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A note on the Bramson–Kalikow process

Sacha Friedli
Universidade Federal de Minas Gerais

Abstract. We consider discrete-time stationary processes with long-range
dependencies, Xn ∈ {±1}, n ∈ Z, specified by a regular attractive g-function,
similar to those considered by Bramson and Kalikow [Israel J. Math. 84
(1993) 153–160]. We give an explicit set of conditions that imply the exis-
tence of at least two distinct processes specified by the same g-function, and
consider a few examples that emphasize the role played by the smoothness of
the majority rule at the origin.

1 Introduction

Consider a measurable map g : {±1}N → [0,1], called g-function. A stationary
processes X = (Xn)n∈Z with Xn ∈ {±1}, is said to be specified by g if

P(Xn+1 = +1|Xn = σn,Xn−1 = σn−1, . . .) = g(σn, σn−1, . . .) P -a.s. (1)

Let vark(g) denote the variation of g of order k, that is,

vark(g) := sup
{∣∣g(σ) − g

(
σ ′)∣∣ : σi = σ ′

i ,1 ≤ i ≤ k
}
.

It is well known that if g is regular, that is if vark(g) → 0 when k → ∞, and if
there exists ε∗ ∈ (0, 1

2) such that g(σ) ∈ [ε∗,1 − ε∗] for all σ , then there always
exists at least one process specified by g.

Most of the existing literature on this kind of process is concerned with finding
additional conditions on g which imply uniqueness of X. Uniqueness is not our
main concern here, but we mention two important contributions. In their pioneer-
ing paper (Doeblin and Fortet, 1937), Doeblin and Fortet showed that uniqueness
holds when vark(g) ∈ �1. More recently, Johansson and Öberg (2003) obtained the
same conclusion under the weaker assumption that vark(g) ∈ �2.

As in the theory of phase transitions in equilibrium statistical mechanics, it
is natural to ask whether non-uniqueness is possible: can two distinct station-
ary processes be specified by the same regular g-function? The first result on
non-uniqueness was obtained by Bramson and Kalikow (1993), who considered
g-functions of the following kind. Let 1 ≤ m1 < m2 < · · · be an increasing se-
quence of odd integers, and set

g(σ1, σ2, . . .) := ∑
k≥1

pkϕ

(
1

mk

mk∑
j=1

σj

)
, (2)
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where pk ≥ 0,
∑

k≥1 pk = 1, and ϕ : [−1,1] → [−1,1] is non-decreasing. The
function used in Bramson and Kalikow (1993) was the pure majority rule, defined
by

ϕPMR(s) :=
{

1 − ε∗, if s > 0,
ε∗, if s < 0.

(3)

With this choice, (1) is interpreted by saying that to determine the state of Xn+1

for a given past, one looks at all variables Xj lying at a distance ≤ mk in the past
of n + 1, with probability pk , and with probability 1 − ε∗, Xn+1 is assigned the
value taken by the sign of the majority of the variables in the block [n−mk + 1, n]
(since mk is odd, the majority is always well defined).

Bramson and Kalikow showed that when using ϕPMR, it becomes possible to
choose the sequences (pk) and (mk) such that at least two distinct stationary pro-
cesses satisfy (1). The technique used in the proof consists in first fixing (pk), and
then constructing (mk) inductively: at the kth step, the pointwise ergodic theorem
for Markov chains is used to guarantee the existence of mk+1 as a function of
m1, . . . ,mk and p1, . . . , pk . An aftermath is that the sequence (mk) is lacunary,
mk+1 	 mk , and diverges in an uncontrolled way, but the g-function obtained is
known to exhibit non-uniqueness. An important ingredient of the proof is that the
corresponding g-function is attractive: g(σ) ≤ g(σ ′) when σ ≤ σ ′,1 which im-
plies that the presence of +1s in the past favorizes their presence in the near future
too.

More recently, Berger, Hoffman and Sidoravicius (2003) obtained non-
uniqueness for a different class of (non-attractive) g-functions, whose analysis
was pushed further in Dias and Friedli (2015) (see the remarks below and at the
end of the paper). The proof in Berger et al. (2003) also showed that the criterion
of Johansson and Öberg is optimal, in the following sense: for all ε > 0 there exists
a g-function with vark(g) ∈ �2+ε , for which non-uniqueness holds.

