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Abstract. We obtain macroscopic adiabatic thermodynamic transformations
by space–time scalings of a microscopic Hamiltonian dynamics subject to
random collisions with the environment. The microscopic dynamics is given
by a chain of oscillators subject to a varying tension (external force) and to
collisions with external independent particles of “infinite mass”. The effect
of each collision is to change the sign of the velocity without changing the
modulus. This way the energy is conserved by the resulting dynamics. After a
diffusive space–time scaling and coarse-graining, the profiles of volume and
energy converge to the solution of a deterministic diffusive system of equa-
tions with boundary conditions given by the applied tension. This defines an
irreversible thermodynamic transformation from an initial equilibrium to a
new equilibrium given by the final tension applied. Quasi-static reversible
adiabatic transformations are then obtained by a further time scaling. Then
we prove that the relations between the limit work, internal energy and ther-
modynamic entropy agree with the first and second principle of thermody-
namics.

1 Introduction

In classical thermodynamics, adiabatic transformations are defined as those pro-
cesses that change the state of the system from an equilibrium to another only
by the action of an external force. This means that the system is isolated, not in
contact with any heat bath, and that the change in its internal energy U is only
due to the work done by the applied external force. The second law of thermo-
dynamics states that the only possible adiabatic transformations are those that do
not decrease the thermodynamic entropy S of the system. Irreversible adiabatic
transformations assume a strict increase of the entropy, while if entropy remains
constant the transformation is called reversible or quasi-static.

When connecting this transformation to the microscopic dynamics of the atoms
constituting the system, we understand this thermodynamic behaviour as the
macroscopic deterministic change of the observables that characterize the thermo-
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dynamic equilibria (in the case studied in this article, the energy and the volume,
or the temperature and the tension). We intend macroscopic in the sense that we
would like to recover this behaviour in a large space and time scale: the thermody-
namic system is composed by a huge number of atoms and we look at a very large
time scale with respect to the typical frequency of atoms vibration. Mathematically
this means a space–time scaling limit procedure.

We study these adiabatic transformations in a one dimensional model of a wire.
Macroscopically the equilibrium states are characterized by the length L and the
energy U (as extensive quantities), or by the temperature T = β−1 and the ten-
sion τ . Microscopically we model this wire by a Hamiltonian system constituted
by a chain of springs attached at one extreme to a point, while at the other ex-
treme a force τ̄ acts on the last particle. The Hamiltonian dynamics of the chain is
perturbed by independent random changes of the sign of velocities. This random
perturbation can be seen as the effect of collisions with environment particles of
infinite mass moving independently, in orthogonal direction to the wire. Notice
that these random collisions conserve the energy of particles, so that the dynamics
is still adiabatic.

The first effect of these random perturbations is to ensure that the only pa-
rameters characterizing the macroscopic equilibrium states are the energy and the
length. In fact these random perturbations select the Gibbs probability measures on
the configurations, parametrized by the conserved quantities, as the only station-
ary measures for the corresponding infinite dynamics (for details, see Fritz, Funaki
and Lebowitz (1994), Bernardin and Olla (2014)).

Another important consequence of these collisions is the suppression of mo-
mentum conservation, so that there is no ballistic transport on a macroscopic scale.
Thus, we expect a diffusive behaviour of the energy and the volume stretch caused
by a change of the exterior tension τ̄ , before attaining the new equilibrium. Con-
sequently the correct space–time macroscopic rescaling is diffusive. The change
of the external force τ̄ should happen on the macroscopic time scale, that is, very
slowly with respect to the typical time scale of the dynamics of the atoms.

We expect that, under a diffusive space–time scale, the empirical profiles of the
stretch and the energy, due to a change of the applied tension τ̄ , evolve determin-
istically following the diffusive system of partial differential equations (2.7). The
solution of this system eventually will converge to a new equilibrium state. This
deterministic evolution of the profiles describes an irreversible adiabatic transfor-
mation, and, as shown in Section 4, it increases the thermodynamic entropy of the
system. The reversible or quasi-static transformations are then obtained by a fur-
ther rescaling of time, see Section 4.2, similar as proposed in Bertini et al. (2012,
2013), Olla (2014). It should be possible to obtain these quasi-static transformation
in a direct limit at a larger (subdiffusive) time scale, this will be object of further
investigation.

The scaling limit for the non-linear system is still out of the known mathematical
techniques, as it requires to deal with the non-gradient energy current in the energy
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conservation law. Even though the convergence of the Green–Kubo formula defin-
ing the energy diffusivity is proven in Bernardin and Olla (2011), the actual proof
of the macroscopic equation requires a fluctuation–dissipation decomposition of
the energy current (cf. Olla and Sasada (2013) for such decomposition in a non-
linear dynamics conserving only energy). In the linear case (harmonic oscillators),
there is an explicit fluctuation–dissipation decomposition of the energy current and
it is possible to perform the scaling limit. This was done in Simon (2013) for the
periodic boundary conditions case. We adapt here that proof for the case of mixed
boundary conditions with slowly changing external tension.

In Even and Olla (2014), the macroscopic limit was studied in the same model,
for non-linear springs, but with a stochastic exchange of momentum between near-
est neighbour particles. This dynamics also conserves the momentum, besides the
energy and the volume. For that system the macroscopic space–time scale is hyper-
bolic, and the macroscopic equations are given by the Euler system of conservation
laws. Notice that in the harmonic case these are just linear wave equations, and the
corresponding macroscopic equation will not bring the system to a new equilib-
rium state, that can be reached only at a super-diffusive space–time scale (Jara,
Komorowski and Olla (2014)). In the non-linear case we need a better understand-
ing of the entropy production of the shock waves that appear in the solution to
Euler equations.

Isothermal transformations in this model have been deduced in Olla (2014) in
the non-linear case, where the heat bath is modelled by Langevin thermostats.
In this evolution, only the volume evolves macroscopically. In Olla (2014), these
heat baths act on the bulk of the chain, at every point. If we want to make them act
only at the boundaries of the chain, then we should obtain the same macroscopic
equations as in the present article, but with boundary conditions corresponding to
the thermostat temperature (this will be object of further investigation).

With the result contained in the present article we complete the deduction of the
macroscopic Carnot cycle from the microscopic dynamics.

2 Adiabatic microscopic dynamics

We consider a chain of n coupled oscillators in one dimension. Each particle has
the same mass that we set equal to 1. The position of atom i is denoted by qi ∈
R, while its momentum is denoted by pi ∈ R. Thus, the configuration space is
(R × R)n. We assume that an extra particle 0 is attached to a fixed point and
does not move, that is, (q0,p0) ≡ (0,0), while on particle n we apply a force τ̄ (t)

depending on time. Observe that only the particle 0 is constrained to not move, and
that qi can assume also negative values.

