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Domains of operator semi-attraction of probability
measures on Banach spaces

Ho Dang Phuc
Institute of Mathematics

Abstract. The paper deals with operator (semi-) stability and domains of
operator (semi-) attraction of probability measures on infinite dimensional
Banach spaces: characterizations of operator (semi-) stability and of domains
of (normal) operator (semi-) attraction are given; it is shown that the set of
operator stable probability measures is a closed subset under weak topology;
the domain of operator semi-attraction of a given stable probability measure
coincides with its domain of operator attraction; and a probability measure is
(semi-) stable iff its finite-dimensional projections are (semi-) stable.

1 Introduction and notation

Central limit theorem and Gaussian distributions play a crucial role in classical
statistics. The development of applied statistics in various sciences implied the
creation of new tools based on the broader class of stable probability measures
containing the set of all Gaussian distributions (see Hougaard (1986); Kozubowski
and Rachev (1994); Kuruoglu et al. (1998); McCulloch (1996); Nikias and Shao
(1995); Palmer et al. (2008)). Further, the larger family of semi-stable prob-
ability measures can be also considered. In the last century, the concepts of
semistability and domain of semi-attraction of probability measures were stud-
ied intensively on real line, on finite dimensional spaces, as well as on ab-
stract spaces. Recently, the topic still attracts attention of many authors (Becker-
Kern (2002, 2003, 2004, 2007); Bouzar and Jayakumar (2008); Chuprunov and
Terekhova (2009); Csörgö (2007); Csörgö and Megyesi (2002); Divanji (2004);
Fazekas and Chuprunov (2007); Fedosenko (2005); Hazod and Shah (2001); Ho
Dang (2009); Kevei (2009); Kevei and Csörgö (2009); Maejima and Riddhi (2006);
Maejima and Riddhi (2007); Meerschaert and Scheffler (2002); Rajput and Rama-
Murthy (2004); Sato and Watanabe (2005); Shah (2007)). That motivates our study
on (semi-) stability and domain of (semi-) attraction of probability measures on
Banach spaces.

Section 2 of the paper studies limit behaviour of operator semistability of mea-
sures. It is found that, if (μn) is a sequence of operator semistable measures con-
vergent weakly to a probability measure μ, then μ is also operator semistable. As a
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consequence, given a full measure μ, the set H(μ) of all real numbers r , such that
μ is r-operator semistable, is a closed multiplicative subgroup of R+. Besides, on
Banach spaces with countable Schauder basis, a measure is (semi-) stable if and
only if its finite-dimensional projections are (semi-) stable.

Section 3 takes up the problem of domains of operator-semi-attraction, attempt-
ing to generalize some results given by Ho Dang (1987, 2009). Specifically, it
shows that the domain of operator attraction coincides with the domain of operator
r-semi-attraction for every r ∈ (0,1).

Section 4 is devoted to characterizing the normal domains of semi-attraction
and the normal domains of attraction. Some results of Jurek (1980) have been
generalized in this section.

Throughout the paper, the following notation will be used: E denotes an infi-
nite dimensional separable real Banach space, E′—its dual space, 〈·, ·〉—the dual
pairing between E and E′, ∂U—the boundary and Uc—the complement of a set
U, Er = {x ∈ E :‖x‖ ≤ r} (r > 0). Further, B(E) will denote the algebra of contin-
uous linear operators on E with norm topology, Aut(E)—the sub-algebra of B(E)

containing all invertible bounded linear operators, I and �—the unit and zero op-
erators, respectively,

tB =
∞∑

k=0

ln tkBk/k!, t > 0,B ∈ B(E).

By a measure on E, we mean a nonnegative measure defined on σ -algebra of Borel
subsets of E. Given a σ -finite measure μ on E, C(μ) = {r > 0 :μ(∂Er ) = 0}, it is
observed that C(μ)c ∩ R+ is countable. For a linear continuous map B from E to
another real Banach space E1, the measure Bμ is defined by Bμ(F) = μ(B−1F)

for every Borel subset F of E1, μ̄ = −Iμ and |μ|2 = μ̄∗μ is the symmetrization of
μ, where ∗ denotes the convolution of measures. In the case when B = cI, c > 0,
we write Tcμ instead of cIμ. A Borel subset G of E is called a μ-continuity set if
μ(∂G) = 0, μ|G is the measure defined by μ|G(F) = μ(G ∩ F). A measure on E
is said to be full if its support is not contained in any proper hyperplane of E. If
(μn) converges weakly to μ we write μn →w μ.

Let P(E) denote the class of all probability measures (p.m.’s) on E. A sequence
(μn) of p.m.’s is called shift convergent if there exists a sequence (xn) ⊂ E such
that (μn) ∗ δ(xn) is weakly convergent, where δ(x) is the p.m. concentrated at the
point x ∈ E. Similarly, (μn) is said to be relatively shift compact if (μn ∗ δ(xn))

is relatively weak compact. It is well known that P(E) with the topology of weak
convergent is a separable metric space (see Parthasarathy (1967), Theorem II.6.2).
Moreover, one can find in this space a shift-invariant metric ρ (e.g. the Lévy–
Prokhorov metric) such that

ρ
(
ν ∗ δ(x),μ ∗ δ(x)

) = ρ(ν,μ)

for all ν,μ ∈ P(E) and x ∈ E.
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A p.m. μ is said to be infinitely divisible (inf. div.) whenever for each positive
integer n there exists a p.m. μn such that μ = μn

n, where the power is taken in
the sense of convolution. Then the power μc is well defined for every c ∈ R+
(see Tortrat (1967) for example). For any bounded measure M on E, the Poisson
measure Pois(M) is defined as

Pois(M) = exp
(−M(E)

) ∞∑
k=0

M∗k/k!,

where M∗0 = δ(0). Let M be an arbitrary measure on E vanishing at 0. Then M
is called a Lévy measure if there exists a representation M = sup Mn, where Mn

are bounded and the sequence (Pois(Mn)) of associated Poisson measures is rel-
atively shift compact. Then each cluster point of the relatively compact sequence
(Pois(Mn)∗δ(xn)), xn ∈ E, is called a generalized Poisson measure and is denoted
by e(M). According to Tortrat (1967), e(M) is uniquely determined up to trans-
lation, that is, for two cluster points, say μ1 and μ2, of (Pois(Mn) ∗ δ(xn)) and
(Pois(Mn) ∗ δ(yn)), respectively, we have μ1 = μ2 ∗ δ(x) for certain x ∈ E. Let
L(E) denote the set of all Lévy measures on E. Tortrat (1967) (see also Dettweiler
(1978)) pointed out that each inf. div. p.m. μ on E has an unique representation
μ = γ ∗ e(M), where γ is a symmetric Gaussian measure on E and M ∈ L(E).

