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Abstract. This paper studies the problem of testing the null assumption of
no-change in the mean of chronologically ordered independent observations
on a random variable X versus the at most one change in the mean alternative
hypothesis. The approach taken is via a Darling–Erdős type self-normalized
maximal deviation between sample means before and sample means after
possible times of a change in the expected values of the observations of a
random sample. Asymptotically, the thus formulated maximal deviations are
shown to have a standard Gumbel distribution under the null assumption of
no change in the mean. A first such result is proved under the condition that
EX2 log log(|X| + 1) < ∞, while in the case of a second one, X is assumed
to be in a specific class of the domain of attraction of the normal law, possibly
with infinite variance.

1 Introduction and main results

Let X,X1,X2, . . . be nondegenerate independent identically distributed (i.i.d.)
real-valued random variables (r.v.’s) with a finite mean EX = μ. We are interested
in testing the null assumption

H0 :X1,X2, . . . ,Xn is a random sample on X with a finite mean EX = μ

versus the “at most one change in the mean” (AMOC) alternative hypothesis

HA : there is an integer k∗,1 ≤ k∗ < n such that

EX1 = · · · = EXk∗ �= EXk∗+1 = · · · = EXn.

The hypothesized time k∗ of at most one change in the mean is usually un-
known. Hence, given chronologically ordered independent observables X1,X2,

. . . ,Xn,n ≥ 1, in order to test H0 versus HA, from a nonparametric point of view
it appears to be reasonable to compare the sample mean (X1 + · · · + Xk)/k =:
Sk/k at any time 1 ≤ k < n to the sample mean (Xk+1 + · · · + Xn)/(n − k) =:
(Sn − Sk)/(n − k) after time 1 ≤ k < n via functionals in k of the family of the
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standardized statistics

�n(k) :=
(
n

k

n

(
1 − k

n

))1/2(
Sk

k
− Sn − Sk

n − k

)
(1.1)

= 1

( k
n
(1 − k

n
))1/2

(
Sk

n1/2 − k

n

Sn

n1/2

)
, 1 ≤ k < n.

For instance, one would want to reject H0 in favor of HA for large observed values
of

�n := max
1≤k<n

∣∣�n(k)
∣∣. (1.2)

On the other hand, when assuming for example that the independent observ-
ables X1, . . . ,Xn,n ≥ 1, are N(μ,σ 2) random variables, then we find ourselves
modeling and testing for a parametric shift in the mean AMOC problem. It is,
however, easy to check that, when the variance σ 2 is known, then

−2 log�k = 1

σ 2

(
�n(k)

)2
, (1.3)

where �k is the likelihood ratio statistic if the change in the mean occurs at k∗ = k.
Hence, the maximally selected likelihood ratio statistic max1≤k<n(−2 log�k) will
be large if and only if �n of (1.2) is large. A similar conclusion holds true if
the variance σ 2 is an unknown but constant nuisance parameter (cf. Gombay and
Horváth (1994, 1996a, 1996b), and Csörgő and Horváth (1997, Section 1.4), and
references therein). Namely in this case the maximally selected likelihood ratio
statistic max1≤k<n(−2 log�k) will be large if and only if

�̂k := max
1≤k<n

1

σ̂k,n

∣∣�n(k)
∣∣ (1.4)

is large, where

σ̂ 2
k,n := 1

n

{ ∑
1≤i≤k

(
Xi − Sk

k

)2

+ ∑
k<i≤n

(
Xi − Sn − Sk

n − k

)2}
. (1.5)

These conclusions, and further examples as well in Csörgő and Horváth (1988,
Section 2), and in Csörgő and Horváth (1997, Section 1.4) that are based on Gom-
bay and Horváth (1994, 1996a, 1996b), show that under the null hypothesis H0
a large number of parametric and nonparametric modeling of AMOC problems
result in the same test statistic, namely that of (1.2), or its variant in (1.4). Conse-
quently, if the underlying distribution is not known, the just mentioned test statis-
tics should continue to work just as well when testing for H0 versus HA as above.
Furthermore, Brodsky and Darkhovsky (1993) argue quite convincingly in their
Section 1.2 that detecting changes in the mean (mathematical expectation) of a
random sequence constitutes one basic situation to which other changes in distri-
bution can be conveniently reduced. Thus �n and �̂n gain a somewhat focal role



540 M. Csörgő and Z. Hu

in change-point analysis in general as well. Studying the asymptotic behavior of
these statistics is clearly of interest.