Denote q := (q1, . . . , qn) and p := (p1, . . . , pn). The interaction between two
particles i and i − 1 is described by the potential energy V (qi − qi−1) of an anhar-
monic spring relying the particles. We assume V (r) to be a positive smooth func-
tion which for large r grows faster than linear but at most quadratic, that means
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that there exists a constant C > 0 such that

lim|r|→∞
V (r)

|r| = ∞,

lim sup
|r|→∞

V ′′(r) ≤ C < ∞.

Energy is defined by the following Hamiltonian:
n∑

i=1

(
p2

i

2
+ V (qi − qi−1)

)
.

Since we focus on a nearest neighbor interaction, we may define the distance be-
tween particles by

ri = qi − qi−1, i = 1, . . . , n.

The particles are subject to an interaction with the environment that does not
change the energy: each particle has an independent Poissonian clock and its mo-
mentum changes sign when it rings. The equations of motion are given by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dri(t) = n2(pi(t) − pi−1(t)
)
dt,

dpi(t) = n2(V ′(ri+1(t)
)− V ′(ri(t)))dt − 2pi

(
t−
)
dNi

(
γ n2t

)
,

i = 1, . . . , n − 1,

dpn(t) = n2(τ̄ (t) − V ′(rn(t)))dt − 2pn

(
t−
)
dNn

(
γ n2t

)
.

Here {Ni (t)}i are n-independent Poisson processes of intensity 1, the constant γ

is strictly positive, and p0 is set identically to 0. We have already rescaled time ac-
cording to the diffusive space–time scaling. Notice that τ̄ (t) changes at this macro-
scopic time scale. The generator of this diffusion is given by

Lτ̄ (t)
n := n2Aτ̄(t)

n + n2γ Sn.

Here the Liouville operator Aτ
n is given by

Aτ
n =

n∑
i=1

(pi − pi−1)
∂

∂ri
+

n−1∑
i=1

(
V ′(ri+1) − V ′(ri)

) ∂

∂pi

+ (τ − V ′(rn)
) ∂

∂pn

,

while, for f : (R×R)n → R,

Snf (r,p) =
n∑

i=1

(
f
(
r,pi)− f (r,p)

)
,

where (pi )j = pj if j �= i and (pi )i = −pi . For τ̄ (t) = τ constant, the system has
a family of stationary measures given by the canonical Gibbs distributions

dμn
τ,T =

n∏
i=1

e−(1/T )(Ei−τri )−Gτ,T dri dpi, T > 0, (2.1)
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where we denote

Ei = p2
i

2
+ V (ri),

the energy that we attribute to the particle i, and

Gτ,T = log
[√

2πT

∫
e−(1/T )(V (r)−τr) dr

]
. (2.2)

Observe that the function r(τ, T ) = T ∂τGτ,T gives the average equilibrium length
in function of the tension τ , and

u(τ, T ) = τ r(τ, T ) + T 2 ∂T Gτ,T

is the corresponding thermodynamic internal energy function. We denote the in-
verse of the average length r by τ (r,u). Thermodynamic entropy S(r,u) is defined
as

S(r,u) = 1

T
(u− τ r) + Gτ ,T (2.3)

so that ∂uS = T −1 and ∂rS = −T −1τ . From now on, we reindex notations by using
the inverse temperature β := T −1. In the following, we will need to consider local
Gibbs measures (non-homogeneous product), corresponding to profiles of tension
and temperature {τ(x), β−1(x), x ∈ [0,1]}:

dμn
τ(·),β(·) =

n∏
i=1

e−β(i/n)(Ei−τ(i/n)ri )−Gτ(i/n),β(i/n) dri dpi. (2.4)

Given an initial profile of tension τ(0, x) and temperature β−1(0, x), we assume
that the initial probability state is given by the corresponding μn

τ(0,·),β(0,·). This
implies the following convergence in probability with respect to the initial distri-
bution:

1

n

n∑
i=1

G(i/n)ri(0) −→
∫ 1

0
G(x)r

(
τ(0, x), β(0, x)

)
dx,

(2.5)
1

n

n∑
i=1

G(i/n)Ei (0) −→
∫ 1

0
G(x)u

(
τ(0, x), β(0, x)

)
dx

for any continuous compactly supported test function G ∈ C0(R). We expect the
same convergence to happen at the macroscopic time t :

1

n

n∑
i=1

G(i/n)ri(t) −→
∫ 1

0
G(x)r(t, x) dx,

(2.6)
1

n

n∑
i=1

G(i/n)Ei(t) −→
∫ 1

0
G(x)u(t, x) dx
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and the macroscopic evolution for the volume and energy profiles should follow
the system of equations, for (t, x) ∈R+ × [0,1]

∂t r(t, x) = 1

2γ
∂xx

[
τ (r, u)

]
,

(2.7)

∂tu(t, x) = ∂x

[
D(r, u) ∂x

[
β−1(r, u)

]]+ 1

4γ
∂xx

[
τ 2(r, u)

]
with the following boundary conditions:{

∂x

[
τ (r, u)

]
(t,0) = 0,

∂x

[
β−1(r, u)

]
(t,0) = 0,

{
τ
(
r(t,1), u(t,1)

)= τ̄ (t),

∂x

[
β−1(r, u)

]
(t,1) = 0

and initial conditions {
r(0, x) = r

(
τ(0, x), β(0, x)

)
,

u(0, x) = u
(
τ(0, x), β(0, x)

)
.

Equation (2.7) can be deduced by linear response theory (cf. Bernardin and Olla
(2011)) and the thermal diffusivity D is defined by the corresponding Green–Kubo
formulas. The convergence of the Green–Kubo expression is proved in Bernardin
and Olla (2011). Still a proof of the hydrodynamic limit (2.5) is out of reach with
the known techniques.

In the harmonic case V (r) = r2/2, equation (2.5) is proven in Simon (2013)
with periodic boundary conditions, and we will adapt here that proof in order to
deal with the forcing boundary conditions.

3 The harmonic case

When the interaction potential is harmonic, explicit computations are available, for
instance

Gτ,β = log
[

β

2π
exp
(

τ 2β

2

)]
.

The thermodynamic relations between the averaged conserved quantities r ∈ R and
u ∈ (0,+∞), and the potentials τ ∈ R and β ∈ (0,+∞) are given by

u(τ, β) = 1

β
+ τ 2

2
, r(τ, β) = τ. (3.1)

Furthermore, the thermal diffusivity turns out to be equal to D = (4γ )−1 (cf.
Bernardin and Olla (2011)).
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Let r0 and u0 be two continuous initial profiles on [0,1], and define the solutions
r(t, ·) and u(t, ·) to the hydrodynamic equation (2.7), rewritten as

∂t r(t, x) = 1

2γ
∂xxr(t, x),

(3.2)

∂tu(t, x) = 1

4γ
∂xx

[
u(t, x) + r2(t, x)

2

]

with the boundary conditions, for (t, x) ∈ R+ × [0,1]⎧⎪⎨
⎪⎩

∂xr(t,0) = 0,

r(t,1) = τ̄ (t),

r(0, x) = r0(x),

⎧⎪⎨
⎪⎩

∂xu(t,0) = 0,

∂xu(t,1) = τ̄ (t) ∂xr(t,1),

u(0, x) = u0(x).

