition given by (2.5). Suppose
Xi1, . . . ,Xini

is a random sample of size n from a distribution with p.d.f. f (·|θi)

which belongs to one of the following non-regular family of densities:

(i) Right Truncation Parameter Family (RTPF):

f (x|θi) =
{
r(θi, α)s(x,α), if a < x ≤ θi,

0, otherwise,
(3.1)

where θi ∈ �1 = {μ : a < μ < τ }, a,α and τ are constants, and r(·, ·) and
s(·, ·) are some non-negative functions.

(ii) Left Truncation Parameter Family (LTPF):

f (x|θi) =
{
R(θi, α)S(x,α), if θi < x ≤ b,

0, otherwise,
(3.2)

where θi ∈ �2 = {μ : β < μ < b}, b,α and β are constants, and R(·, ·) and
S(·, ·) are some non-negative functions.

We assume s(x,α) and S(x,α) are continuous functions of x. Let X = (X1, . . . ,

Xk) denote the maximum likelihood estimator (MLE) of θ = (θ1, . . . , θk). One
can easily show that under the RTPF model Xi = max(Xi1, . . . ,Xini

) and for the
LTPF model Xi = min(Xi1, . . . ,Xini

), i = 1, . . . , k, are distributed as

gθi
(xi) =

{
q(θi, α)p(xi, α), if a < xi ≤ θi,

0, otherwise,
(3.3)

and

hθi
(xi) =

{
Q(θi, α)P (xi, α), if θi < xi ≤ b,

0, otherwise,
(3.4)

respectively, where q(θi, α) = {r(θi, α)}ni and Q(θi, α) = {R(θi, α)}ni are nor-
malizing constants,

p(xi, α) = nis(xi, α)

{r(xi, α)}ni−1 and P(xi, α) = niS(xi, α)

{R(xi, α)}ni−1 .

Note that X = (X1, . . . ,Xk) or equivalently U = (X(1), . . . ,X(k)) is a complete
sufficient statistic for θ = (θ1, . . . , θk). We pursue with the following main result.
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Theorem 3.1. Suppose X1, . . . ,Xk are k independent random variables from a
distribution with a p.d.f. given by (3.3). Let U1(X), . . . ,Uk(X) be k real-valued
functions and γ (·) be differentiable, such that:

(a) Eθ [|γ (Xi)Ui(X)|] < ∞,∀θ ∈ �1, i = 1, . . . , k,
(b)

∫ xi
a γ (xi)Ui(x1, . . . , xi−1, y, xi+1, . . . , xk)p(y,α) dy < ∞,∀a < xi < τ, i =

1, . . . , k,
(c) limxi→a[γ (xi)

∫ xi
a Ui(x1, . . . , xi−1, y, xi+1, . . . , xk)p(y,α) dy] = 0, ∀a <

xj < τ , j �= i, i = 1, . . . , k.

Then, the functions V1(X), . . . , Vk(X), defined by

Vi(X) = γ (Xi)Ui(X)
(3.5)

+ γ ′(Xi)

p(Xi,α)

∫ Xi

a
Ui(X1, . . . ,Xi−1, y,Xi+1, . . . ,Xk)p(y,α) dy,

satisfy

Eθ

[
k∑

i=1

Vi(X)

]
= Eθ

[
k∑

i=1

γ (θi)Ui(X)

]
. (3.6)

Proof. First, we show that for a given U(Xi) = Ui(X), the function V (Xi) =
γ (Xi)U(Xi) + γ ′(Xi)

p(Xi,α)

∫ Xi
a U(y)p(y,α)dy satisfies Eθ [V (Xi)] = γ (θi) ×

Eθ [U(Xi)]. Using the integration by part, from (a)–(c) we have

Eθ

[
V (Xi)

]
= q(θi, α)

(∫ θi

a
γ (t)U(t)p(t, α) dt +

∫ θi

a
γ ′(t)

[∫ t

a
U(y)p(y,α)dy

]
dt

)

= q(θi, α)

(∫ θi

a
γ (t)U(t)p(t, α) dt

+
[
γ (t)

∫ t

a
U(y)p(y,α)dy

]θi

a

−
∫ θi

a
γ (t)U(t)p(t, α) dt

)

= q(θi, α)γ (θi)

∫ t

a
U(y)p(y,α)dy

= Eθ

[
γ (θi)U(Xi)

]
.