Let S0 = 0, and for n ≥ 1 define the sequence of tied-down partial sums pro-
cesses

Zn(t) :=
{(

S[(n+1)t] − [
(n + 1)t

]
Sn/n

)
/n1/2, 0 ≤ t < 1,

0, t = 1.
(1.6)

In view of (1.1), we are interested in exploring the asymptotic behavior of the
standardized sequence of stochastic processes{

1

(t (1 − t))1/2 Zn(t),0 ≤ t < 1
}
.

We first note that

sup
0<t<1

1

σ

∣∣Zn(t)
∣∣/(

t (1 − t)
)1/2

and, naturally, also the standardized statistics �n and �̂n (cf. (1.2) and (1.4)) con-
verge in distribution to ∞ as n → ∞ even if the null assumption of no change in
the mean is true. Hence, in order to secure nondegenerate limiting behavior under
H0, we seek appropriate renormalizations.

For example, it is proved in Csörgő, Szyszkowicz and Wang (2004) (cf. Corol-
lary 5.2 in there) that, on assuming X to be in the domain of attraction of the
normal law (DAN), possibly with infinite variance, then, as n → ∞,

sup
0<t<1

1

σ̂[nt+1],n
∣∣Zn(t)

∣∣/q(t)
d→ sup

0<t<1

∣∣B(t)
∣∣/q(t), (1.7)

where {B(t),0 ≤ t ≤ 1} is a Brownian bridge, σ̂k,n,1 ≤ k ≤ n − 1 is as in (1.5),
σ̂ 2

n,n := 1
n

∑
1≤i≤n(Xi − Sn

n
)2,

q(t) :=
{(

t log log
(
t−1))1/2

, t ∈ (0,1/2],(
(1 − t) log log

(
(1 − t)−1))1/2

, t ∈ [1/2,1),

and logx := log(max{e, x}).
Large values of the statistics in (1.7) indicate evidence against H0. The weight

function q(·) is to emphasize changes that may have recurred near 0 and n. We note
in passing that the result in (1.7) cannot be deduced via first proving a “correspond-
ing” weak invariance principle on D[0,1] (cf. Csörgő et al. (2004, Remark 5.2),
as well as Corollaries 2 and 4 of Csörgő et al. (2008a) and their extension (46) in
Theorem 4 of Csörgő et al. (2008b)). The applicability of (1.7) is much enhanced
by Orasch and Pouliot (2004), tabulating functionals in weighted sup-norm.

An alternative way of studying change in the mean is via Darling–Erdős type
theorems. For example (cf. Theorems 2.1.2, A.4.2 and Corollary 2.1.2 in Csörgő
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and Horváth (1997)), under H0 with EX2 log log(|X| + 1) < ∞, we have

lim
n→∞P

(
a(n) max

1≤k<n

1

σ̂k,n

(
n2

k(n − k)

)1/2

Zn

(
k

n + 1

)
≤ t + b(n)

)
(1.8)

= exp
(−e−t ), t ∈ R,

where

a(n) = (2 log logn)1/2,
(1.9)

b(n) = 2 log logn + 1

2
log log logn − 1

2
logπ.

In view of (1.7), the aim of this paper is to explore the possibility of extending
the result of (1.8) to versions of Zn(

k
n+1) under H0 with X ∈ DAN, for the sake of

having an alternative approach to the sup-norm procedure of (1.7) for studying the
problem of a change in the mean in DAN, possibly with EX2 = ∞.