2 Semistability in limit

A probability measure μ is called an operator r-semistable measure, r ∈ R+, if
it is inf. div. and there are an operator B ∈ B(E) and an element x ∈ E such that
μr = Bμ ∗ δ(x). More precisely, we say that μ is (B, r)-semistable. Further, if
B is of the form cI, c ∈ R, we can omit the “operator” and say that μ is (c, r)-
semistable instead of (cI, r)-semistable. In the latter case, it is well known that,
for a non degenerated measure μ, the unique solution p of the equation |c|p = r

lies in the interval (0,2], p = 2 if and only if μ is a Gaussian measure, and μ
has no Gaussian component if p 
= 2. The number p is called the exponent of the
measure μ.

In addition, we say that μ is B-stable (or operator stable) if it is inf. div. and for
all t ∈ (0,1] there exists an element yt ∈ E such that

μt = tBμ ∗ δ(yt ).

Moreover, if the operator B in the above formula is of the form cI then μ is said to
be a stable measure.

Let H(μ) be the set of all positive numbers r such that μ is operator (B, r)-
semistable with B ∈ Aut(E). In the case of finite dimensional spaces, Luczak
(1984) pointed out that H(μ) is a closed multiplicative subgroup of R+, that is,
H(μ) = R+ or H(μ) is a discrete group generated by some element s ∈ (0,1).
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Using the terminology given in Ho Dang (2009), if μ is (B, r)-semistable and
H(μ) is the discrete multiplicative subgroup generated by s then we say that μ is
operator (s)-semistable, or (B, (s))-semistable. Below we show that for the case of
full measure μ on Banach spaces, H(μ) is also a closed multiplicative subgroup
of R+. At first, we formulate auxiliary lemmas:

Lemma 1. Let μ, μn, n = 1,2, . . . be inf. div. measures and t , tn ∈ [0,∞). Sup-
pose that μn →w μ and tn → t , then there exists a sequence (zn) ⊂ E such that

μtn
n ∗ δ(zn) →w μt .

Proof. Let N be a natural number such that t ≤ N and tn ≤ N for all n, then
μN

n →w μN . Plus, because μ
tn
n is a factor of μN

n , Theorem III.5.1 of Parthasarathy
(1967) implies the relative shift compactness of (μ

tn
n ), that is, there is a sequence

(xn) ⊂ E such that the sequence (μ
tn
n ∗ δ(xn)) is relatively weak compact. Mean-

while, it is clear that for every y′ ∈ E′ we have(
y′μn

)tn →w

(
y′μ

)t
.

Therefore, if ν is any cluster point of the sequence (μ
tn
n ∗ δ(xn)), meaning μ

tnk
nk ∗

δ(xnk
) →w ν for some subsequence (nk) of natural numbers, then the Convergence

of Type theorem implies y′ν = (y′μ)t ∗ δ(xy′) for some real xy′ .
Hence, with λ∧ denoted for the characteristic functional of a p.m. λ, we see that

[y′(μtnk
nk ∗ δ(xnk

))]∧(u) → [y′ν]∧(u) for any real number u, and
([

y′μnk

]∧
(u)

)tnk .eiu〈y′;xnk
〉 → ([

y′μ
]∧

(u)
)t

.e
iuxy′ ,

that yields u〈y′;xnk
〉 → uxy′ . Consequently, (xnk

) as a sequence of elements in
the second dual E′′ is ∗-weakly convergent to some x′′

0 ∈ E′′. With μ,μnk
and ν

treated as p.m.’s on E′′ and passing to the limit, we obtain

ν∧(
y′) = [

μ∧(
y′)]t .ei〈y′;x′′

0〉 = [
μt ∗ δ

(
x′′

0
)]∧(

y′),
which means ν = μt ∗ δ(x′′

0). However, both ν and μt are concentrated on E, x′′
0

must be an element of E (renamed as x0), and ν = μt ∗ δ(x0).
Let L = LIM(μ

tn
n ∗ δ(xn)) be the set of all cluster points of the sequence (μ

tn
n ∗

δ(xn)). Then, since (μ
tn
n ∗ δ(xn)) is a relatively weak compact sequence, L is a

compact subset of P(E) and L = {ν = μt ∗ δ(x) : x ∈ D} with compact subset
D ⊂ E.

Let d denote the distance between a point and a subset in P(E), i.e. d(λ,L) =
infν∈L ρ(λ, ν) for any λ ∈ P(E), where ρ is the Lévy–Prokhorov metric in P(E).
Then d(μ

tn
n ∗ δ(xn),L) → 0. In such case, for every n we can choose an element

xo
n ∈ D such that

ρ
(
μtn

n ∗ δ(xn),μ
t ∗ δ

(
xo
n

))
< d

(
μtn

n ∗ δ(xn),L
) + 1/n.

In consequence, ρ(μ
tn
n ∗ δ(xn − xo

n),μ
t ) → 0, which means μ

tn
n ∗ δ(zn) →w μt

with zn = xn − xo
n, the lemma is proved. �
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Lemma 2. Let μ 
= δ(0) be an inf. div. p.m. and Bn ∈ B(E), xn ∈ E, tn ∈ R+,

μtn = Bnμ ∗ δ(xn),

for n = 1,2, . . . .

(a) If sup‖Bn‖ < ∞ and tn → t , t > 0, then (Bn), (xn) are compact sequences
and μ is an operator t-semistable measure.

(b) If Bn → B ∈ B(E), xn → x ∈ E and c1 ≤ tn ≤ c2, 0 < c1 < c2 < ∞, n =
1,2, . . . , then there exists a number t ∈ [c1, c2] such that tn → t and μ is (B, t)-
semistable.

Proof. (a) Let tn → t , from Theorem 5 in Chung Dong et al. (1982),

Bnμ ∗ δ(xn) = μtn →w μt .

Hence, because sup‖Bn‖ < ∞, Theorem 4.11 of Linde and Siegel (1990) implies
the relative compactness (in the sense of point wise convergence) of the sequences
(Bn) and (xn). Given Bn′ → B ∈ B(E), xn′ → x ∈ E for some subsequence (n′) of
natural numbers, taking into account Theorem 3.1 of Linde and Siegel (1990) we
get

Bn′μ ∗ δ(xn′) →w Bμ ∗ δ(x),

and therefore μt = Bμ ∗ δ(x), i.e. μ is (B, t)-semistable.
(b) Let Bn → B ∈ B(E) and xn → x ∈ E, then sup‖Bn‖ < ∞. With the same

argument as the above, we see that

μtn = Bnμ ∗ δ(xn) →w Bμ ∗ δ(x). (2.1)

On the other hand, (tn) is relatively compact and if t , s are two cluster points of
this sequence then t 
= 0 
= s. Therefore, μt 
= δ(0) 
= μs . Meanwhile, in view of
Theorem 3.1 in Linde and Siegel (1990), Lemma 1 and (2.1), there exist elements
zt , zs ∈ E such that

μt = Bμ ∗ δ(x + zt );
μs = Bμ ∗ δ(x + zs).