Similarly, it can be shown that Vi(X) in (3.5) satisfies

Eθ

[
Vi(X)|X1, . . . ,Xi−1,Xi+1, . . . ,Xk

]
= γ (θi)Eθ

[
Ui(X)|X1, . . . ,Xi−1,Xi+1, . . . ,Xk

]
.

Therefore, Eθ [Vi(X)] = γ (θi)Eθ [Ui(X)], and the result follows immediately.
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Theorem 3.1 helps to obtain UMVU estimators of γ (θJ ) and γ (θM) under the
SEL function (2.2) and then use them to construct UMRU estimators of θJ and θM

for a general class of loss functions with a risk unbiasedness condition given by
(2.5) such as the γ -loss function (2.3) or loss functions in Table 1. �

Theorem 3.2. Under the assumptions of Theorem 3.1, let

(i) δ∗
1,1(X) = γ (X(k)) + γ ′(X(k))

p(X(k), α)

∫ X(k)

X(k−1)

p(y,α) dy (3.7)

and

(ii) δ∗
1,2(X) = γ (X(1)) +

(
k∑

i=1

γ ′(X(i))

p(X(i), α)

)∫ X(1)

a
p(y,α) dy. (3.8)

Then δ∗
1,1(X) and δ∗

1,2(X) are, respectively, the UMVU estimators of γ (θM) and

γ (θJ ) under the SEL function (2.2). Also, δ1,1(X) = γ −1(δ∗
1,1(X)) and δ1,2(X) =

γ −1(δ∗
1,2(X)) are the UMRU estimators of θM and θJ under any loss function with

a risk unbiasedness condition given by (2.5).

Proof. To show (i) let Ui(X) = I (Xi,maxj �=i Xj ) and note that
∑k

i=1 γ (θi) ×
Ui(X) = γ (θM). Let δ∗

1,1(X) = ∑k
i=1 Vi(X) where Vi(X) is defined in (3.5). Then

δ∗
1,1(X) =

k∑
i=1

γ (Xi)I
(
Xi,max

j �=i
Xj

)
+

k∑
i=1

γ ′(Xi)

p(Xi,α)

∫ Xi

a
I
(
y,max

j �=i
Xj

)
p(y,α)dy

=
k∑

i=1

(
γ (Xi) + γ ′(Xi)

p(Xi,α)

∫ Xi

maxj �=i Xj

p(y,α) dy

)
I
(
Xi,max

j �=i
Xj

)

= γ (X(k)) + γ ′(X(k))

p(X(k), α)

∫ X(k)

X(k−1)

p(y,α) dy.

Therefore from Theorem 3.1, δ∗
1,1(X) is an unbiased estimator of γ (θM). Since

δ∗
1,1(X) is a function of the complete and sufficient statistics X(1), . . . ,X(k), it is the

UMVU estimator of γ (θM). See Mishra and Singh (1994) as well as Misra (1994)
for more details. Now, from Proposition 1 it follows that δ1,1(X) = γ −1(δ∗

1,1(X))

is the UMRU estimator of θM under any loss functions with a risk unbiasedness
condition given by (2.5). Note that part (ii) follows similarly by taking Ui(X) =
I (minj �=i Xj ,Xi) and the same calculations as in (i) which we do not present
here. �

Remark 1. Similar results as in Theorems 3.1 and 3.2 can be obtained for LTPF
model which we present here without proof. Under suitable conditions, one can
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construct functions Vi(X), i = 1, . . . , k, as follow

Vi(X) = γ (Xi)Ui(X)

− γ ′(Xi)

P (Xi,α)