In this note, we give a closer look at the inductive construction of Bramson–
Kalikow for attractive g-functions, and give a set of conditions (see Theorem 5.1)
leading to an algorithm for choosing mk+1 as a function of mk . Our treatment
of the induction step uses a concentration inequality (Samson, 2000) rather than
the ergodic theorem, together with a convergence result from Doeblin and Fortet
(1937). Our method provides a concentration inequality for processes specified
by g-functions with summable variations (Theorem 4.2), which is of independent
interest. Although it does not yet allow to go beyond the realm of lacunary se-
quences, it still provides a more accurate criterium that can be tested to determine
whether a given g-functions exhibits non-uniqueness.

1The partial order on {±1}N is the usual one: σ ≤ σ ′ if and only if σi ≤ σ ′
i for all i ∈N.
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But we will also be interested in the role played by the behavior of ϕ at s = 0.
As a matter of fact, the Bramson–Kalikow mechanism, as presented in Bramson
and Kalikow (1993), is possible due to the discontinuity of ϕPMR at s = 0. This dis-
continuity implies that small local fluctuations can have important consequences
in the remote future.

We believe that the continuity of ϕ is a natural assumption for g to represent
a realistic model, since, if the distance mk is sampled, then the probability of the
event {Xn+1 = +1} should depend smoothly on the magnetization of the interval
[n−mk + 1, n]. We will therefore start the analysis assuming only that ϕ is mono-
tone increasing (which makes g attractive) and satisfies ε∗ ≤ ϕ ≤ 1 − ε∗, as well
as the symmetry condition

ϕ(s) + ϕ(−s) = 1. (4)

In particular, ϕ(0) = 1
2 . The Bramson–Kalikow mechanism will be developed un-

der these sole assumptions, until additional criteria become necessary to guarantee
non-uniqueness. We will give some examples where these criteria are satisfied in
Section 6. It is important to notice that all the examples giving non-uniqueness
will be functions ϕ with a rapid increase near s = 0: either with a discontinuity
(like in the original Bramson–Kalikow example), or with a behavior of the type
ϕ(s) ∼ sν , 0 < ν < 1. This will be in sharp contrast with the simple example we
give in Section 7, of a function ϕ, smooth at the origin, for which uniqueness holds
in a strong sense (for all sequences (pk), (mk)). This seems to indicate that a fast
increase of ϕ near zero is a necessary ingredient for non-unicity.

For the Berger–Hoffman–Sidoravicius model, it was shown in Dias and Friedli
(2015) that a majority rule ϕ satisfying a Lipschitz condition in a neighbourhood
of the origin always leads to uniqueness.

2 Notation

We identify {±1}-valued processes with their distributions, that is, with probability
measures on � := {±1}Z. The elements of � are usually denoted by ω. For each
k, define the coordinate variable Xk(ω) := ωk . When I ⊂ Z, FI := σ(Xk, k ∈ I ).
If |I | < ∞, the elements of FI are called cylinders. We let F := FZ. A probability
measure P on (�,F) is invariant if P ◦ T −1 = P , where T : � → � is the shift,
defined by (T ω)k := ωk+1.

We construct invariant probability measures on (�,F) such that the process
of the coordinate variables, X = (Xk)k∈Z, is specified by a given g-function g.
This is done in the standard way, by taking weak limits. We write � as {±1}Z− ×
{±1}Z+ , where Z− := {. . . ,−2,−1,0}, Z+ := {1,2, . . .}. For each σ ∈ {±1}Z− ,
called boundary condition, we consider the probability measure Pσ := δσ ⊗ pσ

on {±1}Z− × {±1}Z+ , where δσ is a Dirac mass at σ , and pσ is defined, for all
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cylinder [an
1 ] := {X1 = a1, . . . ,Xn = an}, ai ∈ {±1}, by

pσ

([
an

1
]) :=

n∏
k=1

{
g
(
ak−1

1 σ
)(1+ak)/2(1 − g

(
ak−1

1 σ
))(1−ak)/2}

, (5)

where ak−1
1 σ := (ak−1, . . . , a1, σ0, σ−1, . . .), and a0

1σ := σ . Clearly, Pσ is not in-
variant. When σ ≡ +1, and if g is attractive, then Pσ is denoted simply P+, and is
used to construct an invariant measure P̂+, as follows (the same can be done when
σ ≡ −1). Let I ⊂ Z be finite, and consider a cylinder C = {Xi = ai, i ∈ I }. If n is
large enough, then i + n ∈ Z+ for all i ∈ I , and thanks to the attractiveness of g,
the limit

P̂+{C} := lim
n→∞P+

{
T −nC

}
(6)

can be shown to exist. P̂+ then extends uniquely to a stationary probability measure
on (�,F). It can also be shown that under P̂+, X is specified by g.