(3.3)

The solutions u, r are smooth when t > 0 as soon as the initial condition satisfies
u0 > r2

0/2 (the system of partial differential equations is parabolic).
In this case, the evolution of r(t, x) is autonomous from u(t, x), therefore we

can call R(t) = ∫ 1
0 r(t, x) dx the total length of the chain at time t , that also does

not depend on u(·, ·), and write the boundary conditions for u(t, x) as

d

dt

[∫ 1

0
u(t, x) dx

]
= τ̄ (t)Ṙ(t) = d

dt
L(t), (3.4)

where L is the work done by the force τ̄ up to time t .
For a local function φ, we denote by θiφ the shift of the function φ: θiφ(r,p) =

φ(θir, θip). This is always well defined for n sufficiently large. The main result is
the following theorem.

Theorem 3.1. We have

lim
n→∞

Hn(t)

n
= 0, (3.5)

where

Hn(t) =
∫

f n
t log

(
f n

t

φn
t

)
drdp, (3.6)

with

(i) f n
t the density of the configuration of the system at time t ,

(ii) φn
t the density of the “corrected” local Gibbs measure νn

τ(t,·),β(t,·) defined as

dνn
τ(t,·),β(t,·) = 1

Z(t)

n∏
i=1

e−β(t,i/n)(Ei−τ(t,i/n)ri )+(1/n)F (t,i/n)·θih(r,p) dri dpi.

Above Z(t) is the partition function, and F,h are explicit functions given in (5.5).
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We denote by μ[·] the expectation with respect to the measure μ. Theorem 3.1
implies the hydrodynamic limits in the following sense:

Corollary 3.2. Let G be a continuous function on [0,1] and ϕ be a local function
which satisfies the following property: there exists a finite subset � ⊂ Z and a
constant C > 0 such that, for all (r,p) ∈ (R × R)n, ϕ(r,p) ≤ C(1 +∑

i∈� Ei).
Then,

μn
t

[∣∣∣∣1n
∑
i

G(i/n)θiϕ −
∫
[0,1]

G(x)ϕ̃
(
u(t, x), r(t, x)

)
dx

∣∣∣∣
]

−→
n→∞ 0, (3.7)

where ϕ̃ is the grand-canonical expectation of ϕ: in other words, for any (u, r),

ϕ̃(u, r) = μτ,β[ϕ] =
∫
(R×R)Z

ϕ(r,p) dμτ,β(r,p). (3.8)

We prove Theorem 3.1 in Section 5.

4 Thermodynamic consequences

4.1 Second principle of thermodynamics

Let us first compute the increase of the total thermodynamic entropy, under the
macroscopic evolution given by the general equations (2.7):

d

dt

∫ 1

0
S
(
r(t, x), u(t, x)

)
dx =

∫ 1

0
[−βτ ∂t r + β ∂tu]dx

(4.1)

=
∫ 1

0

[
D
(

∂xβ

β

)2

+ 1

2γ
β(∂xτ )2

]
dx ≥ 0.

Assume now that we start in equilibrium with a given constant tension τ0 and
constant inverse temperature β0. To these values correspond a constant profile of
length r(0, x) = L0 and of energy u(0, x) = u0, that constitute the initial condi-
tions for (2.7). The initial thermodynamic entropy is then S0 = S(L0, u0).

We now apply a time depending tension τ̄ (t), such that τ̄ (t) = τ1 for t ≥ t̄ . It is
clear that the solution converges as t → ∞ to a new global equilibrium state, with
tension τ1. This final equilibrium state has total length L1 given by

L1 = L0 + 1

2γ

∫ ∞
0

∂x

[
τ (r, u)

]
(t,1) dt, (4.2)

and energy u1 = u0 + W , where W is the mechanical work done by the tension
τ̄ (t). The total work W can be computed by:

W = 1

2γ

∫ ∞
0

τ̄ (t) ∂x

[
τ (r, u)

]
(t,1) dt. (4.3)
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Consequently the thermodynamic entropy of the final equilibrium state equals

S1 = S(L1, u1) = S0 +
∫ ∞

0
dt

∫ 1

0

[
D
(

∂xβ

β

)2

+ 1

2γ
β(∂xτ )2

]
dx. (4.4)

This is in agreement with the second principle of thermodynamics, in the statement
that an irreversible adiabatic transformation increases the thermodynamic entropy
of the system.

In the harmonic case, the thermodynamic entropy is a function of the tempera-
ture only, and

S1 − S0 = log
(

β0

β1

)
. (4.5)

In other words, any increase of entropy implies an increase of temperature. It
means that any adiabatic irreversible transformation can only increase the temper-
ature of the system. In the harmonic case, the reversible transformations obtained
by the quasi-static limit cannot change the entropy and the temperature.

4.2 Quasistatic limit

Notice that (3.1) suggests to define

β−1(t, x) = u(t, x) − 1

2
r2(t, x).

Equation (3.2) can be written as

∂t r(t, x) = 1

2γ
∂xxr(t, x),

(4.6)

∂t

[
β−1](t, x) = 1

4γ
∂xx

[
β−1](t, x) + 1

2γ

(
∂xr(t, x)

)2
with the boundary conditions, for (t, x) ∈ R+ × [0,1]⎧⎪⎨

⎪⎩
∂xr(t,0) = 0,

r(t,1) = τ̄ (t),

r(0, x) = r0(x),

⎧⎪⎨
⎪⎩

∂x

[
β−1](t,0) = 0 = ∂x

[
β−1](t,1),

β−1(0, x) = u0(x) − r2
0 (x)

2
.

(4.7)

Consider the case when the exterior tension τ̄ (t) is equal to a value τ̄1 for any
t ≥ t1. It is clear that we have the following convergence to equilibrium:

r(t, x) −→
t→∞ τ̄1,

β−1(t, x) −→
t→∞ β̄−1

1 =
∫ 1

0

(
u0
(
x′)− r0(x

′)2

2

)
dx′ + 1

2γ

∫ ∞
0

dt

∫ 1

0

(
∂xr(t, x)

)2
dx.

Suppose, as above, that we start at equilibrium with tension τ0 and temperature
β−1

0 . This means r(0, x) = τ0, u(0, x) = β−1
0 − τ 2

0 /2, and an initial exterior force



Microscopic derivation of an adiabatic thermodynamic transformation 549

τ̄ (0) = τ0. Then, after the limit t → ∞, we have reached a new equilibrium with
tension τ̄1 and a higher temperature

β−1
1 = β−1

0 + 1

2γ

∫ ∞
0

dt

∫ 1

0

(
∂xr(t, x)

)2
dx.

In particular the temperature, and consequently the entropy, always increase in this
irreversible transformation.