Hence t = s by virtue of Proposition I.4.7 in Vakhaniya et al. (1985), the proof is
complete. �

Proposition 1. Let μ be a full inf. div. p.m. on a Banach space. Then H(μ) a
closed multiplicative subgroup of R+.

Proof. It is clear that if μ is full (B, t)-semistable and B is invertible then μ is
(B−1, t−1)-semistable. Besides, it is quite trivial that H(μ) is a multiplicative sub-
group of R+.
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Let now (tn) ⊂ H(μ) and tn → t ∈ R+. Then for n = 1,2, . . . we have

μtn = Bnμ ∗ δ(xn) (2.2)

with invertible Bn ∈ Aut(E) and xn ∈ E. We claim that

sup‖Bn‖ < ∞. (2.3)

Indeed, if ‖Bn′‖ → ∞ for some subsequence (n′) of natural numbers, then

‖Bn′‖−1Iμtn′ = ‖Bn′‖−1Bn′μ ∗ δ(xn′).

It is clear that the left-hand side of the above equation tends to δ(0). On the other
hand, because ‖‖Bn′‖−1Bn′‖ = 1, Theorem 4.11 of Linde and Siegel (1990) im-
plies the existence of cluster points x0 ∈ E of the sequence (xn′) and A ∈ B(E)

of the sequence (‖Bn′‖−1Bn′), ‖A‖ = 1, such that Aμ ∗ δ(x0) is a cluster point of
the right hand side of the equation. Consequently, δ(0) = Aμ∗ δ(x0), which yields
δ(−x0) = Aμ, meaning μ is supported on the proper hyperplane A−1({−x0}), as
A 
= �. That indicates μ is not a full measure and it contradicts the initial assump-
tion. Thus, (2.3) is valid.

Consequently, Lemma 2 together with (2.2) and (2.3) confirms that μ is (B, t)-
semistable with some cluster point B ∈ B(E) of the sequence (Bn). To complete
the proof we need only to point out that B is convertible, that implies t ∈ H(μ).

Indeed, let (nk) be a subsequence of natural numbers such that Bnk
→ B. Then

from (2.2), we have

μ1/tnk = B−1
nk

μ ∗ δ
(−(1/tnk

)B−1
nk

xnk

)
. (2.4)

With the same argument as the above, using (2.4) instead of (2.2) and (B−1
nk

) in
place of (Bn), we conclude that sup‖B−1

nk
‖ < ∞ and there exists a cluster point

B0 ∈ B(E) of the sequence (B−1
nk

).
Let (nk′) be another subsequence of the sequence (nk) such that B−1

nk′ → B0.

Then Bnk′ → B and Bnk′ B−1
nk′ = I, B−1

nk′ Bnk′ = I, for every nk′ ∈ (nk′). Therefore,

BB0 = I and B0B = I, or B0 = B−1 and B is invertible. The proposition is just
proved. �

From the proposition, we can see that the concept of (B, (s))-semistability is
well defined for full measures on infinite dimensional Banach spaces. Namely, a
full measure μ is said to be (B, (s))-semistable with an invertible operator B if it
is operator semistable and H(μ) is the discrete multiplicative subgroup generated
by s.

Lemma 3. Given μ, μn ∈ P(E), Bn ∈ B(E), 0 < c1 < tn < c2 < ∞, suppose that
μn are (Bn, tn)-semistable, sup‖Bn‖ < ∞ with n = 1,2, . . . and μn →w μ. Then
there exist a number t ∈ [c1, c2] and an operator B ∈ B(E) such that μ is (B, t)-
semistable.
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Proof. From the assumption, we get μtn = Bnμn ∗ δ(xn) for certain xn ∈ E,
n = 1,2, . . . . On the other hand, by virtue of Lemma 1, we can find a subse-
quence (n′) of natural numbers, (zn) ⊂ E and a number t ∈ [c1, c2] such that
μ

tn′
n′ ∗ δ(zn′) →w μt . Therefore, Bn′μn′ ∗ δ(xn′ + zn′) →w μt . Hence, by virtue of

Theorem 4.11 in Linde and Siegel (1990), there exists an operator B ∈ B(E) such
that μ is (B, t)-semistable. �

It is well known that a p.m. on a Banach space is Gaussian if and only if all
its one-dimensional projections are Gaussian. A similar feature of (semi-) stability
can be described as follows.

Proposition 2. Let E be a real Banach space with countable Schauder basis and
μ be an inf. div. p.m. on E. Then

(a) For given t ∈ R+, μ is t-semistable if and only if all its projections on finite-
dimensional subspace of E is t-semistable,

(b) μ is stable if and only if all its projections on finite-dimensional subspace
of E is stable.

Proof. Let � be any linear projector from E into a given subspace. Then �(λ1 ∗
λ2) = �λ1 ∗ �λ2 for λ1, λ2 ∈ P(E). Therefore, �μ is inf. div. and (�μ)s =
�(μs) for each positive s ∈ R+ by virtue of the infinite divisibility of μ. Suppose
μ is t-semistable for given t ∈ R+, i.e. μt = Tcμ ∗ δ(x) for some real c. Then

(�μ)t = �
(
μt ) = �

(
Tcμ ∗ δ(x)

) = �(cI)μ ∗ δ(�x) = Tc(�μ) ∗ δ(�x),

that means the t-semistability of (�μ) and the “only if” part of (a) is shown.
To prove the sufficient condition of (a), let {e1, e2, . . .} be a countable Schauder

basis of E. For each natural n, by En we denote the subspace of E generated
by {e1, e2, . . . , en}, that is, En = lin({e1, e2, . . . , en}), by �n—the natural linear
projector from E into En. Then it is evident that �n → I and �nμ →w μ.

Assume now �nμ are t-semistable, that is,

�nμ
t = Tcn(�nμ) ∗ δ(xn) (2.5)

with cn ∈ R, xn ∈ En, n = 1,2, . . . , we have �n�m = �m�n = �n, �nxm = xn,
and �nμ

t = Tcm(�nμ) ∗ δ(xn), for all natural numbers n < m. The last equation
together with (2.5) implies

Tcn(�nμ) = Tcm(�nμ). (2.6)

First, we assume that μ is a full measure on E. In that case μn = �nμ is a
full measure on En, therefore from (2.6) we confirm that cn = cm = c with some
constant c > 0, independent of n. Hence, the condition of Lemma 3 is satisfied
for μn = �nμ and Bn = c�n. In consequence, μ is (B, t)-semistable for some
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operator B ∈ B(E). Then, from (2.5) we can conclude B = cI, implying μ is t-
semistable.

In the case when the fullness of the measure μ is not true, we can treat μ as
a full measure on the closed subspace Eμ generated by its support and all finite
projections of that full measure in Eμ are t-semistable. Then by the similar to
the above argument, μ is a t-semistable measure on Eμ and then μ is also a t-
semistable measure on E.

