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Abstract. In this article, we revisit the semi-parametric linear models with
auto-correlated errors, where the means of the repeated responses of an indi-
vidual consist of a specified regression function in time dependent covariates
as well as a time dependent nonparametric function. The estimation of the
regression parameters involved in the specified regression function is of main
interest, and most of the existing studies estimate these parameters by us-
ing the so-called semi-parametric generalized estimating equations (SGEEs)
approach. We offer two main contributions. First, we demonstrate that the ex-
isting SGEEs are partly standardized. Second, as opposed to this partly stan-
dardized SGEE (PSSGEE) approach, we suggest a fully standardized semi-
parametric generalized quasi-likelihood (FSSGQL) approach that provides
more efficient regression estimates. This efficiency gain by the FSSGQL ap-
proach over the PSSGEE approach is also demonstrated through an empirical
study.

1 Introduction

Let tij denote the time at which the j th (j = 1, . . . , ni) measurement is made
on the ith (i = 1, . . . ,K) individual, and yij denote this measurement which is
also referred to as the j th response of the ith individual at time tij . Next, suppose
that yi = (yi1, . . . , yij , . . . , yini

)′ denotes the ni × 1 vector of repeated responses
for the ith (i = 1, . . . ,K) individual. Also suppose that these repeated responses
are influenced by a smooth nonparametric function γ (tij ), and a fixed and known
p × ni covariate matrix X′

i = (xi(ti1), . . . , xi(tij ), . . . , xi(tini
)), xi(tij ) being the

p-dimensional covariate vector for the ith individual at time point tij . This type of
repeated continuous data measured at time point tij are usually modeled as

yij = x′
i (tij )β + γ (tij ) + εij (tij )

(1.1)
= μij (tij ) + εij (tij ),

or equivalently

yi = Xiβ + γi + εi, (1.2)
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where

γi = (
γ (ti1), . . . , γ (tini

)
)′ and εi = (

εi1(ti1), . . . , εij (tij ), . . . , εini
(tini

)
)′
.

Note that in (1.2), γi is not a subject specific nonparametric function as its con-
struction requires only knowing γ (t) at any time t (see Zeger and Diggle (1994)
and Sneddon and Sutradhar (2004), e.g.). To be specific, γi is used here to repre-
sent ni components, each with the same nonparametric function but evaluated at
ni different time points for the ith individual. Further note that in this longitudinal
setup, the components of the error vector εi must be correlated. But as the corre-
lation structure is unknown in practice, many authors such as Zeger and Diggle
(1994) considered that

εi ∼ (
0, σ 2Ri(α)

)
, (1.3)

where σ 2 = var[εij (tij )] = σijj (tij ) = σ 2(tij ), and Ri(α) is a “working” cor-
relation matrix used for unknown true correlation matrix. The commonly used
Ri(α) are: (a) the unstructured form Ri(α) = (ri,jk(α)) with ri,jk(α) = α|tij−tik |
(Zeger and Diggle (1994), Lin and Carroll (2001)); (b) equi-correlations form
Ri(α) = αIni

, and (c) independence form Ri(α) = Ini
(Lin and Carroll (2001),

Severini and Staniswalis (1994)). It then follows from the models (1.1)–(1.3) that
the mean response is given by

E[Yij ] = μij (tij ) = x′
i (tij )β + γ (tij ), (1.4)

where β is the fixed regression effects, and γ (tij ) is a nonparametric smooth func-
tion of times. It is of main interest to estimate the fixed regression effects β consis-
tently and as efficiently as possible. Note however that this regression estimation
requires the consistent estimation of the other secondary functions and parameters,
namely the nonparametric smooth function γ (tij ), and the “working” correlation
matrix Ri(α).

Remark that even though β and γ (t) together constitute the regression function
(1.4), their joint estimation based on cluster correlated data may be difficult. When
correlations are ignored, the estimation becomes easier whether using the so-called
local polynomial or spline-based methods (Hua (2010)). Thus, in the existing liter-
ature dealing with clustered correlated data, they are estimated marginally by using
separate estimating equations (Zeger and Diggle (1994), Severini and Staniswallis
(1994), and Lin and Carroll (2001)). This makes it simpler, for example, to use
“working” independence approach for consistent estimation of γ (t) (Zeger and
Diggle (1994, Section 3.1)), and a suitable correlation structure based approach
for efficient estimation of the main regression parameter β . As far as the con-
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sistent estimation of γ (t) is concerned, because the γ (t) in the mean function
(1.4) is a nonparametric function, a kernel approach is used for such an estima-
tion. More specifically, a “working” independence assumption based unbiased es-
timating function is weighted by using suitable kernel weights and the resulting
semi-parametric estimating equation is then solved for γ (t). At a given time point
t0, say, under the present linear model with mean regression function as in (1.4),
the semi-parametric quasi-likelihood (SQL) estimating equation for γ (t0) has the
form

K∑
h=1

nh∑
u=1

whu(t0)
∂μhu(thu)

∂γ (t0)

(yhu − μhu(thu))

σ 2 = 0, (1.5)

where whu(t0) = phu(
t0−thu

b
)/(

∑K
h=1

∑nh

u=1 phu(
t0−thu

b
)), phu(·) being a suitable

kernel for example, we choose phu(
t0−thu

b
) = 1√

2πb
exp(−1

2 (
t0−thu

b
)2) with a suit-

able bandwidth b.
Next, because μij (tij ) = x′

i (tij )β + γ (tij ) by (1.4), it is convenient to express
the SQL estimating equation for γ (tij ) (1.5), in terms of known β , as

γ̂ (tij ) = ŷij − x̂′
i (tij )β, (1.6)

where

ŷij =
K∑

h=1

nh∑
u=1

whu(tij )yhu and x̂′
i (tij ) =

K∑
h=1

nh∑
u=1

whu(tij )x
′
h(thu)

with
∑K

h=1
∑nh

u=1 whu(tij ) = 1. Now by using the formulas for ŷij and x̂′
i (tij ), one

writes

ŷi =
K∑

h=1

[
Wh(ti1, . . . , tini

)
]
yh,

(1.7)