We now consider the quasi-static limit, where we slow down the changing of the
exterior tension, that is, we consider the same system (4.6), but one of the boundary
conditions (precisely, the second one of (4.7)) is changed into r(t,1) = τ̄ (εt). The
corresponding solution is denote by (rε, uε). Then Proposition 3.1 of Olla (2014)
can be applied and it follows that

lim
ε→0

∫ ∞
0

dt

∫ 1

0

(
∂xr

ε(ε−1t, x
))2

dx = 0

and rε(ε−1t, x) → τ̄ (t), for all (t, x) ∈ R+ × [0,1]. Consequently

(
βε(ε−1t, x

))−1 −→
ε→0

β−1
0 , uε(ε−1t, x

)−→
ε→0

β−1
0 − τ̄ 2(t)

2
for all (t, x) ∈ R+ × [0,1]. Similar considerations are valid in the non-linear case.

5 Proof of the hydrodynamic limit

We approach this problem by using the relative entropy method (Yau (1991)). We
adapt the proof of Simon (2013), where the same harmonic perturbed chain is in-
vestigated, assuming periodic boundary conditions. We recall here the main steps
of the argument, and give details only for computations that change due to bound-
ary conditions.

In the context of diffusive systems, the relative entropy method works if the
following conditions are satisfied.

(1) First, the dynamics has to be ergodic: the only time and space invariant
measures for the infinite system, with finite local entropy, are given by mixtures of
Gibbs measures in infinite volume μτ,β . From Fritz, Funaki and Lebowitz (1994),
we know that the velocity-flip model is ergodic in the sense above. For a precise
statement, we refer to Simon (2013), Theorem 1.3.

(2) Next, we need to establish the so-called fluctuation–dissipation equations.
Such equations express the microscopic currents jE

i and j r
i (respectively, of energy

and deformation) as the sum of a discrete gradient and a fluctuating term. Here, the
conservation laws write for i ≥ 1,

Lτ
n(Ei ) = n2(jE

i+1 − jE
i

)
with jE

i :=
{

ripi−1, if i ∈ {1, . . . , n},
τpn, if i = n + 1,

Lτ
n(ri) = n2(j r

i+1 − j r
i

)
with j r

i = pi−1, for any i ∈ {1, . . . , n + 1}.
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Notice that jE
1 = 0 and j r

1 = 0. If τif (r,p) is a local function on the configurations,
we define its discrete gradient as

∇(θif ) := θi+1f − θif.

We denote by (Lτ
n)


 := −n2Aτ
n + γ n2Sn the adjoint of Lτ

n in L2(μn
τ,β). We write

down the fluctuation–dissipation equations: for i ∈ {2, . . . , n},
jE
i = ∇(ui) + (Lτ

n

)
[−ri(pi−1 + pi − γ ri)

4γ n2

]
, (5.1)

j r
i = ∇

(
−ri−1

2γ

)
+ (Lτ

n

)
[− pi−1

2γ n2

]
, (5.2)

where for i ∈ {2, . . . , n},

ui = −p2
i−1 + ri−1ri

4γ
and un+1 = −p2

n + τrn

4γ
.

For i = n + 1, the fluctuation–dissipation equations read as

jE
n+1 = τ

(
rn − τ

2γ
+ (Lτ

n

)
[− pn

2γ n2

])
,

j r
n+1 = rn − τ

2γ
+ (Lτ

n

)
[− pn

2γ n2

]
.

(3) Since we observe the system on a diffusive scale and the system is non-
gradient, we need second order approximations. If we want to obtain the entropy
estimate of order o(n), we cannot work directly with the local Gibbs measure
μn

τ(t,·),β(t,·): we have to correct it with a small term.

(4) Finally, we need to control all the following moments,∫ {1

n

n∑
i=1

|Ei |k
}

dμn
t , k ≥ 2 (5.3)

uniformly in time and with respect to n. The harmonicity of the chain is crucial
to get this result: roughly speaking, it ensures that the set of mixtures of Gaussian
probability measures is left invariant during the time evolution.

In the two next subsections, we explain the relative entropy method, and high-
light the role of the fluctuation–dissipation equations. In Section 5.3, we prove
bounds (5.3).

5.1 Relative entropy method

Recall the definition of the relative entropy (3.6). The objective is to prove a Gron-
wall estimate of the entropy production in the form

d

dt
Hn(t) ≤ CHn(t) + o(n), (5.4)
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where C > 0 does not depend on n. We begin with the following lemma, proved
in Kipnis and Landim (1999), Chapter 6, Lemma 1.4.

Lemma 5.1.
d

dt
Hn(t) ≤

∫ 1

φn
t

{(
Lτ̄ (t)

n

)

φn

t − ∂tφ
n
t

}
f n

t drdp =
∫ 1

φn
t

{(
Lτ̄ (t)

n

)

φn

t − ∂tφ
n
t

}
dμn

t .

We now choose the correction term: for i �= n let us define⎧⎪⎨
⎪⎩

F(t, i/n) := (
∂xβ(t, i/n),−∂x(τβ)(t, i/n)

)
,

θih(r,p) :=
(
−ri+1(pi + pi+1 − γ ri+1)

4γ
,− pi

2γ

)
.

(5.5)

For i = n, we assume ⎧⎪⎨
⎪⎩

F(t,1) := (
0, (β ∂xτ )(t,1)

)
,

θnh(r,p) :=
(

0,−pn

2γ

)
.

For the sake of simplicity, we introduce the following notations

ξi := (Ei , ri), χ := (τ, β), η(t, x) := (
u(t, x), r(t, x)

)
.

If f is a vectorial function, we denote its differential by Df . We are now able to
state the main technical result of the relative entropy method.

Proposition 5.2. The term (φn
t )−1{(Lτ̄ (t)

n )
φn
t − ∂tφ

n
t } is given by a finite sum of

microscopic expansions up to the first order. In other words, it can be written as a
finite sum, for which each term k is of the form

n∑
i=1

vk

(
t,

i

n

)[
J k

i − Hk

(
η

(
t,

i

n

))
(5.6)

− (DHk)

(
η

(
t,

i

n

))
·
(
ξi − η

(
t,

i

n

))]
+ ot (n),

where

• ot (n) is an error term in the sense that∫ t

0
ds

∫
n−1os(n)f n

s drdp −→
n→∞ 0,

• J k
i are local functions on the configurations given in Section 5.2,

• vk(t, x) are smooth functions that depends on τ,β , given in Section 5.2,
• the functions Hk satisfy

Hk

(
η

(
t,

i

n

))
= μn

χ(t,i/n)

[
J k

0
]
. (5.7)
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Before explaining the main steps to prove Proposition 5.2, let us achieve the
proof of Theorem 3.1. A priori the first term on the right-hand side of (5.6) is of
order n, but we can take advantage of these microscopic Taylor expansions. First,
we need to cut-off large energies in order to work with bounded variables only.
Second, the strategy consists in performing a one-block estimate: we replace the
empirical truncated current which is averaged over a microscopic box centered at i

by its mean with respect to a Gibbs measure with the parameters corresponding to
the microscopic averaged profiles. This is achieved thanks to the ergodicity of the
dynamics. A one-block estimate is performed for each term of the form

n∑
i=1

vk

(
t,

i

n

)[
J k

i − Hk

(
η

(
t,

i

n

))
− (DHk)

(
η

(
t,

i

n

))
·
(
ξi − η

(
t,

i

n

))]
.