3 The Doeblin–Fortet estimate

This section and the following are devoted to the description of a concentra-
tion property satisfied by the measures Pσ , P̂σ , whose associated g-function has
summable variations, that is, vark(g) ∈ �1:∑

k≥1

vark(g) < ∞. (7)

The results presented here will be applied to some auxiliary g-functions that appear
in the mechanism of the proof for non-uniqueness, but are of independent interest.

The following result dates back to Doeblin and Fortet’s pioneering paper
(Doeblin and Fortet, 1937). In essence, it says that when g has summable vari-
ation, the limits (6) exist for arbitrary boundary conditions σ , and do not depend
on σ . Moreover, the rate of convergence is known explicitly, and is also indepen-
dent of σ and of the size of the cylinder. The result was stated in this form and
proved by Iosifescu (1992).

Theorem 3.1. Assume g is regular and vark(g) ∈ �1. Then there exists a
unique invariant measure P̂ on (�,F) such that for all cylinder A, P̂ {A} =
limn→∞ Pσ {T −nA}, uniformly in σ . More precisely,∣∣P̂ {A} − Pσ

{
T −nA

}∣∣ ≤ φ(n) ∀n ≥ 1, (8)

where the φ(n) are mixing coefficients given by

φ(n) := inf
1≤m≤n

{
2
(
1 − (1 − ε∗)m

)n/m−1 + 2
∑
k≥m

vark(g)

}
. (9)
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Observe that φ(n) depends on g only through ε∗ and vark(g), and that φ(n) → 0
when n → ∞ since g has summable variation. Theorem 3.1 implies the following
mixing property for P̂ :

Corollary 3.1. For all k ∈ Z and j ≥ 1, if A ∈ F(−∞,k] and B ∈ F[k+j,+∞) are
two cylinders, then ∣∣P̂ {B ∩ A} − P̂ {B}P̂ {A}∣∣ ≤ φ(j)P̂ {A}. (10)

Proof. Namely, assume A is a cylinder of the form A = [ak
i ] ∈ F[i,k], i ≤ k, and

B ∈F[k+j,+∞). By (8) we have, for any σ ∈ {±1}Z− ,

P̂ {B ∩ A} = lim
n→∞Pσ

{
T −nB ∩ T −nA

}
= lim

n→∞
∑

Pσ

{
T −nB ∩ T −nA ∩ [

ωi+n−1
1

]}
,

where the sum is over all configurations ωi+n−1
1 = (ω1, . . . ,ωi+n−1) on [1, i +

n − 1]. Let σ̃ = (ak, . . . , ai,ωi+n−1, . . . ,ω1, σ0, σ−1, . . .). Then by the definition
of Pσ̃ , (8) and the invariance of P̂ ,

Pσ

{
T −nB|T −nA ∩ [

ωi+n−1
1

]} = Pσ̃

{
T kB

}
≤ P̂

{
T kB

}+ φ(j) = P̂ {B} + φ(j).

Therefore, P̂ {B ∩ A} ≤ (P̂ {B} + φ(j))P̂ {A}. �

4 A concentration inequality

Under the same summability hypothesis (7) on g, our aim here is to obtain a con-
centration inequality for the empirical magnetization (X1 + · · · + Xn)/n, valid for
all n, first under P̂ , and then under some Pσ .

The main ingredient is a result of Samson (2000). Let (Y1, Y2, . . . , Yn) be a sam-
ple of bounded random variables 0 ≤ Yi ≤ 1 defined on some common probability
space. The dependencies among the variables Yi are measured through an n × n

triangular matrix � whose elements �ij are defined as follows. For 1 ≤ k ≤ l ≤ n,
let Y l

k := (Yk, . . . , Yl). Let also L(Y n
j |Y i−1

1 = ai−1
1 , Yi = ci) denote the distribution

of Yn
j conditioned on {Y1 = a1, . . . , Yi−1 = ai−1, Yi = ci}. Then, define �ij := 0 if

i > j , �ii := 1, and for i < j ,

(�ij )
2 := sup

ai−1
1 ,bi−1

1 ,ci

∥∥L(Yn
j |Y i−1

1 = ai−1
1 , Yi = ci

)
−L

(
Yn

j |Y i−1
1 = bi−1

1 , Yi = ci

)∥∥
TV.
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Here, ‖ · ‖TV denotes the total variation of signed measures. By Corollary 4 in
Samson (2000), for every function f = f (Y1, . . . , Yn), convex and l-Lipschitz for
some l ≤ 1,

P
{∣∣f − E[f ]∣∣ ≥ t

} ≤ 2 exp
(
− t2

2‖�‖2

)
∀t ≥ 0, (11)

where ‖�‖ is the operator norm of � with respect to the Euclidean metric on R
n.