X̂i =
K∑

h=1

[
Wh(ti1, . . . , tini

)
]
Xh

with Wh(ti1, . . . , tini
) as the kernel weights matrix defined as

Wh(ti1, . . . , tini
) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

w′
h(ti1)
...

w′
h(tij )
...

w′
h(tini

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

:ni × nh, (1.8)
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where w′
h(tij ) = [wh1(tij ), . . . ,whu(tij ), . . . ,whnh

(tij )] with whu(t) at a given
time t as given in (1.5), and

Xh =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x′
h(th1)

...

x′
h(thu)

...

x′
h(thnh

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

:nh × p. (1.9)

The existing studies, such as Severini and Staniswalis (1994, equations (17) and
(18)) and You and Chen (2007, Section 4.1) (see also Lin and Carroll (2001)), then
obtained the “working” generalized least squared (WGLS) estimator for β as

β̂WGLS =
[

K∑
i=1

(Xi − X̂i)
′{var(Yi)

}−1
(Xi − X̂i)

]−1

(1.10)

×
K∑

i=1

(Xi − X̂i)
′{var(Yi)

}−1
(yi − ŷi),

with var(Yi) = A
−1/2
i Ri(α)A

−1/2
i , Ri(α) being a “working” correlation matrix.

Note that the WGLS estimator in (1.10) may also be referred to as the “work-
ing” generalized estimating equations (WGEE) based estimator which uses the
so-called “working” correlation matrix Ri(α). This “working” parameter α used
to define Ri(α) has, however, a definition problem (Crowder (1995)). Suppose that
a “working” correlation estimate α̂ under an assumed “working” correlation model
is computed. This estimator may not converge to α as the data used for its computa-
tion may follow a different model. Thus, α̂ converges to α0, say, which is different
than α (Sutradhar and Das (1999)). As far as the formula for α̂ is concerned, it is
developed based on method of moments following the assumed “working” correla-
tion structure. For example, if an user decides to use an equi-correlation matrix as
the “working” correlation structure for all K individuals, then the estimate would
satisfy the estimating equation

K∑
i=1

ni∑
j �=u

(ỹij ỹiu − α) = 0 (1.11)

(Liang and Zeger (1986), Sutradhar (2011, Section 6.4.3)), where

ỹij = yij − x′
ij β̂ − γ̂ (tij )

σ̂ 2 ,

with

σ̂ 2 =
K∑

i=1

ni∑
j=1

(
yij − x′

ij β̂ − γ̂ (tij )
)2

/ K∑
i=1

ni.
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Similarly, for the estimation of a “working” unstructured correlation matrix, one
uses the moment estimating formula

R̂i(α) = 1

Kσ̂ 2

K∑
i=1

rir
′
i (1.12)

(Lin and Carroll (2001)) where ri = (ri1, ri2, . . . , rini
)′ is the vector of residuals

with rij = yij − x′
ij β̂ − γ̂ (tij ).

Further note that there are two fold problems with the estimation of β by using
the WGEE based formula (1.10). First, because of the aforementioned convergence
problems for Ri(α̂) to the true correlation structure say Ci(ρ), β̂WGEE obtained by
(1.10) may be less efficient sometimes as compared to a β estimate obtained by
using Ri(α̂) = Ini

(see Sutradhar and Das (1999), Sutradhar (2011, Chapter 6)).
Second, as we demonstrate in the next section, this β̂WGEE is actually obtained
from a partly standardized estimating equation (as opposed to a fully standard-
ized equation) which is bound to reduce its efficiency. In the same section, we
obtain a fully standardized semi-parametric GLS (FSSGLS), also referred to as
the fully standardized semi-parametric generalized quasi-likelihood (FSSGQL),
estimator for β which is consistent and highly efficient. The efficiency gain by
the FSSGQL estimator over the partly standardized semi-parametric GEE (PSS-
GEE) estimator is also demonstrated in Section 3 by a simulation based empirical
study.

2 PSSGEE versus FSSGQL estimation for the regression effects β

2.1 FSSGQL/FSSGLS estimation

In order to understand that the WGEE/WGLS estimator of β given by (1.10) is
in fact a partly standardized GEE estimator, we recall the model (1.1) and replace
the nonparametric function γ (tij ) with its estimate γ̂ (tij ) from (1.6) for known β .
This substitution changes the model (1.1) to

yij = x′
ij (tij )β + γ̂ (tij ) + ε∗

ij (tij )
(2.1)

= x′
ij (tij )β + ŷij − x̂′

ij (tij )β + ε∗
ij (tij ),

where ε∗
ij (tij ) is a new error component different from that of (1.1). Now for all

elements of the ith individual we use (2.1) and following the notation in (1.2) write

yi − ŷi = (Xi − X̂i)β + ε∗
i . (2.2)

Now to obtain the GLS estimate of β in (2.2), it is important to examine the mean
and variance of the error vector ε∗

i .
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2.1.1 Derivation for E[ε∗
i ]. By (1.7) and (1.2), we write

E[Ŷi] =
K∑

h=1

Wh(ti1, . . . , tini
)E[Yh]

=
K∑

h=1

Wh(ti1, . . . , tini
)[Xhβ + γh] (2.3)

= X̂iβ +
K∑

h=1

Wh(ti1, . . . , tini
)γh,

where γh = [γ (th1), . . . , γ (thu), . . . , γ (thnh
)]′. It then follows that

E[Yi − Ŷi] = [Xi − X̂i]β + γi −
K∑

h=1

Wh(ti1, . . . , tini
)γh. (2.4)

By using (2.4) in (2.2), one obtains

E
[
ε∗
i

] = γi −
K∑

h=1

Wh(ti1, . . . , tini
)γh

(2.5)
= μ∗

i = [
μ∗

i1, . . . ,μ
∗
ij , . . . ,μ

∗
ini

]′
,

with

μ∗
ij = γ (tij ) −

K∑
h=1

nh∑
u=1

whu(tij )γh(thu), (2.6)

which is free from β .