We deal with error terms by taking advantage of (5.7) and by using the large devi-
ation properties of the probability measure νn

χ(t,·), that locally is almost homoge-
neous. Along the proof, we will need to control, uniformly in n, the quantity∫ n∑

i=1

exp
(Ei

n

)
dμn

t .

In fact, to get the convenient estimate, it is not difficult to see that it is sufficient
to prove (5.3). The rest of the proof follows by the standard arguments of the
relative entropy method (cf. Kipnis and Landim (1999), Even and Olla (2014),
Olla, Varadhan and Yau (1993), Simon (2013), Yau (1991)).

5.2 Taylor expansion

First, let us give the explicit expressions for all the functions given in Proposi-
tion 5.2. For i = 1, . . . , n − 1, we have:

k J k
i Hk(u, r) vk(t, x)

1 p2
i + riri+1 + 2γ ripi−1 u + r2

2 − 1
4γ

∂xxβ(t, x)

2 ri + γpi−1 r 1
2γ

∂xx(τβ)(t, x)

3 p2
i (ri + ri+1)2 (2u − r2)(u + 3

2 r2) 1
8γ

[∂xβ(t, x)]2
4 p2

i (ri + ri+1) r(2u − r2) − 1
2γ

∂xβ(t, x) ∂x(τβ)(t, x)

5 p2
i u − r2

2
1

2γ
[∂x(τβ)(t, x)]2

For i = n, the local functions J k
n read:

J 1
n = p2

n + τrn, J 2
n = rn, J 3

n = J 4
n = 0, J 5

n = p2
n

associated to

v1 = − 1

4γ
∂xxβ, v2 = 1

2γ
∂xx(τβ), v5 = 1

2γ
(β ∂xτ)2.
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The fluctuation–dissipation equations are crucial: the role of functions F,h is to
compensate the fluctuating terms. For the sake of clarity, we write down three
different lemmas. Let us introduce the notation, for i ∈ {1, . . . , n},

δi(r,p) = F(t, i/n) · θih(r,p),

where we denote by a · b the usual scalar product in R
2.

Lemma 5.3 (Antisymmetric part).

n2Aτ̄(t)
n φn

t = φn
t

n−1∑
i=0

{
∂xxβ

(
t,

i

n

)[
ri+1pi

2
− ui+2

]

− ∂xx(βτ)

(
t,

i

n

)[
pi

2
+ ri+1

2γ

]}

+ φn
t n

n−1∑
i=1

{(
n2Lτ̄ (t)

n

)

(δi) + Aτ̄(t)

n (δi)
}+ n

φn
t

2γ
(τβ ∂xτ)(t,1) + o(n).

Proof. The first step consists in performing an integration by part coming from
the conservation laws. One can easily check that

n2Aτ̄(t)
n φn

t = φn
t

n−1∑
i=1

n

[
∂xβ

(
t,

i

n

)
jE
i+1 − ∂x(βτ)

(
t,

i

n

)
j r
i+1

]

+ φn
t

n−1∑
i=1

1

2

[
∂xxβ

(
t,

i

n

)
jE
i+1 − ∂xx(βτ)

(
t,

i

n

)
j r
i+1

]
+ o(n)

+ φn
t n

n∑
i=1

Aτ̄(t)
n (δi) + n2((βτ)(t,1)pn − β(t,1)τ̄ (t)pn

)
.

Note that the boundary conditions ∂xβ(t,0) = 0 and ∂x(τβ)(t,0) = 0 permit to
introduce the boundary gradients. Moreover, the condition τ(t,1) = τ̄ (t) makes
the last two terms compensate.

The next step makes use of the fluctuation–dissipation equations. The fluc-
tuating terms in the range of (Lτ̄ (t)

n )
 give the contribution
∑

(Lτ̄ (t)
n )
(δi) (for

i = 1, . . . , n − 1) whereas the gradient terms are turned into a second integration
by parts. The term A

τ̄(t)
n (δn) is going to be treated separately. Then, one can check

that

n2Aτ̄(t)
n φn

t

= φn
t

n−1∑
i=0

{
∂xxβ

(
t,

i

n

)[
ri+1pi

2
− ui+2

]
− ∂xx(βτ)

(
t,

i

n

)[
pi

2
+ ri+1

2γ

]}
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+ nφn
t

n−1∑
i=1

{(
n−2Lτ̄ (t)

n

)

(δi) + Aτ̄(t)

n (δi)
}+ o(n)

+ nφn
t

[
−∂xβ(t,1)

p2
n + τ̄ (t)rn

4γ
+ ∂x(τβ)(t,1)

rn

2γ
+ Aτ̄(t)

n (δn)

]
.

Remind that ∂xβ(t,1) = 0. After simplifications in the last line above, we get

n2Aτ̄(t)
n φn

t

= φn
t

n−1∑
i=0

{
∂xxβ

(
t,

i

n

)[
ri+1pi

2
− ui+2

]
− ∂xx(βτ)

(
t,

i

n

)[
pi

2
+ ri+1

2γ

]}

+ nφn
t

n−1∑
i=1

{(
n−2Lτ̄ (t)

n

)

(δi) + Aτ̄(t)

n (δi)
}+ n

φn
t

2γ
(τβ ∂xτ )(t,1) + o(n).

�

The following lemma is widely inspired from Simon (2013). As previously, we
keep the term Sn(δn) = −2γ δn isolated.

Lemma 5.4 (Symmetric part).

n2Sn(φ
n
t )

φn
t

= n

n−1∑
i=1

Sn(δi)+n(β ∂xτ)(t,1)pn + 1

4

n∑
y=1

(
n∑

i=1

δi

(
py)−δi(p)

)2

+ε(n),

where μn
t [ε(n)] = o(n).

The proof of Lemma 5.4 is the same as in Simon (2013, Lemma A.2), provided
that moment bounds have been proved (see Section 5.3). The last result below can
also be proved by following straightforwardly Simon (2013).

Lemma 5.5 (Logarithmic derivative).

∂t

{
log
(
φn

t

)}
=

n∑
i=1

−
[
Ei − u

(
t,

i

n

)]
∂tβ

(
t,

i

n

)
+
[
ri − r

(
t,

i

n

)]
∂t (τβ)

(
t,

i

n

)
+ O(1).

We are now able to prove the Taylor expansion. According to the three previous
results and to the notations introduced at the beginning of Section 5.2 we have

1

φn
t

(
Lτ̄ (t)

n

)

φn

t − ∂t

{
log
(
φn

t

)}

=
5∑

k=1

n∑
i=1

vk

(
t,

i

n

)
J k

i (5.8)
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+
n∑

i=1

{[
Ei − u

(
t,

i

n

)]
∂tβ

(
t,

i

n

)
−
[
ri − r

(
t,

i

n

)]
∂t (τβ)

(
t,

i

n

)}

+ n(β ∂xτ)(t,1)

(
τ(t,1)

2γ
+ pn

)
+ o(n).