Equation (11) is useful when ‖�‖ is bounded uniformly in the size of the sample.

Theorem 4.1. Let g be regular with summable variation and let φ(n) be defined
as in (9). Define γ = γ (g) by

γ := 1 + ∑
n≥1

√
φ(n). (12)

If γ < ∞, then for all 0 < δ < 1,

P̂

{∣∣∣∣X1 + · · · + Xn

n
− Ê[X1]

∣∣∣∣ ≥ δ

}
≤ 2 exp

(
− δ2

16γ 2 n

)
∀n ≥ 1. (13)

Proof. Let Yj := Xj+1
2 , that is, Yj ∈ {0,1}. We apply (11) with P := P̂ , with the

1-Lipschitz function f (x1, . . . , xn) := n−1/2(x1 + · · · + xn), and t = δ
2

√
n. The

invariance of P̂ gives Ê[Y1] = Ê[f ]/√n, and so

P̂

{∣∣∣∣X1 + · · · + Xn

n
− Ê[X1]

∣∣∣∣ ≥ δ

}
= P̂

{∣∣∣∣Y1 + · · · + Yn

n
− Ê[Y1]

∣∣∣∣ ≥ δ

2

}
= P̂

{∣∣f − Ê[f ]∣∣ ≥ δ

2

√
n

}

≤ 2 exp
(
− δ2

8‖�‖2 n

)
.

Then, observe that for all i < j (the second inequality follows by (10))

(�ij )
2 ≤ sup

A,A′∈F[1,i]
sup

B∈F[j,n]

∣∣P̂ {B|A} − P̂
{
B|A′}∣∣ ≤ 2φ(j − i). (14)

Now for all x ∈R
n, �x can be written as

�x =

⎛⎜⎜⎜⎜⎜⎝
x1
x2
...

xn−1
xn

⎞⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎝
�12x2
�23x3

...

�n−1,nxn

0

⎞⎟⎟⎟⎟⎟⎠+ · · · +

⎛⎜⎜⎜⎜⎜⎝
�1,n−1xn−1

�2nxn
...

0
0

⎞⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎝
�1nxn

0
...

0
0

⎞⎟⎟⎟⎟⎟⎠ .

Together with (14), this implies that

‖�x‖ ≤ ‖x‖ +
√

2φ(1)‖x‖ + · · · +
√

2φ(n − 1)‖x‖ ≤ √
2γ ‖x‖,

which gives ‖�‖ ≤ √
2γ , and proves (13). �
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As a corollary of Theorems 3.1 and 4.1, we obtain a concentration inequality
for Pσ , uniform in σ .

Theorem 4.2. Let g be regular with vark(g) ∈ �1, and assume γ = γ (g) < ∞. Let
0 < δ < 1. Then there exists a numerical constant c > 0 such that for all n ≥ 1 and
all integer l ≤ δ

4n, uniformly in σ ,

Pσ

{∣∣∣∣X1 + · · · + Xn

n
− Ê[X1]

∣∣∣∣ ≥ δ

}
≤ 2 exp

(
−c

δ2

γ 2 n

)
+ φ(l). (15)

Proof. If l ≥ 1 is such that l
n

≤ δ
4 , then

Pσ

{∣∣∣∣X1 + · · · + Xn

n
− Ê[X1]

∣∣∣∣ ≥ δ

}
≤ Pσ

{∣∣∣∣Xl+1 + · · · + Xn

n − l
− Ê[X1]

∣∣∣∣ ≥ δ

2

}
= Pσ

{
T −l

{∣∣∣∣X1 + · · · + Xn−l

n − l
− Ê[X1]

∣∣∣∣ ≥ δ

2

}}
≤ P̂

{∣∣∣∣X1 + · · · + Xn−l

n − l
− Ê[X1]

∣∣∣∣ ≥ δ

2

}
+ φ(l),

and using (13), (15) holds with c := 3
256 . �

5 The Bramson–Kalikow mechanism

In this section, we follow Bramson and Kalikow, and give two sufficient conditions
on a g-function of the form (2) that guarantee the existence of at least two distinct
processes specified by g. We will first express these conditions in a general form,
and in Section 6 consider examples.