2.1.2 Derivation for cov[ε∗
i ]. Let 
i(ρ) denote the true covariance matrix of the

response vector yi , that is

cov(Yi) = 
i(ρ) = A
−1/2
i Ci(ρ)A

−1/2
i

with

Ai = diag
[
σi11(ti1), . . . , σijj (tij ), . . . , σinini

(tini
)
]

as the ni × ni diagonal matrix with σijj as the variance of εij (tij ), and Ci(ρ)

is the true correlation matrix. We consider an auto-correlation class based
structure for Ci(ρ) which is discussed in Section 2.1.4. Next because Ŷi =
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∑K
h=1[Wh(ti1, . . . , tini

)]Yh, it then follows that


∗
i = cov

[
ε∗
i

]
= cov(Yi − Ŷi)

= cov(Yi) + cov(Ŷi) − 2 cov(Yi, Ŷi) (2.7)

= 
i(ρ) +
[

K∑
h=1

Wh(ti1, . . . , tini
)
h(ρ)W ′

h(ti1, . . . , tini
)

]

− 2Wi(ti1, . . . , tini
)
i(ρ).

2.1.3 FSSGQL estimating equation. Now by (2.5) and (2.7), it follows from (2.2)
that

E[Yi − Ŷi] = [Xi − X̂i]β + μ∗
i , cov[Yi − Ŷi] = 
∗

i (ρ). (2.8)

Consequently, following Sutradhar (2003, Section 3), one writes the GQL estimat-
ing equation for β as

K∑
i=1

∂[(Xi − X̂i)β + μ∗
i ]′

∂β

[

∗

i

]−1{
(yi − ŷi ) − (Xi − X̂i)β − μ∗

i

} = 0. (2.9)

Note that this semi-parametric GQL estimating equation (2.9) is fully standard-
ized, because it uses the correct longitudinal weight matrix 
∗

i (ρ), and the gradient
function is computed for the correct mean vector [Xi − X̂i]β +μ∗

i . Thus this equa-
tion may be referred to as the fully standardized semi-parametric GQL (FSSGQL)
estimating equation, which is also the same as the FSS generalized least squared
(FSSGLS) estimating equation. It is clear from (2.9) that the FSSGQL estimator
has the closed form formula, which is given by

β̂FSSGQL =
[

K∑
i=1

(Xi − X̂i)
′(
∗

i

)−1
(Xi − X̂i)

]−1

(2.10)

×
K∑

i=1

(Xi − X̂i)
′(
∗

i

)−1(
yi − ŷi − μ̂∗

i

)
,

where μ̂∗
i is obtained by using γ̂i from (1.6) for γi in (2.5), for all i = 1, . . . ,K .

Further note that in the present case, the FSSGQL estimating equation is equivalent
to FSSGLS estimating equation.

2.1.4 A general auto-correlation model. To model the correlations of the
repeated linear data, we follow Sutradhar (2010) (see also Sutradhar (2011,
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Chapter 2)) and assume that the repeated data follow a class of auto-correlation
structures that accommodates Gaussian type all possible autoregressive moving av-
erage of order r, s (ARMA(r, s)) correlation models with AR(1), MA(1), AR(2),
MA(2), EQC (equi-correlations), as some special cases. Note that the AR(1),
MA(1), and EQC structures for repeated data were also alluded in Liang and
Zeger (1986), and subsequently these structures such as EQC correlation structure
was used by Severini and Staniswallis (1994), for example, in the semi-parametric
longitudinal setup. To be specific, we suggest that the error vector εi in (1.2) has
the correlation matrix Ci(ρ) given by

Ci(ρ) =

⎛
⎜⎜⎜⎝

1 ρ1 ρ2 · · · ρni−1
ρ1 1 ρ1 · · · ρni−2
... · · · ...

ρni−1 ρni−2 · · · 1

⎞
⎟⎟⎟⎠ for all i = 1,2, . . . ,K;

(2.11)

i(ρ) = var(Yi) = A

1/2
i Ci(ρ)A

1/2
i ,

where for � = 1, . . . , ni − 1, ρ� denotes the lag � correlation between εij (tij ) and
εi,j+�(ti,j+�). Note that when variances are nonstationary, that is, the responses
are heteroscedastic, one writes σ 2(tij ) for σijj (tij ) (Fan et al. (2007, Section 2.1)).
We however assume that the variances are stationary and hence write Ai = σ 2Ini

,
where σ 2 is an unknown scalar constant, and Ini

is the ni × ni identity matrix.
Following examples demonstrate the correlation models that produce the Ci(ρ) as
in (2.11) in the linear model setup.

Examples of models:

(i) AR(1) model:

εij (tij ) = φεi,j−1(ti,j−1) + aij (tij ),

|φ| < 1, aij (tij )
i.i.d.∼ N

(
0, σ 2

a

) ∀i = 1,2, . . . ,K; j = 1, . . . , ni,

(ii) MA(1) model:

εij (tij ) = θai,j−1(ti,j−1) + aij (tij ),

|θ | < 1, aij (tij )
i.i.d.∼ N

(
0, σ 2

a

) ∀i = 1,2, . . . ,K; j = 1, . . . , ni,

and

(iii) EQC model:

εij (tij ) = εi0(ti0) + aij (tij ),

aij (tij )
i.i.d.∼ (

0, σ 2
a

)
, εi0(ti0) ∼ N

(
0, σ̃ 2)

,
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yield ρ�, the lag � correlations between εij (tij ) and εi,j+�(ti,j+�), as

ρ� = φ�;

ρ� =
⎧⎪⎨
⎪⎩

θ

1 + θ2 , for � = 1,

0, for � = 2,3, . . . , ni − 1,

and ρ� = ζ = σ̃ 2

σ̃ 2 + σ 2
a

,

respectively, and they satisfy the auto-correlation structure Ci(ρ) in (2.11).