∫ b

Xi

Ui(X1, . . . ,Xi−1, y,Xi+1, . . . ,Xk)P (y,α) dy,

which satisfy Eθ [∑k
i=1 Vi(X)] = Eθ [∑k

i=1 γ (θi)Ui(X)]. Now,

δ∗
2,1(X) = γ (X(k)) −

(
k∑

i=1

γ ′(X(i))

P (X(i), α)

)∫ b

X(k)

P (y,α) dy (3.9)

and

δ∗
2,2(X) = γ (X(1)) − γ ′(X(1))

P (X(1), α)

∫ X(2)

X(1)

P (y,α) dy, (3.10)

are the UMVU estimators of γ (θM) and γ (θJ ) under the SEL function (2.2),
respectively. Also, δ2,1(X) = γ −1(δ∗

2,1(X)) and δ2,2(X) = γ −1(δ∗
2,2(X)) are the

UMRU estimators of θM and θJ , respectively, for the LTPF model and under any
loss function having the risk unbiasedness condition as in (2.5).

Remark 2. Taking γ (x) = x in (3.9) and (3.10) one can easily obtain the results
of Misra and Meulen (2001) for unbiased estimation of θM and θJ under the SEL
function. However, their results neither hold for estimating γ (θM) and γ (θJ ) under
SEL function nor for estimating θJ and θM under general class of loss functions
such as the γ -loss function (2.3) or the loss functions in Table 1.

Example 1. Let Xi1, . . . ,Xin be a random sample from a Pareto(α, θi) distribu-

tion with p.d.f. f (xi |θi) = αθα
i

xα+1
i

, xi > θi, i = 1, . . . , k. Let Xi = min(Xi1, . . . ,Xin),

and note that Xi is distributed according to a Pareto(nα, θi) distribution which is a
member of the LTPF model with P(y,α) = nα

ynα+1 . Therefore, for suitable choices
of γ (·),

δ2,1(X) = γ −1

(
γ (X(k)) − 1

nα

k∑
i=1

γ ′(X(i))X(i)

(
X(i)

X(k)

)nα
)

and

δ2,2(X) = γ −1
(
γ (X(1)) − γ ′(X(1))

X(1)

nα

(
1 −

(
X(1)

X(2)

)nα))
,

are UMRU estimators of θM and θJ , respectively, under any loss function with a
risk unbiasedness condition as in (2.5). In particular, under the entropy loss func-
tion we have γ (t) = 1

t
, and hence

δ2,1(X) = nαX(k)

nα + ∑k
i=1(X(i)/X(k))nα−1
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and

δ2,2(X) = nαX(1)

nα + 1 − (X(1)/X(2))nα
,

are UMRU estimators of θM and θJ , respectively, which are obtained by
Nematollahi and Motamed-Shariati (2009). Also for estimating the reliability
function of selected population, by taking γ (θi) = P(Xij > x) = ( θi

x
)α , and us-

ing Remark 1, we obtain

δ∗
2,1(X) =

(
X(k)

x

)α
(

1 − 1

n

k∑
i=1

(
X(i)

X(k)

)(n+1)α
)

and

δ∗
2,2(X) =

(
X(1)

x

)α(
1 − 1

n

(
1 −

(
X(1)

X(2)

)nα))
,

as the UMVU estimators of γ (θM) = ( θM
x

)α and γ (θJ ) = ( θJ

x
)α , respectively, un-

der SEL function (2.2).

Example 2. Let Xi1, . . . ,Xin be a random sample from a Uniform(0, θi) distri-
bution with unknown θi > 0, i = 1, . . . , k. Let Xi = max(Xi1, . . . ,Xin) which has

the p.d.f. fXi
(y) = nyn−1

θn
i

,0 < y < θi that is a member of the RTPF model with

p(y,α) = nyn−1. Therefore, for suitable choices of γ (·),

δ1,1(X) = γ −1
(
γ (X(k)) + γ ′(X(k))

n
X(k)

(
1 −

(
X(k−1)

X(k)

)n))

and

δ1,2(X) = γ −1

(
γ (X(1)) +

k∑
i=1

γ ′(X(i))

n
X(i)

(
X(1)

X(i)