The reader familiar with Bramson and Kalikow (1993) can directly check how
estimates (13) and (14) in Bramson and Kalikow (1993), obtained with the ergodic
theorem for Markov chains, will be replaced by the more explicit concentration
inequality (15).

Non-uniqueness is obtained by showing that

P̂+{X0 = +1} >
1

2
> P̂−{X0 = +1}. (16)

To obtain (16), we study the magnetization inside large blocks in the past. For
all i ∈ Z, k ≥ 1, define Bk(i) := [i − mk, i) ∩ Z, Bk(i) := (i, i + mk] ∩ Z, which
both contain mk points of Z. For the first inequality in (16), we will show that all
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blocks are positively magnetized with high P+-probability. For a given 0 < δk < 1,
say that Bk(i) is good if

1

mk

∑
j∈Bk(i)

Xj ≥ δk, (17)

and bad otherwise; the same can be defined for the block Bk(i). The point will be
to find a decreasing sequence δk ↘ 0, such that for all i ∈ Z+,

P+
{
Bk(i) good

} ≥ 1 − 3−kδk ∀k ≥ 1. (18)

Namely, if we assume for a while that (18) holds, one can fix k ≥ 1 and compute,
for any large i,

E+
[

1

mk

∑
j∈Bk(i)

Xj

]
≥ δkP+

{
Bk(i) good

}− P+
{
Bk(i) bad

} ≥ 3−1δk.

Therefore,

1

mk

∑
j∈Bk(i)

P+{Xj = +1} = 1

2
+ 1

2
E+

[
1

mk

∑
j∈Bk(i)

Xi

]
≥ 1

2

(
1 + 3−1δk

)
.

By taking i → ∞, and using (6), we get

P̂+{X0 = +1} = lim
j→∞P+{Xj = +1} ≥ 1

2

(
1 + 3−1δk

)
>

1

2
.

This lower bound holds for all k, and it is of course optimal by taking the smallest
possible k, which is k = 1.

The two following sections are devoted to finding conditions under which (18)
holds.

5.1 The induction step

Equation (18) is shown by induction on i ≥ 1. If i = 1, then (18) holds (by the
definition of P+). Assume then that (18) has been proved for all i with i < i0. We
fix some i < i0, some k ≥ 1, and study P+{Bk(i) good} = 1 − P+{Bk(i) bad}.
By the attractiveness of the model, the presence of good blocks in the past of
i favors a positive magnetization in the near future of i. We thus use the in-
duction hypothesis and condition {Bk(i) bad} on an event in the past that fa-
vorizes the positivity of the magnetization in Bk(i), and that by the induction
step has a sufficiently large probability. Let therefore (our notation differs slightly
from Bramson and Kalikow, 1993)

Gk(i) := ⋂
j>k

{
Bj(i) good

}
.

Then,

P+
{
Bk(i) bad

} ≤ P+
{
Bk(i) bad|Gk(i)

}+ P+
{
Gk(i)

c}. (19)
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Figure 1 The usefulness of lacunarity: if Bk+1(i) is positively magnetized and mk � mk+1, then
Bk+1(i′) is also positively magnetized.

By the induction hypothesis, and since δk is decreasing,

P+
{
Gk(i)

c} ≤ ∑
j>k

P+
{
Bj(i) bad

} ≤ ∑
j>k

3−j δj ≤ 1

2
3−kδk. (20)

The point is then to show that

P+
{
Bk(i) bad|Gk(i)

} ≤ 1

2
3−kδk. (21)

One way of obtaining (21) is to assume that the sequence mk is lacunary.
Namely, observe that the blocks that appear in the conditioning event Gk(i) are
all of size at least mk+1 (see Figure 1). Therefore, if mk+1 is much larger than mk ,
then the goodness of each block Bj(i), j > k, implies that for any i′ ∈ Bk(i), the
magnetization inside Bj(i

′) is always close to the magnetization of Bj(i), which
is strictly positive. This allows to extract from g a contribution which is constant
over Bk(i), which we call magnetic field, and allows to reduce the study of the pro-
cess on Bk(i) to that of a simpler effective model. The point is then to see under
which conditions this field is positive, and to quantify the way in which it creates
a positive magnetization inside Bk(i). This is done in the following section.