To complete the proof, we use the fact that (b) is an immediate consequence
of (a), because a measure is stable when and only when it is t-semistable for every
positive number t . �

3 Domains of operator semi-attraction

Let λ, μ ∈ P(E), (Ak) ⊂ B(E), (xk) ⊂ E and (nk) be a subsequence of natural
numbers. In this section, we study the convergence

Akλ
nk ∗ δ(xk) →w μ (3.1)

endowed with one of the following conditions:

nk/nk+1 → r ∈ (0,1), (∗)

nk/nk+1 ≥ c > 0, k = 1,2, . . . , (∗∗)

LIM(nk/nk+1) ∩ (0,1) 
= ∅, (∗ ∗ ∗)

where LIM(sk) denotes the set of all cluster points of the sequence (sk).
Now, by the same argument of Theorem 3.1 in Siegel (1989), we have the fol-

lowing lemma.

Lemma 4. Suppose that λ is non degenerated. If (3.1) is satisfied, then

Ak|λ|2 →w δ(0)

and μ is inf. div.

The following lemma is also necessary for further exploration.

Lemma 5. Let μ, λk ∈ P(E), k = 1,2, . . . , (nk) and (mk) be two subsequences of
natural numbers. Suppose that λ

nk

k →w μ and mk/nk → t ∈ R. Then there exists
a sequence (yk) ⊂ E such that

λ
mk

k ∗ δ(yk) →w μt .
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Proof. In the same way as in the proof of Theorem 3.1 given by Siegel (1989), we
can show that μ is inf. div. and then μt is well defined. For a natural number N

such that mk/nk ≤ N for all k, the lemma is proved by an argument similar to that
used in the proof of Lemma 1. �

We say that λ belongs to the domain of operator r-semi-attraction of μ, i.e. λ ∈
DOSA(r,μ) if (3.1) and (∗) are true. In the finite dimensional case, Jajte (1977)
has shown that a full p.m. μ is an operator semistable measure if and only if its
DOSA is not empty. Moreover, according to Theorem 4 in Ho Dang (2009), a
p.m. λ on a finite dimensional space is an operator semistable measure if (3.1) and
(∗ ∗ ∗) hold. The infinite dimensional version of that is the following.

Proposition 3. Given a full measure μ ∈ P(E), the following conditions are equiv-
alent:

(i) There exist an invertible operator B and a number r ∈ (0,1) such that μ is
(B, r)-semistable.

(ii) There exist p.m. λ ∈ P(E), a subsequence (nk) of natural numbers, a se-
quence of invertible operators Ak ∈ B(E) and a sequence (xk) ⊂ E such that (3.1)
and (∗ ∗ ∗) hold.

Proof. If μ is a full (B, r)-semistable measure with invertible B, that is, μ is inf.
div. and

μr = Bμ ∗ δ(x)

for some x ∈ E, then

μ = Bkμr−k ∗ δ(zk) (3.2)

with zk ∈ E, k = 1,2, . . . .
Thus, by virtue of Theorem III.2.2 in Parthasarathy (1967), the sequence

(Bkμ[r−k]) is shift compact, where [s] denotes the integer part of a number s ∈ R.
Hence, Lemma 4 implies Bk|μ|2 →w δ(0). Then, the sequence (Bkμr−k−[r−k]) is
shift convergent to δ(0). This together with (3.2) implies the existence of a se-
quence (xk) ⊂ E, such that

Bkμ[r−k] ∗ δ(xk) →w μ,

i.e. (ii) is satisfied with invertible Ak = Bk for k = 1,2, . . . .
Conversely, let (ii) be true. Then, in view of Lemma 4, μ is inf. div. and(

Akλ ∗ δ

(
1

nk

xk

))nk

= Akλ
nk ∗ δ(xk) →w μ, (3.3)

(
Ak+1A−1

k

)(
Akλ ∗ δ

(
1

nk

xk

))nk+1

∗ δ(zk)

(3.4)
= Ak+1λ

nk+1 ∗ δ(xk+1) →w μ
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with zk = xk+1 − Ak+1A−1
k (

nk+1
nk

xk).
We contend at first that

sup
∥∥Ak+1A−1

k

∥∥ ≤ ∞. (3.5)

Indeed, if (3.5) fails, then there always exists a subsequence (k′) of natural num-
bers such that ‖Ak′+1A−1

k′ ‖ → ∞ and (3.4) leads to

Ak′A−1
k′+1

‖Ak′+1A−1
k′ ‖

(
Ak′+1λ ∗ δ

(
1

nk′+1
xk′+1

))nk′
∗ δ(yk′)

= I

‖Ak′+1A−1
k′ ‖

(
Akλ

nk′ ∗ δ(xk′)
) →w δ(0)

with yk′ = zk′+1/‖Ak′+1A−1
k′ ‖ and ‖ Ak′A−1

k′+1

‖Ak′+1A−1
k′ ‖‖ = 1 for all k′ ∈ (k′).

Combining the above evidence together with (3.3), Lemma 5 and Theorem 4.11
of Linde and Siegel (1990) we conclude the existence of an operator A ∈ B(E)

with ‖A‖ = 1 and an element x0 ∈ E such that Aμr ∗ δ(x0) = δ(0). Hence, by
the same reason as in the proof of Proposition 1, μ is not full, that contradicts the
assumption, therefore (3.5) must be satisfied.

Taking (∗ ∗ ∗) into account, we get nk′
nk′+1

→ r for some subsequence (k′) of

natural numbers and for some r ∈ (0,1). Then we can invoke (3.3), (3.4), (3.5),
Theorem 4.11 of Linde and Siegel (1990) and Lemma 5 to deduce that

μ = Bμ−r ∗ δ(x)

with certain element x ∈ E and certain operator B ∈ B(E), being a cluster point of
the sequence of invertible operators (Ak′+1A−1

k′ ) in the strong operator topology.
Next, arguing as in the proof of Proposition 1 we can infer that the operator B is
invertible. The proof is complete. �

Note. If (3.1) holds for some sequences (nk) then under power of Lemma 2 we
see that

Akλ
nk+1 ∗ δ(xk) →w μ (3.1′)

and (nk/nk + 1) → 1. Then from (3.1) and (3.1′) we can build new sequences
(A1

k) ⊂ B(E), (x1
k) ⊂ E and (n1

k), such that (3.1) holds for them and 1 ∈
LIM(n1

k/n1
k+1) for arbitrary inf. div. measure μ. Therefore, the condition (∗ ∗ ∗)

in the above theorem can not be replaced by (∗∗).