)n
)
,

are UMRU estimators of θM and θJ , respectively under any loss function having
a risk unbiasedness condition as in (2.5). In particular, under the squared log error
loss function we have γ (t) = ln (t), and hence

δ1,1(X) = X(k) exp
{

1

n

(
1 −

(
X(k−1)

X(k)

)n)}

and

δ1,2(X) = X(1) exp

{
1

n

k∑
i=1

(
X(1)

X(i)

)n
}
,
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are UMRU estimators of θM and θJ , respectively. Also, for estimating the variance

of the selected population, one can take γ (θi) = Var(Xij ) = θ2
i

12 , to obtain, using
Theorem 3.2,

δ∗
1,1(X) = X2

(k)

12

{
1 + 2

n

(
1 −

(
X(k−1)

X(k)

)n)}

and

δ∗
1,2(X) = X2

(1)

12

{
1 + 2

n

k∑
i=1

(
X(1)

X(i)

)n−2
}
,

as UMRU estimators of γ (θM) = θ2
M

12 and γ (θJ ) = θ2
J

12 , respectively, under SEL
function (2.2).

Example 3. Let Xi1, . . . ,Xin be a random sample from an Exp(θi, α) distribu-
tion with known α and unknown parameter θi and p.d.f. f (xi |θi) = 1

α
e−(xi−θi)/α ,

xi > θi, i = 1, . . . , k. Let Xi = min(Xi1, . . . ,Xin) which has an Exp(θi,
α
n
) distri-

bution that is a member of the LTPF model with P(y,α) = n
α
e−ny/α . Therefore,

for suitable choices of γ (·),

δ2,1(X) = γ −1

(
γ (X(k)) − α

n

k∑
i=1

γ ′(X(i))e
n/α(X(i)−X(k))

)

and

δ2,2(X) = γ −1
(
γ (X(1)) − α

n
γ ′(X(1))

{
1 − en/α(X(1)−X(2))

})
,

are UMRU estimators of θM and θJ , respectively, under any loss function with a
risk unbiasedness condition as in (2.5). In particular, under the LINEX loss func-
tion we have γ (t) = eat , and hence

δ2,1(X) = X(k) + 1

a
ln

(
1 − aα

n

k∑
i=1

ea(1+n/(aα))(X(i)−X(k))

)

and

δ2,2(X) = X(1) + 1

a
ln

(
1 − aα

n

{
1 − en/α(X(1)−X(2))

})
,

are UMRU estimators of θM and θJ , respectively. Also, for estimating the re-
liability function for selected population one can take γ (θi) = P(Xij > x) =
e−1/α(x−θi), and use Remark 1 to obtain

δ∗
2,1(X) = e−1/α(x−X(k)) − 1

n

k∑
i=1

e−1/α(x−(n+1)X(i)+nX(k))
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and

δ∗∗
2,1(X) = eX(k) − 1

n

k∑
i=1

e(n+1)X(i)−nX(k)

as UMVU estimators of γ (θM) = e−1/α(x−θM) and γ ∗(θM) = eθM , respectively,
under the SEL function (2.2). Note that the estimator δ∗∗

2,1(X) is obtained by
Kumar et al. (2009). Similarly, to estimate the odds ratio, under SEL function
(2.2), associated with the selected population given by γ (θM) = e1/α(x−θM)−1 and
γ (θJ ) = e1/α(x−θJ ) − 1, respectively, one can simply take γ (θi) = P(Xij≤x)

1−P(Xij≤x)
=

e1/α(x−θi) − 1 and use Remark 1 to get

δ∗
2,1(X) = e1/α(x−X(k))

{
1 + 1

n

k∑
i=1

e(n−1)/α(X(i)−X(k))

}
− 1

and

δ∗
2,2(X) = e1/α(x−X(1))

{
1 + 1

n
− 1

n
en/α(X(1)−X(2))

}
− 1.

4 Non-existence of unbiased estimator in exponential family

In this section, we first characterize random parametric functions γ (θM) and γ (θJ )

for a selected population distributed according to the one-parameter exponential
family of distributions that are not unbiasedly estimable (NUBE) under the SEL
function (2.2). Then, we expand our results to characterize γ -loss functions of
the form (2.3) as well as loss functions having the risk unbiasedness condition as
in (2.5) for which, under these loss functions, θJ and θM are not risk unbiasedly
estimable (NRUBE).