2.1.5 Estimation of the correlation matrix. For n = max1≤i≤K ni , and

δiu =
{

1, if u ≤ ni,

0, if ni < u ≤ n,

the auto-correlation matrix Ci(ρ) (2.11) is estimated by using the estimates of lag
correlation ρ� given by

ρ̂� =
∑K

i=1
∑n−�

u=1 δiuδi,u+�ỹiuỹi,u+l/
∑K

i=1
∑n−�

u=1 δiuδi,u+�∑K
i=1

∑ni

u=1 δiuỹ
2
iu/

∑K
i=1

∑ni

u=1 δiu

,

(2.12)
� = 1,2, . . . , n − 1

(Sutradhar (2011, Section 2.2.2)) with ỹiu = yiu−x′
iuβ̂−γ̂ (tiu)

σ̂
, where β̂ and γ̂ (t) are

the FSSGQL estimates of β and γ (t), respectively, and σ 2 for the Ai matrix in
(2.11) is estimated as

σ̂ 2 =
∑K

i=1
∑ni

j=1(yij − x′
ij β̂ − γ̂ (tij ))

2∑K
i=1 ni

. (2.13)

2.1.6 Estimation steps. Note that the moment estimators for lag correlations
(2.12) and variance component (2.13) are primarily developed by assuming that
β and γ (·) are known, but the estimates are obtained by using β̂FSSGQL for β

from (2.10), and γ̂ (·) from (1.6). For convenience of application of the proposed
fully SSGQL approach, we now summarize this approach in the following four
steps.

Step F1. For an initial value of β , we solve the “working” independence assump-
tion based semi-parametric equation (1.5) to estimate the nonparametric func-
tion γ (·).

Step F2. The estimate of γ (·) from Step F1 along with the initial value of β are
used in (2.13) to obtain first an initial estimate of the variance component σ 2,
and then initial estimates of lag correlations by (2.12).
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Step F3. In this step, the estimates of auto-correlations from Step F2 are used
to compute first the kernel weights based covariance matrix 
∗

i = cov[Yi −
Ŷi] in (2.7), which is then used in (2.10) to obtain the FSSGQL estimate
of β .

Step F4. Next, the first step estimate of β from Step F3 is applied to Step
F1 to obtain an improved estimate for the nonparametric function γ (·).
This constitute a cycle and the cycles of iterations continue until conver-
gence.

2.2 PSSGEE estimation

When the FSSGQL estimator (2.10) is compared to the WGLS (or WGEE) estima-
tor of β from (1.10), it is clear that WGEE estimator (1.10) was developed using
an incorrect weight matrix var(Yi), whereas the FSSGQL estimator (2.10) is de-
veloped using the correct weight matrix 
∗

i = var(Yi − Ŷi). This makes the WGEE
estimator (1.10) a partly standardized estimator, because it uses correct derivative
matrix but an incorrect weight matrix. For this reason, when compared to (2.10),
the WGEE estimator in (1.10) may be referred to as the partly standardized GEE
(PSSGEE) estimator. Note that this anomaly in PSSGEE arises because of the fact
that the existing approaches developed PSSGEE ignoring unknown β in the for-
mula for nonparametric function estimate (1.6). This incorrect use of the weight
matrix is bound to produce less efficient estimate as compared to the FSSGQL
estimator (2.10).

In the present semi-parametric linear longitudinal setup, the aforementioned ef-
ficiency loss can be verified in theory for the PSSGEE estimators by comparing
their asymptotic variances with that of the FSSGQL estimator. To demonstrate this,
consider the approximate asymptotic (K → ∞) covariance matrix of the FSSGQL
(2.10) and PSSGEE (1.10) estimators, given by

var[β̂FSSGQL] =
[

K∑
i=1

(Xi − X̂i)
′(
∗

i (ρ)
)−1

(Xi − X̂i)

]−1

and

var[β̂PSSGEE] =
[

K∑
i=1

(Xi − X̂i)
′V −1

i (α0)(Xi − X̂i)

]−1

×
[

K∑
i=1

(Xi − X̂i)
′V −1

i (α0)

∗
i (ρ)V −1

i (α0)(Xi − X̂i)

]

×
[

K∑
i=1

(Xi − X̂i)
′V −1

i (α0)(Xi − X̂i)

]−1

,
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where α0 is the converged value for the “working” correlation estimator α̂ (see
Sutradhar and Das (1999)). Now assuming that the “working” covariance ex-
ists and computable such as in the “working” independence case when α0 = 0,
Vi(α0) = Ini

, by following Sutradhar (2011, Theorem 2.1, p. 13), for example, one
may show that

var[β̂u,FSSGQL] ≤ var[β̂u,PSSGEE] for all u = 1, . . . , p.

However, this approach does not help to compare the PSSGEE estimators among
themselves. For this, and also to examine the finite sample performances between
the FSSGQL and all possible PSSGEE estimators, we conduct a simulation study
in Section 3.

2.2.1 Some remarks on heteroscedasticity based PSSHGEE(I) and PSSHGEE ap-
proaches. Some authors, for example, Fan et al. (2007, Section 2.1), and Fan and
Wu (2008, eqnuation (1)) have estimated the nonparametric function γ (t) by us-
ing similar formula as in (1.5) but by using time dependent variances denoted by
σ 2(t) at a given time t . For the estimation of the regression effects β , they have
used different “working” correlation structures for Ri(α) in the PSSGEE based
estimate given by (1.10). Fan and Wu (2008, equation (6)) used the ordinary least
squares (OLS) technique which is the same as using (1.10) with correlation matrix
Ri(α) = Ini

, ignoring correlations. For a given t , the heteroscedasticity, that is, the
time dependent variances were computed by

σ 2(t) =
∑K

i=1
∑ni

j=1 r2
ij (t)wij (t)∑K

i=1
∑ni

j=1 wij (t)
, (2.14)

where rij (t) = yij − x′
ij (t)β̂ − γ̂ (t), and wij (t) are defined as in (1.5). Thus,

for the estimation of β by (1.10), Fan and Wu (2008) use 
i(α) = Ai =
diag[σ 2(ti1), . . . , σ