Proposition 4. Let μ,λ ∈ P(E), B ∈ Aut(E) and r ∈ (0,1). Suppose that μ is a
full (B, (r))-semistable measure and there exists a sequence of invertible operators
(Ak) ⊂ Aut(E) such that (3.1) and (∗∗) hold. Then λ ∈ DOSA(r,μ).
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Proof. Let N be a natural number determined by rN ≥ c > rN+1. We define
ni,k = [ nk

ri−1 ]; Ai,k = Bi−1Ak for i = 1,2, . . . ,N ; k = 1,2, . . . . Then, by virtue
of (3.1) and Lemma 5, for every i = 1,2, . . . ,N , there exists a sequence (yi,k) ⊂ E
such that Ai,kλ

ni,k ∗ δ(yi,k) →w Bi−1μr−(i−1)
when k → ∞. Meanwhile, from the

(B, r)-semistability of μ we see that Bi−1μr−(i−1) = μ ∗ δ(yi ) for some yi ∈ E,
i = 1,2, . . . ,N . Hence,

Ai,kλ
ni,k ∗ δ(yi,k − yi ) →w μ (3.6)

when k → ∞, i = 1,2, . . . ,N .
From (∗∗) we have LIM(nk/nk+1) ⊂ [c,1]. If t ∈ LIM(nk/nk+1) then by an

argument analogous to that used for the proof of Proposition 3, we see that
μ is (Bt , t)-semistable for some operator Bt ∈ Aut(E). Hence, by the (B, (r))-
semistability of μ , we get t = rm for some m ∈ {1,2, . . . ,N}, and

LIM(nk/nk+1) = {
rhM , rhM−1, . . . , rh1

} ⊂ {
rN, rN−1, . . . , r

} ⊂ [c,1] (3.7)

for certain natural number M ≤ N .
Let the sets of indices Km, m = 1,2, . . . ,N , be determined by

K1 = {
k : rh2−1 ≤ nk/nk+1 < 1

}
,

K2 = {
k : rh3−1 ≤ nk/nk+1 < rh2−1}

,

· · ·
KM−1 = {

k : rhM−1 ≤ nk/nk+1 < rhM−1−1}
,

KM = {
k : c ≤ nk/nk+1 < rhM−1}

.

Then, in view of (3.7) and (∗∗), it is clear that {K1,K2, . . . ,KM} forms a disjoint
partition of natural numbers, each Km is a countable infinite set and

lim
k→∞,k∈Km

(nk/nk+1) = rhm

for m = 1,2, . . . ,M . Consequently,

lim
k→∞,k∈Km

([
nk/rhm−j ]

/nk+1
) = rj (3.8)

for m = 1,2, . . . ,M and every natural j . We extend the subsequence (nk) to a
new subsequence (n∗

k) by adding suitable natural numbers between nk and (nk+1)

to make the segment (nk, [nk/r], . . . , [nk/(r
hm−1)], nk+1) for k ∈ Km. Then (3.8)

implies limk→∞(n∗
k/n∗

k+1) = r .
The sequences (Ak) and (xk) are also extended to new sequences (A∗

k) and (x∗
k)

by merging suitably the segments in the form of
(
Ak,BAk, . . . ,Bhm−1Ak,Ak+1

)
, k ∈ Km;m = 1,2, . . . ,M
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and the segments in the form of
(
xk, (y2,k − y2), . . . , (yhm,k − yhm),xk+1

)
, k ∈ Km;m = 1,2, . . . ,M.

Then (3.6) and (3.8) lead to

A∗
kλ

n∗
k ∗ δ

(
x∗
k

) →w μ

and (n∗
k/n∗

k+1) → r as k → ∞, that is, λ ∈ DOSA(r,μ). The proposition is
proved. �

Under some conditions set for the operator B and the operator Ak in (3.1),
Krakowiak (1979) has shown that a full measure is B-stable if and only if its DOA
is not empty. The next theorem characterizes the domains of operator attraction.

Theorem 1. Let μ,λ ∈ P(E), B ∈ B(E). Suppose that μ is B-stable and there
exists a sequences (Ak), (xk) and (nk) such that (3.1) and (∗∗) hold. Then λ ∈
DOA(μ).

Proof. For all t ∈ (0,1], the B-stability of μ implies the existence of an element
yt ∈ E such that

μt = tBμ ∗ δ(yt ).

Let the sequences (A1
m) and (x1

m) be defined by:

A1
m = (nj/m)BAj ,

x1
m = (m/nj ).(nj /m)Bxj + ynj /m

for nj ≤ m < nj+1, j = 1,2, . . . . We infer that

A1
mλm ∗ δ

(
x1
m

) →w μ (3.9)

as m → ∞. Namely, let (m′) be any subsequence of natural numbers, then for each
m′ ∈ (m′) one can find a natural number jm′ such that

njm′ ≤ m′ < njm′+1.

Hence, from (∗∗) we have

1 ≥ njm′ /m′ > njm′ /njm′+1 ≥ c.

Then one can pick from (m′) another subsequence (m′′) such that

njm′′ /m′′ → u ∈ [c,1].
Now, taking into account the fact that

tB → tB
0 , yt → yt0 as t → t0,
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for t, t0 ∈ (0,1], and applying Theorem 3.1 of Linde and Siegel (1990), we get

A1
m′′λm′′ ∗ δ

(
x1
m′′

)

=
(

njm′′
m′′

)B(
Ajm′′ λ

nj
m′′ ∗ δ(xjm′′ )

)m′′/nj
m′′ ∗ δ

(
m′′

njm′′
yjm′′/m′′

)

→w uBμ1/u ∗ δ
(
(1/u)yu

) = (
uBμ ∗ δ(yu)

)1/u = μ.

Thus, (3.9) is true by virtue of Theorem 2.3 in Billingsley (1968), that means
λ ∈ DOA(μ), which concludes the theorem. �

By definitions, it seems DOSA’s would be broader than DOA’s. However,
DOSA’s and DOA of a given stable measure in fact are equal. Namely the above
theorem implies the following.

Corollary 1. If μ is a B-stable measure, B ∈ B(E), then

DOA(μ) = DOSA(r,μ)

for every number r such that 0 < r < 1.

4 Normal domains of operator semi-attraction and normal domains
of operator attraction

Let μ,λ ∈ P(E), B ∈ B(E). If there are an operator B, a number r ∈ (0,1) and a
sequence (xk) of elements from E such that μ is B-semistable and

Bkλ[r−k] ∗ δ(xk) →w μ (4.1)

then we say that λ belongs to the normal domain of operator semi-attraction of μ
(λ ∈ NDOSA(μ)).

Here, the term “normal” is used to emphasize the fact that in (3.1) the norm-
ing operators Ak , in the form of Bk , and the natural numbers in the subsequence
(nk), in the form of [r−k], are closely related to the (B, r)-semistability of the
measure μ.

While normal domains of operator semi-attraction were studied by Jurek (1981,
1980) and Hudson et al. (1983) in finite dimensional spaces, this section of the
paper examine the problem of infinite dimensional spaces.