Define the family of statistics

Tk,n =
(

Sk

k
− Sn − Sk

n − k

)
/√∑k

i=1(Xi − Sk/k)2

k(k − 1)
+

∑n
i=k+1(Xi − (Sn − Sk)/(n − k))2

(n − k)(n − k − 1)
, (1.10)

2 ≤ k ≤ n − 2.

We note in passing that, on writing

σ̃ 2
k,n := ∑

1≤i≤k

(
Xi − Sk

k

)2/(
k(k − 1)

)

+ ∑
k<i≤n

(
Xi − Sn − Sk

n − k

)2/(
(n − k)(n − k − 1)

)
, (1.11)

2 ≤ k ≤ n − 2,

we get

Tk,n = 1

σ̃k,n

(
n

k(n − k)

)1/2(
n2

k(n − k)

)1/2

Zn

(
k

n + 1

)
,

(1.12)
2 ≤ k ≤ n − 2.

We note also that (k(n − k)/n)σ̃ 2
k,n is an unbiased estimator of σ 2 when

EX2 < ∞.
Our first result is to say that, under the same moment condition for X,

the self-normalized statistics max2≤k≤n−2 Tk,n behaves like max1≤k<n
1

σ̂k,n
×
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( n2

k(n−k)
)1/2Zn(

k
n+1) does asymptotically (cf. our Theorem 1.1 and (1.8)). Our

main result, Theorem 1.2, however concludes the same asymptotic behavior for
max2≤k<n−2 Tk,n for X ∈ DAN with possibly infinite variance.

Theorem 1.1. Assume that H0 holds and

EX2 log log
(|X| + 1

)
< ∞. (1.13)

Then

lim
n→∞P

(
a(n) max

2≤k≤n−2
Tk,n ≤ t + b(n)

)
= exp

(−e−t ), t ∈R.

Write l(x) := E(X−μ)2I (|X−μ| ≤ x). Assume that X belongs to the domain
of attraction of the normal law. Then l(x) is a slowly varying function as x → ∞.
Consequently, there exists some a > 1 such that for any x > a (see, e.g., Galambos
and Seneta (1973)),

�(x) = exp
{
c(x) +

∫ x

a

ε(t)

t
dt

}
, (1.14)

where c(x) → c(|c| < ∞) as x → ∞ and ε(t) → 0 as t → ∞.

Theorem 1.2. Assume that H0 holds and l(x) is a slowly varying function at
∞ that, in terms of the representation (1.14), satisfies the additional conditions
c(x) ≡ c and ε(t) ≤ C0/ log t for some C0 > 0, that is, X ∈ DAN, possibly with
infinite variance, under the latter specific conditions on l(x). Then, for all t ∈ R,

lim
n→∞P

(
a(n) max

2≤k≤n−2
Tk,n ≤ t + b(n)

)
= exp

(−e−t ).
Remark 1. The additional conditions in Theorem 1.2 are satisfied by a large class
of slowly varying functions, such as l(x) = (log logx)α and l(x) = (logx)α , for
example, for some 0 < α < ∞.

Remark 2. Csörgő, Szyszkowicz and Wang (2003) obtained the following
Darling–Erdős theorem for self-normalized sums: suppose that H0 holds with
EX = 0 and l(x) is a slowly varying function at ∞, satisfying

l
(
x2) ≤ Cl(x) for some C > 0. (1.15)

Then, for every t ∈ R,

lim
n→∞P

(
a(n) max

1≤k≤n
Sk/Vk ≤ t + b(n)

)
= exp

(−e−t ).
If l(x) has the representation (1.14) with c(x) ≡ c and ε(t) ≤ C0/ log t for some
C0 > 0, then

l(x2)

l(x)
= exp

{∫ x2

x

ε(t)

t
dt

}
≤ exp

{
C0

∫ x2

x

1

t log t
dt

}
= 2C0 .
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So, (1.15) holds under the additional smoothness conditions for l(x) that are
needed for results like Lemma 2.1, for example. On the other hand, if ε(x) =
(logx)−α for some 0 < α < 1, then limx→∞ l(x2)/ l(x) = ∞, that is, (1.15) fails.
Thus, the additional conditions on l(x) in Theorem 1.2 that are sufficient for hav-
ing (1.15), are seen to be not far from being also necessary.