2(tini
)]. This partly standardized semi-parametric heterosce-

dastic GEE (I) estimator may be denoted by β̂PSSHGEE(I).
The estimation of γ (t) and σ 2(t) is similar in both Fan et al. (2007) and Fan

and Wu (2008). However, for β estimation by (1.10), Fan et al. (2007) have as-
sumed that the error vector εi in (1.2) follow a multivariate normal distribution
with a “working” correlation matrix Ri(α), and estimated the “working” correla-
tion parameter α by maximizing the normal likelihood (Fan et al. (2007, equations
(2)–(3))). This estimator may be referred to as the PSSHGEE based estimator.
The normality assumption for the error vector is a further limitation in addition to
the “working” correlation based limitation to define the correlations of the data.
Thus, this PSSHGEE approach will be of limited use in practice. Nevertheless,
we include this approach in the empirical efficiency comparison in Section 3, but
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compute the lag correlations by moment approach (see (1.11)–(1.12)) which does
not require any normality assumption.

3 A simulation study

The purpose of this section is to conduct a simulation study to examine the finite
sample performance of the FSSGQL and various versions of the existing PSSGEE
approaches in estimating the main regression parameters as well as the nuisance
nonparametric function. As far as the longitudinal sample, regression parameters,
nonparametric functions, and true correlation models are concerned, we consider
the following simulation design.

3.1 Simulation design

(a) Sample size: K = 100; ni = 4 for i = 1, . . . ,K ; and tij = j for all i =
1, . . . ,K , and j = 1, . . . , ni .

(b) Covariate selection: We consider p = 2 time dependent covariates with their
values as

xij1(tij ) =
⎧⎪⎨
⎪⎩

1

2
, j = 1,2,

0, j = 3,4,

i = 1,2, . . . ,50,

xij1(tij ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1

2
, j = 1,

0, j = 2,3,

1

2
, j = 4,

i = 51,52, . . . ,100,

xij2(tij ) =
{

j − 2.5

2j
, j = 1,2,3,4, i = 1,2, . . . ,50,

xij2(tij ) =
⎧⎨
⎩

0, j = 1,2,

1

2
, j = 3,4,

i = 51,52, . . . ,100.

For the effects of these covariates, we consider β1 = 1.0 and β2 = 0.5.
(c) Nonparametric function: By using tij = j , we consider a quadratic as well as

a harmonic function for γ (tij ) given by
(i) γ (tij ) = 3 + 2(tij − ni+1

2 ) + (tij − ni+1
2 )2; tij = 1,2,3,4,

(ii) γ (tij ) = sin(2tij ).
(d) True correlation structure: We consider three correlation structures from Sec-

tion 2.1.4, with selected values of parameters as indicated below.
(i) AR(1) model: φ = 0.5,0.8;σ 2

a = 1.0,
(ii) MA(1) model: θ = 0.1,0.4;σ 2

a = 1.0,

(iii) EQC model: ζ = σ̃ 2

σ̃ 2+σ 2
a

= 0.5,0.8;σ 2
a = 1.0.
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3.2 Data generation and simulation results

We use the above selected design parameters in (1.2) and simulate yij for
i = 1,2, . . . ,100 and j = 1,2,3,4 for 1000 times, following a true correla-
tion structure that belongs to a class of auto-correlation models with corre-
lation matrix (2.11). As the true correlation structure, we consider all three
correlation models, namely AR(1), MA(1), and EQC models considered in
Section 2.1.4.

Under each simulation, applying the four steps procedure of Section 2.1.5, we
obtain the FSSGQL estimates of β , γ (t), σ 2, and ρ(�). Note that in this approach,
irrespective of the true correlation models, AR(1), MA(1), or EQC, the correlation
matrix is estimated by using the estimate of the general correlation matrix Ci(ρ).
Moreover, this approach uses corrected weight matrix in the estimating formula
(2.10) for β .

The “working” correlations based PSSGEE estimates are obtained by following
(1.10). Because the “working” correlations approach does not have any guidance
for the selection of correlation model, one may choose any of the low order com-
monly used structures such as AR(1), MA(1), EQC, or “working” independence
models (Liang and Zeger (1986)). Thus, if data are generated from the true AR(1)

model, we examine through efficiency comparison whether one can use any of the
other low order correlation models such as MA(1), EQC, or “working” indepen-
dence models. Note that if one uses Ci(ρ) as a “working” correlation structure,
it is obvious that such a “working” correlations based estimates will be fully ef-
ficient because the true correlation models such as AR(1) is represented by the
Ci(ρ) structure. This is however not a good illustration of the use of “working”
correlations matrix as because in the “working” correlations approach one also
has to know how Ci(ρ) matrix based estimate will perform even if the true cor-
relation structure does not belong to auto-correlation class. Turning back to the
low order correlations based estimates, if MA(1) structure is used as a “work-
ing” correlation structure, then MA(1) based correlations are estimated by method
of moments, and so on. We also use the unstructured (UNS) (see Lin and Car-
roll (2001), e.g.) correlation model as a “working” correlation model. Further, the
PSSHGEE(I) and PSSHGEE based estimates discussed in Section 2.2.1 are also
computed.

For presentational simplicity in tabular and graphics form, we rename the FSS-
GQL estimates as semi-parametric GQL (SGQL) estimates, and similarly all PSS-
GEE and PSSHGEE estimates as SGEE and SHGEE estimates, respectively. The
efficiency of these estimates are computed by comparing their simulations based
variance with the variance of the known correlation structure based estimates,
where the known correlation structure based estimates were computed by replac-
ing the Ci(ρ) matrix in the FSSGQL approach with the true correlation such as
AR(1) correlation matrix.



574 V. Warriyar K. V. and B. C. Sutradhar

Figure 1 Efficiency comparisons of various semi-parametric methods for the estimates of β1 with
γ (t) = 3 + 2(t − n+1

2 ) + (t − n+1
2 )2, under selected correlation processes: AR(1) with φ = 0.8,

MA(1) with θ = 0.4 and EQC with ζ = 0.8.