In (5.8), the two boundary terms are treated in the following way: the first term

n(β ∂xτ)(t,1)
τ (t,1)

2γ

cancels out with the Taylor expansion (see below), and we are going to prove in
Lemma 5.6 that the term npn is of order o(n) when integrated with respect to μn

t .
Recall that Hk is the function defined as follows:

Hk

(
η

(
t,

i

n

))
= μn

χ(t,i/n)

[
J k

0
]
.

The next step consists in introducing in (5.8) the sum

�n :=
n∑

i=1

{
− 1

4γ
∂xxβ

(
t,

i

n

)
H1

(
η

(
t,

i

n

))
+ 1

2γ
∂xx(τβ)

(
t,

i

n

)
H2

(
η

(
t,

i

n

))

+ 1

8γ

[
∂xxβ

(
t,

i

n

)]2

H3

(
η

(
t,

i

n

))

− 1

2γ
∂xβ ∂x(τβ)

(
t,

i

n

)
H4

(
η

(
t,

i

n

))

+ 1

2γ

[
∂x(τβ)

(
t,

i

n

)]2

H5

(
η

(
t,

i

n

))}
.

Here, �n is not of order o(n) because of the boundary conditions. We let the reader
write the two suitable integrations by part implying the Riemann convergence

1

n

(
�n − n

(βτ ∂xτ )(t,1)

2γ

)
−→
n→∞ 0. (5.9)

There is one remaining lemma to prove.

Lemma 5.6. Let ϕ(t) a smooth function on R+. The following bound holds:∫ t

0
ds

∫
ϕ(s)pnf

n
s drdp ≤ C

n

(
1

n
+
∫ t

0
Hn(s) ds +Hn(t) +Hn(0)

)
for some positive constant C independent of n.

Proof. Since d
dt

∑n
i=1 ri(t) = n2pn(t), we have:∫ t

0
ϕ(s)pn(s) ds

= − 1

n2

∫ t

0
ϕ′(s)

n∑
i=1

ri(s) ds + 1

n2 ϕ(t)

n∑
i=1

ri(t) − 1

n2 ϕ(0)

n∑
i=1

ri(0).
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Recall the entropy inequality: for any α > 0 and any positive measurable function
F we have ∫

F dμ ≤ 1

α

{
log
(∫

eαF dν

)
+H(μ|ν)

}
, (5.10)

where H(μ|ν) is the relative entropy of μ with respect to ν. Therefore,∫ 1

n2

n∑
i=1

rif
n
s drdp ≤ 1

αn
log
∫

exp

(
α

n

n∑
i=1

ri

)
φn

s drdp + 1

αn
Hn(s)

and it is easy to see that the first term of the right-hand side of the above bound is
bounded by Cn−2 for some constant C > 0. �

Eventually, further computations give

−∂xxβ

4γ
∂uH1 + ∂xx(τβ)

2γ
∂uH2 + [∂xβ]2

8γ
∂uH3 − ∂xβ ∂x(τβ)

2γ
∂uH4

(5.11)

+ [∂x(τβ)]2

2γ
∂uH5 = −∂tβ,

and

−∂xxβ

4γ
∂rH1 + ∂xx(τβ)

2γ
∂rH2 + [∂xβ]2

8γ
∂rH3 + ∂xβ ∂x(τβ)

2γ
∂rH4

(5.12)

+ [∂xτβ]2

2γ
∂rH5 = −∂t (τβ).

It remains to rewrite (5.8) after introducing �n, and making a suitable use of (5.11),
(5.12) and (5.9). Eventually, Proposition 5.2 is proven.

5.3 Moment bounds

In this last part, we are going to control all the energy moments. The precise state-
ment is the following.

Theorem 5.7. For every positive integer k ≥ 1, there exists a positive constant C

which does not depend on n (but depends on k), such that

μn
t

[
n∑

i=1

Ek
i

]
≤ C × n. (5.13)

The dependence on k could be precise: we refer the interested reader to Simon
(2013). The first two bounds (k = 1,2) would be sufficient to justify the cut-off of
currents, but here we need more bounds because of the Taylor expansion (Propo-
sition 5.2). Since the chain is harmonic, Gibbs states are Gaussian. Remarkably,
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all Gaussian moments can be expressed in terms of variances and covariances.
We start with a graphical representation of the dynamics of the process given by

the generator Lτ̄ (t)
n /n2. Notice that time is not accelerated in the diffusive scale.

To avoid any confusion, the law of this new process is denoted by νn
t . Then, we

recover the diffusive time accelerated process by:

μn
t = νn

tn2 .

In the following, we always respect the decomposition of the space Rn×R
n, where

the first n components stand for r and the last n components stand for p. All vectors
and matrices are written according to this decomposition.

Let ν be a measure on R
n × R

n. We denote by m ∈ R
2n its mean vector and

by C ∈ M2n(R) its covariance matrix. There exist ρ := ν[r] ∈ R
n, π := ν[p] ∈ R

n

and U,V,Z ∈Mn(R) such that

m = (ρ,π) ∈ R
2n and C =

(
U tZ

Z V

)
∈ S2n(R). (5.14)

Hereafter, we denote by tZ the real transpose of the matrix Z. Thanks to a trivial
convexity inequality, instead of proving (5.13) we are going to show

νn
t

[
n∑

i=1

p2k
i

]
≤ C × n and νn

t

[
n∑

i=1

r2k
i

]
≤ C × n, (5.15)

where C is a constant that does not depend on t nor on n.

Proof of Theorem 5.7. (i) Poisson process and Gaussian measures—We start by
giving a graphical representation of the process, based on the Harris description.
Let us define the antisymmetric (2n,2n)-matrix, written by blocks as

A :=
(

0n An

−tAn 0n

)
where An :=

⎛
⎜⎜⎜⎜⎝

1 (0)

−1
. . .

. . .
. . .

(0) −1 1

⎞
⎟⎟⎟⎟⎠ ∈ Mn(R).

Above 0n is the null (n,n)-matrix. We also define the n-vector

b(t) :=

⎛
⎜⎜⎝

0
...

0
τ̄ (t)

⎞
⎟⎟⎠ .