5.2 The reduction

We define the g-function at a point i ∈ Z by

gi := g(Xi−1,Xi−2, . . .) = ∑
n≥1

pnϕ
(
bn(i)

)
,

where bn(i) := 1
mn

∑
j∈Bn(i) Xj is the magnetization of Bn(i).

Lemma 5.1. Let i ′ ∈ Bk(i). Then on the event Gk(i),

gi′ ≥ q
(k−1)
i′ + hk, (22)

where

q
(k−1)
i′ :=

k−1∑
n=1

pnϕ
(
bn

(
i ′
))+ 1

2

∑
n≥k

pn, (23)
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and where hk is a constant magnetic field defined by

hk := ∑
n>k

pn

{
ϕ(δn − 2mk/mn) − 1

2

}
−

(
1

2
− ε∗

)
pk. (24)

Proof. Write gi′ = ∑k−1
n=1 pnϕ(bn(i

′))+pkϕ(bk(i
′))+∑

n>k pnϕ(bn(i
′)), and ob-

serve that on Gk(i) we have, when n > k,

bn

(
i ′
) ≥ bn(i) − 2|i ′ − i|

mn

≥ δn − 2|i ′ − i|
mn

≥ δn − 2mk

mn

.

When n = k we use bk(i
′) ≥ −1. The monotonicity of ϕ thus implies (22). �

We have used the notation q(k−1) to indicate that the dependence of this g-
function on the past is only a distance mk−1 back:

varj
(
q(k−1)) = 0 if j > mk−1. (25)

By Theorem 3.1 and the symmetry (4), any process specified by q(k−1) has zero
magnetization. We will of course aim at using the lower bound (22) on gi′ when
hk > 0.

Since the boundary condition is fixed, the event Gk(i) can be identified with a
set of configurations on the interval [1, i], which we denote by σ i

1 = (σ1, . . . , σi).
Therefore,

P+
{
Bk(i) bad|Gk(i)

} ≤ sup
σ i

1∈Gk(i)

P+
{
Bk(i) bad|σ i

1
}
.

By Lemma 5.1, and since {Bk(i) bad} is a decreasing event, a standard coupling
gives

P+
{
Bk(i) bad|σ i

1
} ≤ P

(k)

σ i
1+

{
Bk(0) bad

}
, (26)

where P
(k)

σ i
1+ is constructed as in (5) with the g-function q(k−1) + hk and the

boundary condition σ i
1+ := (σi, . . . , σ1,+,+, . . .) ∈ {±1}N. Since q(k−1) +hk has

summable variation, we can consider the associated invariant measure P̂ (k) con-
structed in Theorem 3.1. Let Ê(k) denote the expectation under P̂ (k). If hk ≥ 0,
then P̂ (k) can further be coupled to the measure specified by q(k−1), yielding
Ê(k)[X1] ≥ hk . In order for Bk(i) to be good, the magnetic field must be larger
than δk . We thus assume that

hk ≥ 2δk, (27)

and get

P
(k)

σ i
1+

{
Bk(0) bad

} = P
(k)

σ i
1+

{
X1 + · · · + Xmk

mk

< δk

}
≤ P

(k)

σ i
1+

{∣∣∣∣X1 + · · · + Xmk

mk

− Ê(k)[X1]
∣∣∣∣ ≥ δk

}
. (28)



A note on the Bramson–Kalikow process 437

Let φk−1(n), n ≥ 1, denote the mixing coefficients (9) associated to q(k−1) + hk ,
and γk−1 denote the series in (12), with φk−1 in place of φ:

γk−1 := 1 + ∑
n≥1

√
φk−1(n). (29)

Using Theorem 4.2 for (28), with l := � δk

4 mk�, we get

P+
{
Bk(i) bad|Gk(i)

} ≤ 2 exp
(
−c

δ2
k

γ 2
k−1

mk

)
+ φk−1

(⌊
δk

4
mk

⌋)
. (30)

One thus sees that (21) holds if

2 exp
(
−c

δ2
k

γ 2
k−1

mk

)
+ φk−1

(⌊
δk

4
mk

⌋)
≤ 1

2
3−kδk, (31)

which is clearly satisfied when mk is large enough.
So far, we have proved the following theorem.