Theorem 2. Let r ∈ (0,1), M ∈ L(E) and μ = e(M) be (B, r)-semistable with
invertible B ∈ Aut(E) and

‖B‖ < r1/2. (4.2)

Then (4.1) fulfils when and only when the following two conditions hold:
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(a) For every u ∈ C(μ),
[
r−k](Bkλ

)|Ec
u
→w M|Ec

u
. (4.3)

(b) There exist u > 0, q > 0 and a sequence (Fn) of finite dimensional sub-
spaces of E such that

lim
n

sup
k

∫
Eu

dq(x,Fn)Bk(|λ|2)[r−k]
(dx) = 0, (4.4)

where d refers to the distance in the Banach space E.

Proof. Let (4.1) hold. Then Theorems 3.4 and 3.11 of Acosta et al. (1978) imply
the existence of a sequence (x1

k) ⊂ E, such that

Pois
([

r−k]Bkλ
) ∗ δ

(
x1
k

) →w e(M)

which yields (4.3) by virtue of Theorems 1.6 and 1.10 of Acosta et al. (1978). On
the other hand, from (4.1) we have

Bk(|λ|2)[r−k] →w |μ|2.
This together with Theorem 2.3 of Acosta (1970) implies (4.4).

Conversely, suppose that (4.3) and (4.4) are true. Let b > 0 be any number from
C(μ) and Un = BnEb ∩ (Bn+1Eb)

c for n = 0,1,2, . . . . Then from (4.2) we see
that BnEb ↓ {0} as n → ∞ and

⋃∞
n=0 Un = Eb ∩ {0}c.

Let a = ‖B‖ < r1/2. Then for any x ∈ BkEb we have x = Bky with y ∈ Eb and
‖x‖ ≤ ‖Bk‖2‖y‖2. Hence,

0 ≤
∫

BkEb

‖x‖2[
r−k](Bkλ

)
(dx) ≤ a2kb2r−k = (

a2/r
)k

b2 → 0 (4.5)

as k → ∞.
Let (bn) be a sequence of positive numbers such that bn ↓ 0. Since B−1 ∈ B(E),

for every n there exists a natural number mn such that

Ebn ⊂ BmnEb; Ebn ∩ (
Bmn+1Ebn

)c 
= ∅.

Because mn → ∞ as n → ∞ and M(∂U0) = 0, (4.3) leads to
∫

U0

‖x‖2[
r−k](Bkλ

)
(dx) →

∫
U0

‖x‖2M(dx).

Hence, one can find a number D > 0 such that

0 ≤
∫

U0

‖x‖2[
r−k](Bkλ

)
(dx) ≤ D
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for all k ≥ 0. Then for n < k we have

0 ≤
∫

Un

‖x‖2[
r−k](Bkλ

)
(dx) =

∫
U0

∥∥Bny
∥∥2[

r−k](Bk−nλ
)
(dy)

≤
∫

U0

a2n‖y‖2[
r−k](Bk−nλ

)
(dy)

≤ (
a2/r

)n ∫
U0

‖y‖2[
r−(k−n)](Bk−nλ

)
(dy) ≤ (

a2/r
)n

D.

Therefore, in view of (4.5), for fixed ε > 0 and k > mn such that∫
BkEb

‖x‖2[
r−k](Bkλ

)
(dx) < ε/2

we have

0 ≤
∫

Ebn

‖x‖2[
r−k](Bkλ

)
(dx) ≤

∫
BmnEb

‖x‖2[
r−k](Bkλ

)
(dx)

≤
∫

BkEb

‖x‖2[
r−k](Bkλ

)
(dx) +

k−1∑
j=mn

(∫
Uj

‖x‖2[
r−j ](

Bjλ
)
(dx)

)

< ε/2 +
k−1∑

j=mn

(
a2/r

)j
D < ε/2 + (

a2/r
)mnD/

(
1 − (

a2/r
))

< ε

for n sufficiently large.
Consequently,

lim
n

lim
k

∫
Ebn

‖x‖2[
r−k](Bkλ

)
(dx) = 0. (4.6)

Besides, due to (4.3) we have[
r−k](Bk|λ|2)|Ec

b
→w |M|2|Ec

b
(4.7)

for every b ∈ C(μ). Therefore, repeating the above reasoning we get

lim
n

lim
k

∫
Ebn

‖x‖2[
r−k](Bk|λ|2)

(dx) = 0 (4.8)

for each sequence bn ↓ 0.
Using the same technique as in Theorem 2.14 of Acosta et al. (1978), by virtue

of (4.4), (4.7) and (4.8), we can infer that the sequence ((Bk|λ|2)r−k
) is rela-

tively compact. Hence, taking into account of the conditions (4.3), (4.6) and The-
orem 2.10 of Acosta et al. (1978), by the same argument in the proof of Theo-
rem 2.14 given by Acosta et al. (1978), we can conclude that (4.1) is true. �

Remark. In the above theorem, the condition (b) can be replaced by the following
one:
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(b′) There exist u > 0, q > 0, a sequence (xk) ⊂ E and a sequence (Fn) of finite
dimensional subspaces of E such that

lim
n

sup
k

∫
Eu

dq(x,Fn − xk)Bkλ[r−k](dx) = 0.

Lemma 6. Let B ∈ B(E) be invertible and ‖B‖ < 1. For t > 0 let denote

Ut = {
x ∈ E :‖x‖ ≥ t,‖Bx‖ < t

}
.

Then

(a) BnUt ∩ BkUt = ∅ for all integers n 
= k;
(b) E ∩ {0}c = ⋃∞

n=−∞ BnUt ;
(c) An inf. div. measure μ = e(M), M ∈ L(E), is (B, r)-semistable, 0 < r < 1,

if and only if there exists a finite measure γ t on Ut such that

M(F) =
∞∑

n=−∞
r−n

∫
Ut

IF
(
Bnx

)
γ t (dx), (4.9)

where IF denotes the indicator of a Borel subset F of E ∩ {0}c.

Proof. (a) Assume that Bkx = Bnx for certain x ∈ Ut and for certain integers k <

n. Then x = B−kBnx = Bn−kx and because ‖B‖ < 1 and n − k > 0, we get

t ≤ ‖x‖ ≤ ∥∥Bn−k−1∥∥.‖Bx‖ < t,

showing an obvious contradiction.
(b) Let x ∈ E ∩ {0}c. If ‖x‖ = t then x ∈ B0Ut . In the case when ‖x‖ > t , we

see that Bmx → 0 as m → ∞. Hence, if n is the smallest natural number such that
‖Bnx‖ ≥ t , then x ∈ BnUt . Finally, if ‖x‖ < t then from ‖Bk‖ → 0 as k → ∞,
resulting in ‖B−kx‖ ≥ ‖x‖/‖Bk‖ → ∞ and x ∈ B−nUt , where n is the smallest
natural number such that ‖B−n+1x‖ < t . Consequently, we always have x ∈ BmUt

for certain integer m, which means (b) is true.
For the final assertion of the lemma, it is clear that (c) follows directly from

(a) and (b), by repeating the main argument of Theorem 3 in Krakowiak (1980).
Hence, the lemma is proved. �

Proposition 5. Let 0 < r < 1, M ∈ L(E) and B ∈ B(E) be invertible. Suppose that
(4.2) fulfils, μ = e(M) is (B, r)-semistable and t is a positive number such that Ut

is an M-continuity subset. Then (4.1) is confirmed if and only if (4.4) is true and

lim
n

[
r−n]

Bnλ(G) = γ t (G) (4.3a)

for all γ t -continuity subset G of Ut , where γ t is defined by Lemma 6.
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Proof. The number t , such that Ut is an M-continuity set, always exists. There-
fore, by Theorem 2, we need only to prove that (4.3) and (4.3a) are equivalent.