Let (Ni)i=1,...,n be a sequence of independent standard Poisson processes of inten-
sity γ . At time 0 the process has an initial state (r,p)(0). Let

T1 = inf
t≥0

{
there exists i ∈ {1, . . . , n} such that Ni(t) = 1

}
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and i1 the site where the infimum is achieved. During the interval [0, T1), the pro-
cess (not accelerated in time) follows the deterministic evolution given by the gen-
erator A

τ̄(t)
n . More precisely, during the time interval [0, T1), (r,p)(t) follows the

evolution given by the system:

dy

dt
= A · y(t) + b(t). (5.16)

At time T1, the momentum pi1 is flipped, and gives a new configuration. Then, the
system starts again with the deterministic evolution up to the time of the next flip,
and so on. Let ξ := (i1, T1), . . . , (iq, Tq), . . . be the sequence of sites and ordered
times for which we have a flip, and let us denote its law by P. Conditionally to ξ ,
the evolution is deterministic, and the state of the process (r,p)ξ (t) is given for all
t ∈ [Tq, Tq+1) by

(r,p)ξ (t)
(5.17)

= e(t−Tq)A ◦ Fiq ◦ e(Tq−Tq−1)A ◦ Fiq−1 ◦ · · · ◦ eT1A(r,p)(0) + �ξ(t),

where

• Fi is the map (r,p) �→ (r,pi),
• �ξ(t) is a vector that depends only on A, b(t) and ξ , and can be written as

�ξ(t) =
q−1∑
�=0

e(t−Tq)A ◦ Fiq ◦ e(Tq−Tq−1)A ◦ · · · ◦ Fi�+1

◦ e(T�+1−T�)A
∫ T�+1

T�

e−uAb(u)du + e(t−Tq)A
∫ t

Tq

e−uAb(u)du.

If initially the process starts from (r,p)(0) which is distributed according to a
Gaussian measure νn

0 , then (r,p)ξ (t) is distributed according to a Gaussian mea-

sure ν
ξ
t . Finally, the density νn

t is given by the convex combination

νn
t (·) =

∫
ν

ξ
t (·) dP(ξ). (5.18)

Moreover, we are able to write the evolution of the mean vector mξ
t and the covari-

ance matrix Cξ
t of ν

ξ
t . During the interval [0, T1), mt follows the evolution given

by system (5.16). At time T1, the component mi1+n = πi1 (which corresponds to
the mean of pi1 ) is flipped, and gives a new mean vector. Then, the deterministic
evolution goes on up to the time of the next flip, and so on.

In the same way, during the interval [0, T1), Ct follows the evolution given by
the (matrix) system:

dM

dt
= AM(t) − M(t)A. (5.19)
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At time T1, all the components Ci1+n,j and Ci,i1+n when i, j �= i1 + n are flipped
and the matrix CT1 becomes �i1 · CT1 · t�i1 , where �i is defined as

�i :=
(

In 0n

0n In − 2Ei,i

)
,

and so on up to the next flip. Above, In is the (n,n)-identity matrix, and Ei,i

is the (n,n)-matrix composed by the elements (δi,kδi,�)1≤k,�≤n where δi,k is the
Kronecker delta function. More precisely,

Cξ
t = e(t−Tq)A · �iq · · ·�i1 · eT1A · C0 · e−T1A · t�i1 · · · t�iq e

−(t−Tq)A. (5.20)

Finally, the density νn
t is equal to

νn
t (·) =

∫
ν

ξ
t (·) dP(ξ) =

∫
Gm,C(·) dθ t

m0,C0
(m,C), (5.21)

where Gm,C(·) denotes the Gaussian measure on (R× R)n with mean m and co-
variance matrix C, and θ t

m0,C0
(·, ·) is the law of the random variable (mt ,Ct ),

knowing that the Markov process (mt ,Ct )t≥0 described by the graphical repre-
sentation above starts from (m0,C0). We denote by Pm0,C0 the law of the Markov
process (mt ,Ct )t≥0, and by Em0,C0 the corresponding expectation. Observe that
we have, from (5.21),

νn
t [pi] =

∫
Gm,C(pi) dθ t

m0,C0
(m,C) =

∫
πi dθ t

m0,C0
(m,C),

νn
t [ri] =

∫
Gm,C(ri) dθ t

m0,C0
(m,C) =

∫
ρi dθ t

m0,C0
(m,C).

Notice that we conveniently denote by Gm,C(f ) the mean of the function f with
respect to the Gaussian measure Gm,C. Therefore, we rewrite (5.15) as

νn
t

[
n∑

i=1

p2k
i

]
=
∫ n∑

i=1

Gm,C
(
p2k

i + r2k
i

)
dθt

m0,C0
(m,C).

(ii) Control in the covariance matrix—First, let us focus on Gm,C(p2k
i + r2k

i ).
Notice that

Gm,C
(
p2k

i

)= Gm,C
([pi − πi + πi]2k)≤ 22k−1{Gm,C

([pi − πi]2k)+ π2k
i

}
.

Remarkably, we can express all the centered moments of a Gaussian random vari-
able as functions of the variance only. In other words, there exists a constant Kk

that depends on k but not on n such that

Gm,C
([pi − πi]2k)≤ KkGm,C

([pi − πi]2)k = Kk(Ci+n,i+n)
k(t).

Therefore, after repeating the same argument for Gm,C(r2k
i ) we are reduced to

control, for any ξ ,

2n∑
i=1

(
C

ξ
i,i

)k
(t) (5.22)
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and besides
n∑

i=1

π2k
i (t),

n∑
i=1

ρ2k
i (t). (5.23)

In the following, we treat separately (5.22) and (5.23).
(iii) Control of (5.22) using the trace—Let us fix once for all a sequence ξ a se-

quence of sites and ordered times for which we have a flip. The matrix C
ξ
t is sym-

metric, hence diagonalizable, and after denoting its eigenvalues by λ1, . . . , λ2n, we
can write

Tr
([

C
ξ
t

]k)= 2n∑
i=1

λk
i .

We have now to compare
∑

i λ
k
i with

∑
i[Cξ

i,i]k(t). If we denote by P
ξ
t the orthog-

onal matrix of the eigenvectors of C
ξ
t , then we get C

ξ
t = (P

ξ
t )∗ · D · P

ξ
t , where

D is the diagonal matrix with entries λ1, . . . , λ2n. For the sake of simplicity, we
denote by (Pi,j ) the components of P

ξ
t . Then,

[
C

ξ
i,i

]k
(t) =

(∑
j,�

P ∗
i,jDj,�P�,i

)k

=
(∑

j

P ∗
i,j λjPj,i

)k

=
(∑

j

P ∗
i,jPj,i · λj

)k

.

Since P is an orthogonal matrix,
∑

j P ∗
i,jPj,i = 1. Consequently, we can use the

convexity inequality, and we obtain∑
i

[
C

ξ
i,i

]k
(t) ≤∑

i

∑
j

P ∗
i,jPj,iλ

k
j ≤∑

j

λk
j = Tr

([
C

ξ
t

]k)
.

Since C0 and C
ξ
t are similar, we have:

Tr
([

C
ξ
t

]k)= Tr
(
Ck

0
)= n∑

i=1

1

βk
0 (i/n)

+
(

1

β0(i/n)
+ τ 2

0 (i/n)

)k

≤ K ′
1n,

for some constant K ′
1 > 0. Therefore, the same inequality holds for

∑
i[Cξ

i,i]k(t).
(iv) Control of (5.23)—For this last paragraph, we go back to the diffusive time

scale, namely we are going to bound the two quantities

n∑
i=1

π2k
i

(
tn2) and

n∑
i=1

ρ2k
i

(
tn2).