Theorem 5.1. Let g be of the form (2), where ϕ is non-decreasing and satisfies
ϕ(s) + ϕ(−s) = 1. Let (δk) be a decreasing sequence δk > 0. If (pk), (mk), ϕ and
(δk) satisfy (27) and (31) for large enough k, then

P̂+{X0 = +1} >
1

2
> P̂−{X0 = +1}.

In particular, g specifies at least two distinct stationary processes.

A look at the proof above shows that a slightly more general statement holds.
Call a boundary condition σ of type + (resp. −) if

lim inf
n→∞

1

n

n∑
i=1

σi > 0,

(
resp. lim sup

n→∞
1

n

n∑
i=1

σi < 0

)
.

For example, the boundary condition defined by σi := −1 if 1 ≤ i ≤ L, σi := +1
if i > L, is of type +. It can be shown that if σ+ is of type + and σ− is of type −,
then under the same hypothesis as in Theorem 5.1,

lim inf
n→∞ Pσ+{Xn = +1} >

1

2
> lim sup

n→∞
Pσ−{Xn = +1}. (32)

6 Examples

Since the conditions (27) and (31) combine the sequences (pn), (mn), (δn) and the
function ϕ in a rather intricate way, the search for concrete examples is a delicate
task.
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To start, consider (27). In order for hk (defined in (24)) to be non-negative, we
first require that ϕ(δn − 2mk/mn) ≥ 1

2 . This can be done by assuming that

mk−1

mk

≤ δk

4
∀k ≥ 2. (33)

When this holds, then

hk ≥ ∑
n>k

pn

{
ϕ(δn/2) − 1

2

}
−

(
1

2
− ε∗

)
pk. (34)

Below, we will first choose (pn) and ϕ, and find a proper sequence (δn) that satis-
fies (27). To complete the construction of the g-function, (mk) can then always be
taken so as to satisfy (31) and (33). We will not bother choosing (mk) in an opti-
mal manner, that is, taking the smallest mk realizing simultaneously (31) and (33).
This would mean searching for non-uniqueness with the least lacunary sequence,
and with the fastest possible decaying variation. Unfortunately, as a tedious but
straightforward computation shows, in any of the examples below, mk always
grows at least as fast as k!, and the variation obtained never belongs to any �p ,
even for p large.

6.1 The original Bramson–Kalikow example

Consider the pure majority rule ϕPMR defined in (3) and represented on Figure 2,
and assume that mk is odd for all k. Then ϕPMR(δn/2) − 1

2 = 1
2 − ε∗. Assume

further that (pn) is such that
∑

n>k pn ≥ 2pk for all large enough k. Bramson
and Kalikow mention pn = crn with r ∈ (2

3 ,1), c = (1 − r)/r , but any sequence2

pn ∼ 1
n1+ε with 0 < ε < 1 also satisfies this condition. Then, (34) becomes hk ≥

(1
2 − ε∗)pk . Therefore, δk can simply be chosen as 2δk ≡ (1

2 − ε∗)pk , and (27)
holds.

Figure 2 The pure majority rule used in Bramson and Kalikow (1993).

2an ∼ bn means there exists two positive constants c−, c+ such that c− ≤ an/bn ≤ c+ for all large
enough n.
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6.2 Some g-functions with ϕ continuous at s = 0

Assume ϕ is continuous at s = 0, and that it satisfies, for small s,∣∣∣∣ϕ(s) − 1

2

∣∣∣∣ ≥ csν, (35)

for some constant c > 0 and some 0 < ν < 1 (it is easy to see that if ν ≥ 1, then
(27) is never satisfied). Then for large k, (34) becomes

hk ≥ c/2ν
∑
n>k

pnδ
ν
n −

(
1

2
− ε∗

)
pk. (36)

Take

pn ∼ 1

n1+ε
with 0 < ε < 1.

Then it is easy to verify that by taking

δn := 1

nτ
with 0 < τ < 1/ν,

the lower bound in (36) is larger than 2δk for large k, thus fulfilling (27). Taking

pn ∼ 1

n(logn)1+ε
with 0 < ε < 1,

with the same δn, also ensures that (27) is satisfied for large k.

7 On the role played by ϕ′(0)

A common feature of the examples above is that in each of them, ϕ increases fast
near s = 0. Loosely speaking: ϕ′(0) = ∞. A natural question is to know if this
is a necessary ingredient for non-uniqueness. The following example illustrates
a case where the finiteness of ϕ′(0) leads to uniqueness among a large class of
g-functions (of the form (2)).