Because, the regression parameters β1 and β2 are of main interest, we mainly
concentrate on the efficiency performance of the estimation methods for these two
parameters. More specifically, we display the efficiencies for a selected correlation
parameter value in Figures 1 and 2 for the estimation of β1 and β2 respectively,
when γ (t) is chosen as 3 + 2(t − n+1

2 ) + (t − n+1
2 )2 and in Figures 3 and 4 when

γ (t) = sin(2t). When various methods of estimation for β1 and β2 are compared,
all methods appear to produce unbiased and hence consistent estimates for both
of the regression parameters. However, it is clear from Figures 1 and 2 that the
proposed SGQL approach always yields the same or more efficient estimates than
the other SGEE approaches including the unstructured correlations based SGEE
(UNS) approach. For example, for the estimation of β1 (Figure 1), under the true
AR(1) correlation structure with φ = 0.8 (ρ = 0.8) the SGQL and SGEE (EQC)
provide almost equally efficient estimate whereas the other SGEE approaches in-
cluding SGEE (UNS) provide less efficient estimate. Under the true MA(1) corre-
lation model with θ = 0.4 (ρ = 0.35), all approaches appear to produce the almost
equal efficient estimate for β1, the SGEE (UNS) being slightly inferior. Similarly
under the EQC process with ζ = 0.8 (ρ = 0.8) all SGEE approaches are less effi-
cient than the SGQL approach. Note that SGEE(I) performs the worst among all
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Figure 2 Efficiency comparisons of various semi-parametric methods for the estimates of β2
γ (t) = 3 + 2(t − n+1

2 ) + (t − n+1
2 )2, under selected correlation processes: AR(1) with φ = 0.8,

MA(1) with θ = 0.4 and EQC with ζ = 0.8.

‘working’ correlation approaches. Figure 2 shows that for the estimation of β2, all
SGEE approaches are in general inferior to the SGQL approach, the SGEE(I) being
the worst followed by SGEE (MA(1)). The efficiency performances of ‘working’
correlation methods reported through Figures 3 and 4 are the same as explained
in Figures 1 and 2. Thus, the SGQL approach uniformly produce same or higher
efficient estimates for both β1 and β2 irrespective of the true correlation structures
as well as nonparametric functional forms.

The efficiency of SHGEE(I) and SHGEE approaches (Fan et al. (2007), Fan and
Wu (2008)) discussed in Section 2.2.1 are displayed in Tables 1(a), 2 and 3, along
with other PSSGEE estimates. It is clear that similar to other SGEE approaches
they also produce the regression estimates with larger variances as compared to
the FSSGQL estimates.

Note that the estimation of β = (β1, β2)
′ require the estimating formula of

γ (t) which is estimated by using the semi-parametric QL (SQL) estimating equa-
tion (1.5) under all SGQL and SGEE approaches. For the bandwidth b involved
in the Gaussian kernel in (1.5), we have chosen b = 1

(Kn)1/5 (Pagan and Ullah
(1999, p. 25)). For selected values of the correlation parameter, the estimates of
γ (t) = 3 + 2(t − n+1

2 ) + (t − n+1
2 )2 for all possible values of t are shown in
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Figure 3 Efficiency comparisons of various semi-parametric methods for the estimates of β1 with
γ (t) = sin 2t , under selected correlation processes: AR(1) with φ = 0.8, MA(1) with θ = 0.4 and
EQC with ζ = 0.8.

Figure 4 Efficiency comparisons of various semi-parametric methods for the estimates of β2 with
γ (t) = sin 2t , under selected correlation processes: AR(1) with φ = 0.8, MA(1) with θ = 0.4 and
EQC with ζ = 0.8.
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Table 1(a) Estimates under the true AR(1) model. Simulated means (SMs), simulated standard
errors (SSEs) and estimated standard errors (ESEs) of the estimates of regression parameters β1 = 1
and β2 = 0.5, under AR(1) correlation model for selected values of the model parameters φ and σ 2;
with K = 100; n = 4; and 1000 simulations

φ (σ 2) Method Quantity β̂1 β̂2 α̂ ρ̂1 ρ̂2 ρ̂3

0.5 (1.33) SGEE (AR(1)) SM 0.9997 0.5082 0.4974
SSE 0.2339 0.3073 0.0580
ESE 0.2228 0.2916

SGQL SM 0.9993 0.5072 0.4987 0.2489 0.1277
SSE 0.2340 0.3073 0.0504 0.0728 0.0973
ESE 0.2228 0.2910

SGEE (UNS) SM 0.9999 0.5077
SSE 0.2365 0.3105
ESE 0.2233 0.2910

SGEE(I) SM 0.9999 0.5094
SSE 0.2343 0.3715
ESE 0.2279 0.3029

SGEE (MA(1)) SM 0.9996 0.5086 0.4692
SSE 0.2349 0.3099 0.0251
ESE 0.2546 0.2864

SGEE (EQC) SM 0.9998 0.5087 0.3529
SSE 0.2339 0.3112 0.0549
ESE 0.1850 0.3333

SHGEE(I) SM 0.9999 0.5093
SSE 0.2343 0. 3722
ESE 0.2290 0.3044

SHGEE SM 0.9991 0.5074 0.4983 0.2500 0.1292
SSE 0.2337 0.3077 0.0477 0.0732 0.0981
ESE 0.2236 0.2930

0.8 (2.78) SGEE (AR(1)) SM 1.0005 0.5066 0.7998
SSE 0.2425 0.3149 0.0298
ESE 0.2354 0.3002

SGQL SM 1.0003 0.5057 0.8001 0.6400 0.5140
SSE 0.2425 0.3155 0.0316 0.0504 0.0730
ESE 0.2353 0.2981

SGEE (UNS) SM 1.0013 0.5047
SSE 0.2491 0.3253
ESE 0.2331 0.2907

SGEE(I) SM 1.0022 0.5181
SSE 0.2513 0.6259
ESE 0.3291 0.4374
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Table 1(a) (Continued)