Notice that the sequences {πi(t)}i and {ρi(t)}i satisfy the following system of
differential equations: for i = 1, . . . , n and t ≥ 0,{

π ′
i = ρi+1 − ρi − 2γπi,

ρ′
i = πi − πi−1,

with

{
ρn+1(t) = τ̄

(
t/n2),

π0(t) = 0.
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Let us recenter ρ̃i(t) = ρi(t) − τ̄ (t/n2), then the equations become{
π ′

i = ρ̃i+1 − ρ̃i − 2γπi,

ρ̃′
i = πi − πi−1 − τ̄ ′(t/n2)n−2,

with
{

ρ̃n+1(t) = 0,

π0(t) = 0.

Denote by � the column vector t(π1, . . . , πn,π
′
1, . . . , π

′
n). It is not difficult to see

that �(t) follows a first order ordinary differential equation written as

dy

dt
= Mπ · y(t) + T π(t), (5.24)

where Mπ is the following constant block matrix:

Mπ :=
(

0n In

Dπ −2γ In

)
where Dπ :=

⎛
⎜⎜⎜⎜⎜⎜⎝

−2 1 (0)

1 −2 1
. . .

. . .
. . .

1 −2 1
(0) 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Above In is the (n,n)-identity matrix, and the vector T π(t) is the (2n)-vector

T π(t) := t(0, . . . ,0︸ ︷︷ ︸
2n−1

, τ̄ ′(t/n2)n−2).
In the same way, denote by R the column vector t(ρ̃1, . . . , ρ̃n, ρ̃

′
1, . . . , ρ̃

′
n). It is not

difficult to see that R(t) follows a first order ordinary differential equation written
as

dy

dt
= Mρ · y(t) + T ρ(t), (5.25)

where Mρ is the following constant block matrix:

Mρ :=
(

0n In

Dρ −2γ In

)
where Dρ :=

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 1 (0)

1 −2 1
. . .

. . .
. . .

1 −2 1
(0) 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎠

and T ρ(t) is the (2n)-vector

T ρ(t) := t(0, . . . ,0︸ ︷︷ ︸
2n−1

, τ̄
(
t/n2))

− [τ̄ ′′(t/n2)n−4 + 2γ τ̄ ′(t/n2)n−2]× t(0, . . . ,0︸ ︷︷ ︸
n

,1, . . . ,1︸ ︷︷ ︸
n

).

Both matrices Dπ and Dρ represents the discrete Laplacian operator with mixed
Dirichlet–Neumann boundary conditions. Let us focus on �(t). We are going to
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compute the characteristic polynomial of Mπ , that is χπ(X) := det(XI2n − Mπ).
One can easily check that

χπ(X) = det
(
Dπ − X(X + 2γ )In

)
.

In other words, the eigenvalues of Mπ are exactly equal to the solutions of

x(x + 2γ ) = −λ,

where −λ takes any eigenvalue of Dπ . It is well-known that the eigenvalues of
Dπ are all negatives. Therefore, we need to solve x(x + 2γ ) + λ = 0, where λ is
positive. Precisely,

(i) if γ 2 > λ, then the two solutions are real negative numbers written as

x± = −γ ±
√

γ 2 − λ < 0,

(ii) if γ 2 < λ, then the two solutions are complex numbers written as

x± = −γ ± i

√
−γ 2 + λ,

(iii) if γ 2 = λ, then −γ is the unique solution.

As a consequence, every eigenvalue of Mπ has a negative real part, and the system
(5.24) is hyperbolic (and the same holds for Mρ ). Let us write the solution of
system (5.24) at time tn2:

�
(
tn2)= exp

(
tn2Mπ )�(0) +

∫ tn2

0
exp
((

tn2 − s
)
Mπ )T π(s) ds.

We are interested in the quantity
∑

i |πi(tn
2)|m, which is less or equal than the

following norm

(∥∥�(tn2)∥∥
m

)m :=
n∑

i=1

{∣∣πi

(
tn2)∣∣m + ∣∣π ′

i

(
tn2)∣∣m}.

Since the system is hyperbolic, there exists a constant C > 0 such that, for every
s ∈ [0, t], ∥∥exp

((
tn2 − s

)
Mπ )�(0)

∥∥
m ≤ C

∥∥�(0)
∥∥
m.

Observe that the initial condition writes

∥∥�(0)
∥∥m
m =

n−1∑
j=1

∣∣∣∣τ0

(
j + 1

n

)
− τ0

(
j

n

)∣∣∣∣m + ∣∣τ̄ (0) − τ0(1)
∣∣m.

The last term above vanishes due to the assumptions on the boundary (3.3). Since
the profile τ0 is smooth, it is clear that ‖�(0)‖m

m is of order n1−m. On the other
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hand, ∥∥∥∥
∫ tn2

0
exp
((

tn2 − s
)
Mπ )T π(s) ds

∥∥∥∥m
m

≤ Cm

(∫ tn2

0

∥∥T π(s)
∥∥
m ds

)m

=
(∫ tn2

0
n−2

∣∣∣∣τ̄ ′
(

s

n2

)∣∣∣∣ds

)m

=
(∫ t

0

∣∣τ̄ ′(u)
∣∣du

)m

so that the bound does not depend on n. Therefore, we proved that there exists a
constant K ′

2 that does not depend on n nor on t such that
n∑

i=1

∣∣πi

(
tn2)∣∣m ≤ ∥∥�(tn2)∥∥m

m ≤ K ′
2n.

The same argument is valid for R(t), except two different estimates: the first one
appears in the initial condition, which now reads

∥∥R(0)
∥∥m
m =

n∑
j=1

∣∣∣∣τ0

(
j

n

)
− τ̄ (0)

∣∣∣∣m +
n∑

j=1

∣∣τ̄ ′(0)n−2∣∣m.

Hence, ‖R(0)‖m
m is of order n (instead of n1−m), but this is enough. The second

difference comes from the vector T ρ(t). Now we have to control(∫ tn2

0

[∣∣∣∣τ̄
(

s

n2

)∣∣∣∣m + nm

∣∣∣∣τ̄ ′′
(

s

n2

)
n−4 + τ̄ ′

(
s

n2

)
n−2

∣∣∣∣m
]1/m

ds

)m

,

which is also bounded uniformly in n. Therefore, we conclude that there exists a
constant K ′

3 that does not depend on n such that
n∑

i=1

∣∣ρi

(
tn2)− τ̄ (t)

∣∣m ≤ ∥∥R(tn2)∥∥m
m ≤ K ′

3n,

which implies
n∑

i=1

∣∣ρi

(
tn2)∣∣m � K ′

3n +
n∑

i=1

∣∣τ̄ (t)
∣∣m ≤ K ′

4n.
�
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