From the equation γ t = M|Ut
, (4.3) directly implies (4.3a). Conversely, as-

suming (4.3a) is true, then for every M-continuity subset G of BkUt , k =
0,±1,±2, . . . , the set B−kG is a γ t -continuity subset of Ut . Therefore, in view of
Lemma 6, we have
[
r−n]

Bnλ(G) = [
r−n]

Bnλ
(
BkB−kG

) = ([
r−n]

/
[
r−n+k]).[r−n+k]Bn−kλ

(
B−kG

)
→ r−kγ t

(
B−kG

) = r−kM
(
B−kG

) = M(G),

i.e.
[
r−n]

Bnλ(G) → M(G)

for every M-continuity subset G of BkUt , k = 0,±1,±2, . . . . On the other hand,
because Ut is an M-continuity set and B is an invertible continuous operator, BkUt

is an M-continuity set for every integer k. This certifies the fact that (4.9) holds for
every M-continuity subset G of E ∩ {0}c such that

G ⊂
k2⋃

k=k1

BkUt , −∞ < k1 ≤ k2 < ∞.

Hence, based on Theorem 1.2.2, Billingsley (1968), we get (4.3), the proposition
is proved. �

Proposition 6. With the assumption of Proposition 5, the condition (4.1) fulfils if
and only if (4.4) is true and

lim
n

[
r−n]

λ
({

Bkx : x ∈ G, k ≥ n
}) = γ t (G)/(1 − r) (4.3b)

for every γ t -continuity subset G of Ut , where γ t is as in Lemma 6.

Proof. In view of Theorem 2, it is sufficient to verify that (4.3) and (4.3b) are
equivalent. Let (4.3) hold and G be a γ t -continuity subset of Ut . Then

F = {
B−kx : x ∈ G, k = 0,1,2, . . .

} =
∞⋃

k=0

B−kG

is an M-continuity set. Moreover F is separated from 0. Then (4.3) together with
Lemma 6 yields

lim
n

[
r−n](

Bnλ
)
(F) = M(F) =

∞∑
k=0

r−kγ t (G) = γ t (G)/(1 − r).

Consequently we have (4.3b).
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Now, let us suppose that (4.3b) is true. Then for a γ t -continuity set G of Ut we
have

[
r−n]

λ
({

Bkx : x ∈ G, k ≥ n + 1
})

= ([
r−n]

/
[
r−n−1])[

r−n−1]
λ
({

Bkx : x ∈ G, k ≥ n + 1
}) → rγ t (G)/(1 − r).

Therefore,
[
r−n]

Bnλ(G)

= [
r−n]

λ
({

B−kx : x ∈ G, k ≥ n
} \ {

B−kx : x ∈ G, k ≥ n + 1
})

= [
r−n]

λ
({

B−kx : x ∈ G, k ≥ n
}) − [

r−n]
λ
({

B−kx : x ∈ G, k ≥ n + 1
})

→ γ t (G)/(1 − r) − rγ t (G)/(1 − r) = γ t (G),

that is, (4.3a) holds, which implies (4.3) by virtue of Proposition 5. The proof is
complete. �

When B is of the form cI, c 
= 0, and μ is a non-Gaussian (c, r)-semistable
measure, that is, the exponent p of μ satisfies 0 < p < 2, then μ is of the form
μ = e(M), M ∈ L(E) and ‖B‖ = |c| < r1/2. Further, (4.1) is reduced to

Tckλ[r−k] ∗ δ(xk) →w μ.

In this case, we say that λ belongs to the normal domain of semi-attraction of μ

(λ ∈ NDSA(μ)). Meantime, (4.4) is reduced to

(4.4b) There exist u > 0, q > 0 and a sequence (Fn) of finite dimensional sub-
spaces of E such that

lim
n

sup
k

∫
Eu

dq(x,Fn)Tck

(|λ|2)[r−k]
(dx) = 0.

Moreover, the set Ut in Lemma 6 is reduced to

Vt = {
x ∈ E : t ≤ ‖x‖ < t/|c|}.

Hence, we have the following characterizations of normal domains of semi-
attraction of non-Gaussian semistable measures.

Corollary 2. Let μ be (c, r)-semistable with exponent p ∈ (0,2), 0 < r < 1. Then
λ ∈ NDSA(μ) if and only if (4.4b) holds and

[
r−n]

Tckλ(G) → M(G)

as n → ∞ for all M-continuity subset G of Vt , where M is the Lévy measure of μ

and t is a positive number such that M(∂Vt ) = 0.
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Corollary 3. With the assumption as in Corollary 2, λ ∈ NDSA(μ) if and only if
(4.4b) is true and[

r−n]
λ
({

c−kx : x ∈ G, k ≥ n
}) → M(G)/(1 − r)

as n → ∞ for every M-continuity subset G of Vt , where M(∂Vt ) = 0.

In the following part, we examine the concept of normal domains of operator
attraction of operator stable measures. Let μ,λ ∈ P(E), B ∈ B(E) and μ be B-
stable. Then we say that λ belongs to the normal domain of operator attraction of
μ (in symbols λ ∈ NDOA(μ)) if

n−Bλn ∗ δ(yn) →w μ (4.10)

as n → ∞ for some sequence (yn) of elements from E.

Lemma 7. Let μ be a B-stable measure. Then the condition (4.10) holds if and
only if there exist a number r ∈ (0,1) and sequence (xk) ⊂ B(E) such that

rkBλ[r−k] ∗ δ(xk) →w μ (4.11)

as k → ∞.

Proof. It is obvious that (4.11) comes from (4.10), taking r = 1/2 for example.
Conversely, by an argument analogous to that used for proving Theorem 1, (4.11)
implies (4.10). The lemma is proved. �

Combining Lemma 7 and Theorem 2, we conclude the following proposition.

Proposition 7. Let M ∈ L(E) and μ = e(M) be B-stable for some B ∈ B(E).
Suppose that there exists a number r ∈ (0,1) such that ‖rB‖ < r1/2. Then (4.10)
holds if and only if the following two conditions are true:

(a) For every u ∈ C(μ), [
r−k]rkBλ|Ec

u
→w M|Ec

u
. (4.12)

(b) There exist u > 0, q > 0 and a sequence (Fn) of finite dimensional sub-
spaces of E such that

lim
n

sup
k

∫
Eu

dq(x,Fn)r
kB(|λ|2)[r−k]

(dx) = 0, (4.13)

where d refers to the distance in the Banach space E.