φ (σ 2) Method Quantity β̂1 β̂2 α̂ ρ̂1 ρ̂2 ρ̂3

SGEE (MA(1)) SM 1.0018 0.5111 0.4800
SSE 0.2490 0.3911 0.0000
ESE 0.3683 0.4106

SGEE (EQC) SM 1.0011 0.5083 0.6987
SSE 0.2425 0.3250 0.0400
ESE 0.1839 0.4004

SHGEE(I) SM 1.0023 0.5181
SSE 0.2524 0.6275
ESE 0.3313 0.4401

SHGEE SM 1.001 0.5062 0.8001 0.6418 0.5180
SSE 0.2450 0.3178 0.0263 0.0503 0.0735
ESE 0.2360 0.3021

Table 1(b) Estimates under the true AR(1) model. Simulated means (SMs) and simulated standard
errors (SSEs) of the estimates of regression parameters β1 = 1 and β2 = 0.5, under AR(1) correla-
tion model for selected values of the model parameters φ and σ 2; with γ (t) = 3 + 2(t − n+1

2 )+ (t −
n+1

2 )2; K = 100; n = 4; and 1000 simulations (Epanechnikov Kernel)

φ (σ 2) Method Quantity β̂1 β̂2 α̂ ρ̂1 ρ̂2 ρ̂3

0.5 (1.33) SGEE (AR(1)) SM 0.9997 0.5082 0.4974
SSE 0.2339 0.3073 0.0580

SGQL SM 0.9993 0.5072 0.4988 0.2490 0.1278
SSE 0.2340 0.3071 0.0504 0.0728 0.0973

SGEE (UNS) SM 0.9999 0.5076
SSE 0.2366 0.3105

SGEE(I) SM 0.9999 0.5094
SSE 0.2343 0.3714

SGEE (MA(1)) SM 0.9996 0.5086 0.4693
SSE 0.2349 0.3099 0.0251

SGEE (EQC) SM 0.9998 0.5087 0.3530
SSE 0.2333 0.3112 0.0549

0.8 (2.78) SGEE (AR(1)) SM 1.0005 0.5066 0.7998
SSE 0.2425 0.3149 0.0298

SGQL SM 1.0003 0.5057 0.8002 0.6401 0.5140
SSE 0.2425 0.3155 0.0316 0.0504 0.0730
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Table 1(b) (Continued)

φ (σ 2) Method Quantity β̂1 β̂2 α̂ ρ̂1 ρ̂2 ρ̂3

SGEE (UNS) SM 1.0013 0.5047
SSE 0.2491 0.3253

SGEE(I) SM 1.0022 0.5181
SSE 0.2513 0.6259

SGEE (MA(1)) SM 1.0018 0.5111 0.4800
SSE 0.2490 0.3911 0.0000

SGEE (EQC) SM 1.0011 0.5083 0.6988
SSE 0.2424 0.3250 0.0400

Table 2 Estimates under the true MA(1) model. Simulated means (SMs), simulated standard errors
(SSEs) and estimated standard errors (ESEs) of the estimates of regression parameters β1 = 1 and
β2 = 0.5, under MA(1) correlation model for selected values of the model parameters θ and σ 2;
with K = 100; n = 4; and 1000 simulations

θ (σ 2) Method Quantity β̂1 β̂2 α̂ ρ̂1 ρ̂2 ρ̂3

0.1 SGEE (MA(1)) SM 1.0014 0.4982 0.0971
SSE 0.2005 0.2641 0.0586
ESE 0.2038 0.2685

SGQL SM 1.0011 0.4986 0.0971 0.0000 −0.0018
SSE 0.2009 0.2643 0.0586 0.0684 0.0982
ESE 0.2035 0.2677

SGEE (UNS) SM 1.0001 0.4976
SSE 0.2026 0.2654
ESE 0.2040 0.2688

SGEE(I) SM 1.0013 0.4992
SSE 0.2005 0.2650
ESE 0.1985 0.2638

SGEE (AR(1)) SM 1.0013 0.4983 0.0865
SSE 0.2006 0.2651 0.0810
ESE 0.2018 0.2679

SGEE (EQC) SM 1.0012 0.4985 0.0481
SSE 0.2005 0.2642 0.0449
ESE 0.1939 0.2714

SHGEE(I) SM 1.0118 0.4996
SSE 0.2007 0.2656
ESE 0.1994 0.2651

SHGEE SM 1.0015 0.4992 0.0972 −0.0000 −0.0017
SSE 0.2014 0.2658 0.0583 0.0685 0.0990
ESE 0.2044 0.2690
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Table 2 (Continued)

θ (σ 2) Method Quantity β̂1 β̂2 α̂ ρ̂1 ρ̂2 ρ̂3

0.4 SGEE (MA(1)) SM 1.0008 0.4948 0.3435
SSE 0.2275 0.2781 0.0528
ESE 0.2314 0.2838

SGQL SM 1.0004 0.4954 0.3435 −0.0007 −0.0033
SSE 0.2280 0.2784 0.0528 0.0726 0.0973
ESE 0.2313 0.2830

SGEE (UNS) SM 0.9991 0.4949
SSE 0.2298 0.2802
ESE 0.2318 0.2835

SGEE(I) SM 1.0003 0.4970
SSE 0.2284 0.3010
ESE 0.2126 0.2826

SGEE (AR(1)) SM 1.0004 0.4959 0.2778
SSE 0.2278 0.2803 0.0731
ESE 0.2190 0.2894

SGEE (EQC) SM 1.0002 0.4962 0.1702
SSE 0.2281 0.2825 0.0523
ESE 0.1945 0.3058

SHGEE(I) SM 1.0011 0.4975
SSE 0.2281 0.3009
ESE 0.2137 0.2841

SHGEE SM 1.0008 0.4969 0.3430 −0.0002 −0.0033
SSE 0.2283 0.2784 0.0511 0.0728 0.0983
ESE 0.2323 0.2846

Figures 5, 6 and 7 under true AR(1), MA(1) and EQC models, respectively. We
have also computed the estimates for γ (t) = sin(2t) under all these three true cor-
relation models, but displayed the EQC case only in Figure 8 to save space. It is
clear from the these four figures that this nonparametric function is estimated very
well by the semi-parametric QL approach.