Before proving Theorems 1.1 and 1.2, we pose the following question.

Question 1. In view of Theorems 1.1 and 1.2, one may like to know if the result of
(1.8) could also hold true when replacing condition (1.13) by X ∈ DAN, possibly
with EX2 = ∞.

Question 2. In view of having Theorems 1.1 and 1.2, one would hope to have
(1.7) in terms of Tk,n, that is, when replacing 1

σ̂[nt+1],n by 1
σ̃[nt+1],n ( n

[nt+1](n−[nt]) )
1/2

on the left-hand side of (1.7), with σ̃k,n,1 ≤ k ≤ n − 1 defined as in (1.11) and
σ̃ 2

n,n := 1
n2

∑
1≤i≤n(Xi − Sn

n
)2.

As to these questions, it is clear from the respective proofs of (1.8) (cf. Corol-
lary 2.1.2 in Csörgő and Horváth (1997)) and Theorem 1.1 that, under the condi-
tion (1.13), the two estimators σ̂ 2

k,n and (k(n − k)/n)σ̃ 2
k,n of σ 2 are asymptotically

equivalent. When Var(X) = ∞, this does not appear to be true any more, that is,
when these “estimators” in hand are being used as self-normalizers. However, we
could not resolve this problem as posed in the context of these two questions.

Thus, what we can say in conclusion is that, under H0 and the condition (1.13),
the respective statements of Theorem 1.1 and (1.8) are asymptotically equivalent.
Since under the null hypothesis H0 a large number of parametric and nonparamet-
ric modeling of AMOC problems result in the same test statistic, namely that of
(1.2), or its variant as in (1.4), it appears to be more natural to study these prob-
lems via the Darling–Erdős type self-normalized statistics in hand than via that of
(1.7), say. Moreover, our main result, Theorem 1.2, concludes the same asymptotic
behavior for the same self-normalized statistics when X is in DAN with possibly
infinite variance. Consequently, it provides an alternative way to that of (1.7) for
studying the problem of change in the mean of X in DAN with possibly infinite
variance. Naturally, the two procedures will have to be further studied in the latter
context for the sake of comparing their performance. As of now, we can only say
that a practical advantage of having Theorem 1.2 is its immediate use as a result
of the closed analytic form of its conclusion as compared to the lack of that for the
conclusion of (1.7), whose desired p-values have to be simulated and tabulated for
its possible use. On the other hand, we have so far not succeeded in establishing
conditions for the consistency of testing for H0 versus HA via using our Theorems
1.1 and 1.2. This has turned out to be a more challenging problem than we have
first thought, and hence continue working on it.
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2 Proofs of Theorems 1.1 and 1.2

Without loss of generality, in this section, we assume that μ = 0.

Proof of Theorem 1.1. Write Kn = exp{log1/3 n}. With σ̃ 2
k,n as in (1.11), in view

of (1.12), at first, we prove that, as n → ∞,

max
Kn<k<n−Kn

∣∣∣∣k(n − k)

n
σ̃ 2

k,n − σ 2
∣∣∣∣ = oP

(
(log logn)−1)

. (2.1)

Write b̃n = n/ log logn. Then b̃n/n ↓ and b̃2
n

∑∞
i=n b̃−2

i = O(n). Noting that, for
sufficiently large n, we have

P
(∣∣X2 − σ 2∣∣ > b̃n

) ≤ P
(∣∣X2 − σ 2∣∣ log log

(∣∣X2 − σ 2∣∣ + 1
)
> b̃n log log b̃n

)
≤ P

(∣∣X2 − σ 2∣∣ log log
(∣∣X2 − σ 2∣∣ + 1

)
> (1/2)n

)
,

and E|X2 −σ 2| log log(|X2 −σ 2|+1) < ∞ (by the assumption EX2 log log(|X|+
1) < ∞), we conclude

∞∑
n=1

P

(∣∣X2 − σ 2∣∣ >
n

log logn

)
< ∞.