Suppose X is distributed according to the one-parameter exponential family of
distributions with p.d.f.

f (x|θ) = β(θ)t (x)e−θr(x), x ∈ (a, b), θ ∈ � ⊂ �, (4.1)

where β(θ)t (x) > 0 and a and b do not depend on θ . In the following re-
sult, similar to Vellaisamy (2009), we first determine some conditions for which
γ (θ)Pθ (X > c) = γ (θ)F θ (c) is NRUBE under the SEL function (2.2).

Lemma 1. Suppose X is distributed according to a distribution with a p.d.f.
f (x|θ) given by (4.1), where f (x|θ) satisfies the following conditions

(i) A(c, θ) = β(θ)

γ (θ)F θ (c)
< ∞,∀θ ∈ �,

(ii) A′(c, θ) − A(c, θ)r(x) = g1(θ, c)g2(x, c),

for some g1 �= 0 and g2 �= 0 for almost all x. Then γ (θ)Pθ (X > c) is NUBE.
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Proof. Suppose there exists a k(·) such that

Eθ

[
k(X)

] = γ (θ)Pθ (X > c) = β(θ)

A(c, θ)
.

Then
∫ ∞
−∞ k(x)A(c, θ)t (x)e−θr(x) dx = 1, ∀θ ∈ �. Differentiating with respect to

θ , and using (ii) we get, for all θ ∈ �,∫ b

a
k(x)

(
A′(c, θ) − A(c, θ)r(x)

)
t (x)e−θr(x) dx = 0 ⇔ Eθ

[
k(X)g2(X, c)

] = 0.

Since X is complete, this results in k(x) = 0 for almost all x ∈ R which is a con-
tradiction. Therefore γ (θ)Pθ (X > c) is NUBE and this completes the proof.

Using Lemma 1, one can easily verify that condition (ii) is satisfied if A′(c,θ)
A(c,θ)

=
m(c) and

A(c, θ)

[
A′(c, θ)

A(c, θ)
− r(x)

]
= g1(θ, c)g2(x, c).

Or equivalently,

γ (θ) = Bβ(θ)e−m(c)θ

F θ (c)
, (4.2)

for some constants m(c) and B . Therefore, any parametric function γ ∗(θ) =
Bβ(θ)e−m(c)θ is NUBE for a selected one-parameter exponential family of dis-
tributions under SEL function. �

Example 4. Suppose X ∼ Weibull(p, θ) with known p > 0 and the p.d.f.
f (x|θ) = pθxp−1e−θxp

, x > 0. Here β(θ) = θ,Pθ(X > c) = e−θcp
and

γ (θ) = Bθe−(m(c)−cp)θ .

So, γ ∗(θ) = Bθe−m(c)θ is NUBE for estimating after selection under SEL function
(2.2). Note that γ ∗(θ) does not depend on p.

Now, we consider the estimation of the parameter of a selected population when
k = 2. Let X1 and X2 be independent random variables, where Xi has p.d.f. (4.1)
with parameter θi . Similar to (2.7), for k = 2, we have

γ (θM) =
{
γ (θ1), X1 ≥ X2,

γ (θ2), X1 < X2,
and γ (θJ ) =

{
γ (θ2), X1 ≥ X2,

γ (θ1), X1 < X2.

The NUBE results in this case are given in the following theorem.

Theorem 4.1. Let X1 and X2 be independent random variables, where Xi has
p.d.f. (4.1) with parameter θi , and θ = (θ1, θ2). Assume the conditions of Lemma 1
hold. Then
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(i) γ (θ1)Pθ (X1 > X2) is NUBE if and only if γ (θ1)Pθ1(X > c) is NUBE for all
c ∈ R.

(ii) Eθ [γ (θM)] = γ (θ1)Pθ (X1 > X2) + γ (θ2)Pθ (X2 > X1) is NUBE.