Let 0 < ε∗ < 1/2 and set (see Figure 3)

ϕ∗(s) := 1

2
+

(
1

2
− ε∗

)
s. (37)

Theorem 7.1. Let ϕ∗ be as above, choose any sequences (pn), (mn), and denote
the associated g-function by g∗. Then, g∗ specifies a unique3 stationary process.

3Uniqueness should be here understood in the sense that all processes specified by g∗ are identi-
cally distributed.
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Figure 3 On the left, ϕ∗, which specifies a unique process regardless of the sequences (pk)

and (mk). On the right, an arbitrarily small perturbation of ϕ∗ for which non-uniqueness holds.

Proof. Let X = (Xn)n∈Z be any stationary process specified by g∗. Let

m := E[X0]. (38)

We have E[X0] = 2P {X0 = +1} − 1, and

P {X0 = +1} =
∫

P {X0 = +1|X−1,X−2, . . .}dP = E[g∗].

Due to the form of ϕ∗ and to the stationarity of X,

E[g∗] = ∑
n≥1

pnE

[
ϕ∗

(
1

mn

mn∑
i=1

X−i

)]
= ϕ∗

(
E[X0]) = ϕ∗(m).

Therefore, m is solution of the fixed-point equation

1 + m

2
= ϕ∗(m), (39)

whose unique solution, since 0 < ε∗ < 1
2 , is m = 0. Considering in particular the

processes X+ and X− prepared with the boundary condition +, respectively −
(i.e., the coordinate processes associated to P̂+, resp. P̂−), the above shows that
E[X+

0 ] = E[X−
0 ]. As shown by Hulse (1991), this implies that, due to the attrac-

tiveness of g∗, X+ and X− have the same distribution, and that any stationary
process specified by g∗ has the same distribution as X+ (and X−). �

Since the above argument does not depend on the sequences (pn) and (mn), one
can construct examples where uniqueness holds with slowly decaying variations.4

Namely, observe first that with ϕ∗ defined as in (37),

vark(g∗) = (1 − 2ε∗)
∑

n>n(k)

pn

(
1 − k

mn

)
, (40)

4Similar features had already been observed by Hulse (1991).
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where n(k) is the largest integer n for which mn ≤ k. We consider some particular
cases. In the non-lacunary case (mn := n), with pn ∼ 1

n1+ε , (40) gives

vark(g∗) ∼ 1

kε
,

that is, vark(g∗) ∈ �p if and only if p > 1/ε. In particular, if ε < 1/2, then
vark(g∗) /∈ �2, giving uniqueness in a case not covered by the Johansson–Öberg
criterion. On the other hand, if mn grows faster than n, for example when it satis-
fies the lacunarity condition

lim inf
n→∞

mn

n
> 1, (41)

then for large k, since n(k) ≤ k,

vark(g∗) ≥ c1
∑
n>k

pn

for some c1 > 0. If one considers for example, pn ∼ n−1(logn)−1−ε , then for
large k,

vark(g∗) ≥ c1

2ε(log k)ε
.

This gives an example of an attractive g-function whose variation of order k is not
in any �p , but which specifies a unique stationary process.

These examples of uniqueness are in sharp contrast with those of Section 6.
In particular, we see that it is possible to choose a pair of sequences (pn), (mn)

(typically very lacunary, satisfying the requirements of Section 6.2) for which us-
ing ϕ∗ leads to uniqueness, but in which an arbitrarily small perturbation of ϕ∗ (see
the right of Figure 3) with ϕ′(0) = ∞, leads to non-uniqueness.

This discussion raises the question of knowing if existence and finiteness of
ϕ′(0) always implies uniqueness, or whether the existence of non-trivial solutions
to fixed-point equations of the form (39) (as happens in Bramson and Kalikow’s
original example, or when ϕ′(0) = +∞), combined with well chosen sequences
(pn) and (mn), can lead to non-uniqueness. This is work in progress.

In Dias and Friedli (2015), we gave a closer look at the model of Berger–
Hoffman–Sidoravicius, which also involves a majority rule ϕ. Besides providing
a deeper analysis of the model, and a complete study of the uniqueness and non-
uniqueness regimes, we also showed that in general, a local Lipschitz condition on
ϕ leads to uniqueness.
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