Further note that as a reviewer suggested, by generating the data under the
AR(1) correlation structure, we have estimated the γ (t) = 3 + 2(t − n+1

2 ) + (t −
n+1

2 )2 solving the semi-parametric QL estimating equation (1.5) but by using the
well known Epanechnikov kernel (Pagan and Ullah (1999, p. 28), Fan and Gijbels
(1996), Chen and Jin (2005))

phu(ψ) =
⎧⎪⎨
⎪⎩

1

4

[
1 − ψ2]

, for |ψ | ≤ 1,with ψ = t0 − thu

b
,

0, otherwise.
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Table 3 Estimates under the true EQC model. Simulated means (SMs), simulated standard errors
(SSEs), and estimated standard errors (ESEs) of the estimates of regression parameters β1 = 1 and
β2 = 0.5, under Equi correlation model for selected values of the model parameters ζ and σ 2; with
K = 100; n = 4; and 1000 simulations

ζ (σ 2) Method Quantity β̂1 β̂2 α̂ ρ̂1 ρ̂2 ρ̂3

0.5 SGEE (EQC) SM 0.9967 0.5211 0.4994
SSE 0.2111 0.4088 0.0504
ESE 0.2005 0.3933

SGQL SM 0.9968 0.5194 0.5003 0.4986 0.4985
SSE 0.2115 0.4088 0.0564 0.0577 0.0870
ESE 0.2003 0.3933

SGEE (UNS) SM 0.9979 0.5205
SSE 0.2125 0.4118
ESE 0.2000 0.3933

SGEE(I) SM 0.9968 0.5215
SSE 0.2124 0.5019
ESE 0.2797 0.3717

SGEE (AR(1)) SM 0.9967 0.5204 0.6388
SSE 0.2131 0.4180 0.0450
ESE 0.2494 0.3231

SGEE (MA(1)) SM 0.9969 0.5201 0.4668
SSE 0.2140 0.4165 0.0282
ESE 0.3123 0.3520

SHGEE(I) SM 0.9967 0.5214
SSE 0.2131 0.5036
ESE 0.2813 0.3738

SHGEE SM 0.9971 0.5195 0.5011 0.4999 0.5011
SSE 0.2121 0.4107 0.0551 0.0579 0.0768
ESE 0.2011 0.3962

0.8 SGEE (EQC) SM 0.9968 0.5216 0.7992
SSE 0.2135 0.4725 0.0274
ESE 0.2023 0.4604

SGQL SM 0.9968 0.5192 0.7998 0.7989 0.7986
SSE 0.2138 0.4725 0.0317 0.0296 0.0532
ESE 0.2012 0.4575

SGEE (UNS) SM 0.9983 0.5212
SSE 0.2170 0.4777
ESE 0.1989 0.4528

SGEE(I) SM 0.9981 0.5325
SSE 0.2279 0.8811
ESE 0.4420 0.5874

SGEE (AR(1)) SM 0.9964 0.5198 0.8715
SSE 0.2154 0.4860 0.0188
ESE 0.2614 0.3305



582 V. Warriyar K. V. and B. C. Sutradhar

Table 3 (Continued)

ζ (σ 2) Method Quantity β̂1 β̂2 α̂ ρ̂1 ρ̂2 ρ̂3

SGEE (MA(1)) SM 0.9980 0.5252 0.4800
SSE 0.2255 0.5723 0.0000
ESE 0.4947 0.5515

SHGEE(I) SM 0.9981 0.5325
SSE 0.2297 0.8828
ESE 0.4454 0.5917

SHGEE SM 0.9975 0.5201 0.8007 0.8002 0.8010
SSE 0.2167 0.4783 0.0288 0.0296 0.0364
ESE 0.2029 0.4619

Figure 5 Selected correlation structure based fully standardized semi-parametric GQL estimation
for the unspecified time dependent function (γ (t)) in a linear model with AR(1) correlated errors.
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Figure 6 Selected correlation structure based fully standardized semi-parametric GQL estimation
for the unspecified time dependent function (γ (t)) in a linear model with MA(1) correlated errors.

in place of the Gaussian kernel

phu

(
t0 − thu

b

)
= 1√

2πb
exp

(−1

2

(
t0 − thu

b

)2)
.

The estimates of γ (t) were found to be almost the same as those produced
in Figure 5, and hence are not reproduced. The corresponding regression es-
timates under this alternative kernel are given in Table 1(b). When compared
to Table 1(a), the estimates and standard errors are also found to be almost
the same. Thus the Gaussian and the Epanechnikov kernel appear to perform
almost the same in estimating γ (t) and hence β , in the present simulation
setup.
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Figure 7 Selected correlation structure based fully standardized semi-parametric GQL estimation
for the unspecified time dependent function (γ (t)) in a linear model with Equi correlated errors.

4 Concluding remarks

In a semi-parametric correlation model, the estimation of the finite dimensional
regression parameters is affected by both the estimation of infinite dimensional
nonparametric function and the estimation of correlation structure of the repeated
responses. Under the assumption that the responses follow a class of Gaussian
type auto-correlations, this paper has demonstrated that the proposed FSSGQL ap-
proach is highly efficient as compared to the existing various PSSGEE approaches
for the estimation of regression parameters. Note that among all PSSGEE ap-
proaches, as expected, the independence assumption based semi-parametric GEE
approach was found to be the worst in almost all cases.
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Figure 8 Selected correlation structure based fully standardized semi-parametric GQL estimation
for the unspecified time dependent function (γ (t) = sin 2t) in a linear model with Equi correlated
errors.
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