Proof. The proof is similar to the proof of Lemma 2.4 and Theorem 2.2 of
Vellaisamy (2009). �

Remark 3. From part (ii) of Theorem 4.1 we conclude that, there does not exist
an estimator δ∗(X) such that

Eθ

[
δ∗(X)

] = Eθ

[
γ (θM)

]
, (4.3)

where X = (X1,X2). Therefore γ (θM) in the form of (4.2) is NUBE under SEL
function (2.2). If we define δ(X) = γ −1(δ∗(X)), then (4.3) implies that, there does
not exist an estimator δ(X) = γ −1(δ∗(X)) such that Eθ [γ (δ(X)] = Eθ [γ (θM)].
In other word θM is NRUBE for selected population under γ -loss function (2.3)
where γ (·) is in the form of (4.2). Also, θM is NRUBE under any loss function
having a risk unbiasedness condition (2.5) as long as γ (·) is in the form of (4.2).
For example, for the case of the exponential distribution given in Example 3, if
B = 1 and m(c) = c, then γ (t) = t . Therefore θM is NUBE under SEL function,
which is shown by Vellaisamy (2009). Also θM is NRUBE under the Stein and
Intrinsic loss functions defined in Table 1 which satisfy the risk unbiasedness con-
dition (2.5) with γ (t) = t . Note that by taking γ (t) = 1

t
(which does not satisfy

(4.2)), the estimator δ(X) = 1
X(2)−X(1)

is a risk unbiased estimator of θM for se-
lected population under the entropy loss function. This can be verified as

Eθ

[
1

δ(X)

]
= Eθ [X(2) − X(1)] = θ1

θ2(θ1 + θ2)
+ θ2

θ1(θ1 + θ2)

and

Eθ

[
1

θM

]
= 1

θ1
Pθ (X1 > X2) + 1

θ2
Pθ (X2 > X1) = θ2

θ1(θ1 + θ2)
+ θ1

θ2(θ1 + θ2)
.

Therefore Eθ [ 1
δ(X)

] = Eθ [ 1
θM

], that is, δ(X) is a risk unbiased estimator of θM

under the entropy loss function given in Table 1.

Similar results can be obtained for estimating θJ which we present here without
a proof.

Theorem 4.2. Let X1 and X2 be independent random variables, where Xi are
distributed according to a distribution with a p.d.f. given by (4.1) with parameter
θi , and θ = (θ1, θ2). Assume f (x|θ) satisfies the following conditions

(i) A(c, θ) = β(θ)
γ (θ)Fθ (c)

< ∞,∀θ ∈ �,
(ii) A′(c, θ) − A(c, θ)r(x) = g1(θ, c)g2(x, c),



Estimation after selection 105

for some g1 �= 0 and g2 �= 0 for almost all x. Then

Eθ

[
γ (θJ )

] = γ (θ1)Pθ (X1 < X2) + γ (θ2)Pθ (X2 < X1),

is NUBE under SEL for selected population.

5 Concluding remarks

The problem of estimation after selection arises in many applications. There are
many situations where one is interested in estimating some parametric functions of
selected populations. For example, in genomic studies, samples are obtained after
populations that are selected using genome scans and then they are used to estimate
the odds ratio. Intuitive estimators of parametric functions of selected populations
constructed as if there were no prior selection are usually biased. In this paper, we
have considered the problem of unbiased estimation of a general parametric func-
tion, say γ (θ), of selected populations under the SEL function as well as some
general class of loss functions. To this end, we first obtained the UMVU estima-
tors of γ (θ) for some non-regular family of distributions under SEL function. Ex-
amples of γ (·) include reliability function, odds ratio and variance, among others.
Then, we obtained the UMRU estimators of θM and θJ under some general classes
of loss functions other than the commonly used SEL function. Furthermore, we
characterized some loss functions for which the risk unbiased estimators of θJ or
θM do not exist. It would naturally be of interest to extend the results of this pa-
per to the minimax and admissible estimation of parametric functions of selected
population under the SEL as well as the general class of loss functions in (2.3).
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