Given an operator B, we denote

Vr (t) = {
x ∈ E :‖x‖ ≥ t;∥∥rBx

∥∥ < t
}
.

Then Proposition 5 together with Lemma 6 yields the following proposition.
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Proposition 8. Let r , μ, B be as in Proposition 7 and t be a positive number such
that

M
(
∂Vr (t)

) = 0. (4.14)

Then (4.10) fulfils if and only if (4.13) holds and[
r−n]

rnBλ(G) → γ t (G)

as n → ∞ for every γ t -continuity subset G of Vr (t), where γ t = M|Vr (t).

As a corollary of Theorems 3.2 and 4.2 in Krakowiak (1979), we have the fol-
lowing lemma.

Lemma 8. Let μ be a full p.m. on E, μ = e(M), M ∈ L(E) and B ∈ B(E) satisfy

tB → 0 (4.15)

as t → 0. Then μ is B-stable if only if there exist a finite measure γ on the unit
sphere S of E such that

M(F) =
∫

S

∫ ∞
0

IF
(
tBx

)
t−2 dtγ (dx), (4.16)

where IF denotes the indicator of a Borel subset F of E \ {0}.
The measure γ defined in Lemma 8 is called a spectral measure of μ. In view of

the lemma we see that if (4.15) fulfils and μ = e(M) is a full B-stable measure then
(4.14) is always true. Moreover, the following Proposition 9 is the generalization
of Theorem 1.1 of Jurek (1980).

Proposition 9. Let r ∈ (0,1) and B ∈ B(E) satisfy∥∥rB∥∥ < r1/2.

Assume that μ = e(M), M ∈ L(E), is full B-stable on E. Then (4.10) is true if and
only if (4.13) holds and

lim
α→∞αλ

({
uBx : x ∈ G, u ≥ α

}) = γ (G) (4.12b)

for every γ -continuity subset G of the unit sphere S.

Proof. We infer that (4.15) holds and consequently (4.16) is true. Namely, let (tn)

be any sequence of positive numbers tending to 0. Then there exists a sequence
(kn) of natural numbers such that kn → ∞ as n → ∞ and

tn = rkn.sn, r ≤ sn < 1.

Therefore

0 ≤ ∥∥tB
n

∥∥ <
∥∥sB

n

∥∥.∥∥rknB∥∥ → 0,
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due to ∥∥rknB∥∥ ≤ (
r1/2)kn → 0

and of the inequalities ‖sB
n ‖ ≤ (1/sn)

‖B‖ ≤ (1/r)‖B‖ are obtained straightfor-
wardly from the power series expansion. Thus, (4.15) is satisfied.

When (4.10) holds, (4.13) comes from Proposition 7. Besides, arguing as in
Theorem 2, by virtue of Theorems 1.6, 1.10, 3.4 and 3.11 in Acosta et al. (1978),
we can infer that

n
(
n−Bλ

)|Ec
u
→w M|Ec

u
(4.17)

for every u ∈ C(μ).
Let G ⊂ S be a γ -continuity set. Then in view of Lemma 6, it is easy to see that

F = {uBx : x ∈ G, u ≥ 1} is an M-continuity set. Moreover, F is separated from 0.
Hence, (4.16) together with (4.17) implies

n
(
n−Bλ

)
(F) → M(F) = γ (G)

∫ ∞
1

t−2 dt = γ (G).

In addition,

n
(
n−Bλ

)
(F) = nλ

({
(nu)Bx : x ∈ G, u ≥ 1

}) = nλ
({

uBx : x ∈ G, u ≥ n
})

.

Consequently,

nλ
({

uBx : x ∈ G, u ≥ n
}) → γ (G) (4.18)

as n → ∞ for every γ -continuity subset G of S. Meanwhile,

[a]λ({
uBx : x ∈ G, u ≥ [a] + 1

}) ≤ aλ
({

uBx : x ∈ G, u ≥ a
})

≤ ([a] + 1
)
λ
({

uBx : x ∈ G, u ≥ [a]}).
This, together with (4.18), implies aλ({uBx : x ∈ G, u ≥ a}) → γ (G) as a → ∞.
Then (4.12b) is proved.

Conversely, if (4.12b) and (4.13) hold, then for each γ -continuity subset G of S
and for every positive number b, by virtue of (4.16) we have

n.λ
({

uBx : x ∈ G, u ≥ nb
})

= (1/b).nb.λ
({

uBx : x ∈ G, u ≥ nb
}) → (1/b)γ (G)

as n → ∞ and

(1/b)γ (G) = γ (G)

∫ ∞
b

t−2 dt = M
({

uBx : x ∈ G, u ≥ b
})

.

Hence, for 0 < b < c ≤ ∞ we get

n.
(
n−Bλ

)({
uBx : x ∈ G, b ≤ u < c

})
= n.λ

({
uBx : x ∈ G, nb ≤ u < nc

}) → M
({

uBx : x ∈ G, b ≤ u < c
})
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as n → ∞, and

n
(
n−Bλ

)|Ec
u
→w M|Ec

u

for every u ∈ C(μ), because the sets of the form {uBx : x ∈ G, b ≤ u < c}, where
γ (∂G) = 0, 0 < b < c ≤ ∞, satisfy the condition of Theorem 1.2.2, Billingsley
(1968). In particular, we get

[
r−k]([r−k]−B

λ
)|Ec

u
→w M|Ec

u

for every u ∈ C(μ). This implies (4.12), therefore Proposition 7 yields (4.10). The
proof is obtained. �

Let us consider a B-stable measure μ, where B is of the form (1/p).I and p is a
positive number. Then μ is a stable measure on E and 0 < p ≤ 2. Besides, (4.10)
is reduced to

Tn−1/p

(
λn) ∗ δ(yn) →w μ.

In this case, λ is said to belong to the normal domain of attraction of μ. Besides,
(4.13) is reduced to

(4.13a) There exist s > 0, q > 0 and a sequence (Fn) of finite dimensional
subspaces of E such that

lim
n

sup
k

∫
Eu

dq(x,Fn)Trk/p

(|λ|2)[r−k]
(dx) = 0.

Thus, Proposition 9 gives the following characterization of normal domain of at-
traction of full stable measure with exponent p ∈ (0,2):

Corollary 4. Let μ be a full stable with exponent p ∈ (0,2). Then a p.m. λ belongs
to the normal domain of attraction of μ if and only if there exists a number r ∈
(0,1) such that (4.13a) holds and

tpλ
({

x : x/‖x‖ ∈ G,‖x‖ ≥ t
}) → γ (G)

as t → ∞ for all γ -continuity subset G of S, where γ is the spectral measure of μ.
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