By Theorem 3 in Chow and Teicher (1978, p. 126), we get

k∑
i=1

(
X2

i − σ 2) = o
(
k(log log k)−1)

a.s. as k → ∞.

Hence, by the classical Hartman–Wintner LIL, as k → ∞, we have

k∑
i=1

(Xi − Sk/k)2 − kσ 2 =
k∑

i=1

(
X2

i − kσ 2) − S2
k /k

= o
(
k(log log k)−1)

a.s.

Consequently,

max
Kn<k≤n

∣∣∣∣∣1

k

k∑
i=1

(Xi − Sk/k)2 − σ 2

∣∣∣∣∣ = oP

(
(log logn)−1)

,

and

max
1≤k<n−Kn

∣∣∣∣∣ 1

n − k

n∑
i=k+1

(
Xi − (Sn − Sk)/(n − k)

)2 − σ 2

∣∣∣∣∣ = oP

(
(log logn)−1)

.

Hence (2.1) holds.
By Theorem 2.1.2 in Csörgő and Horváth (1997), we have

(2 log logn)−1/2 max
1≤k<n

(
n

k(n − k)

)1/2∣∣∣∣Sk − k

n
Sn

∣∣∣∣ P→ σ.
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This, together with (2.1), implies

a(n)

∣∣∣∣ max
Kn<k<n−Kn

Tk,n − 1

σ
max

Kn<k<n−Kn

(
n

k(n − k)

)1/2(
Sk − k

n
Sn

)∣∣∣∣
≤ a(n) max

Kn<k<n−Kn

(
n

k(n − k)

)1/2∣∣∣∣Sk − k

n
Sn

∣∣∣∣
∣∣∣∣
(

k(n − k)

n
σ̃ 2

k

)−1/2

− σ−1
∣∣∣∣

= oP (1)(log logn)−1/2 max
1≤k<n

(
n

k(n − k)

)1/2∣∣∣∣Sk − k

n
Sn

∣∣∣∣ P→ 0.

Then from the proof of Theorem A.4.2 in Csörgő and Horváth (1997), for all t ∈ R,
it follows that

lim
n→∞P

(
a(n) max

Kn<k<n−Kn

Tk,n ≤ t + b(n)
)

= exp
(−e−t ). (2.2)

Similarly to the proof of (2.26) and (2.27) below, we get

a(n) max
2≤k≤Kn

Tk,n − b(n)
P→ −∞, (2.3)

and

a(n) max
n−Kn≤k≤n−2

Tk,n − b(n)
P→ −∞. (2.4)

Now Theorem 1.1 follows from (2.2)–(2.4). �

We continue with establishing three auxiliary lemmas for the proof of Theo-
rem 1.2.

As in Csörgő et al. (2003), we start with putting b = inf{x ≥ 1; l(x) > 0} and

ηn = inf
{
s : s ≥ b + 1,

l(s)

s2 ≤ (log logn)4

n

}
.

Let

Zj = XjI
(|Xj | > ηj

)
, Yj = XjI

(|Xj | ≤ ηj

)
,

Y ∗
j = Yj − EYj , S∗

n =
n∑

j=1

Y ∗
j , B2

n =
n∑

j=1

EY ∗2
j , V 2

n =
n∑

j=1

X2
j .

Then, as n → ∞, ηn → ∞, nl(ηn) = η2
n(log logn)4 for every large enough n and

B2
n ∼ nl(ηn). As in Csörgő et al. (2003), we may assume without loss of generality

that

B2
n = nl(ηn) = η2

n(log logn)4 for all n ≥ 1.

Let {X̃, X̃1, X̃2, . . .} be a sequence of i.i.d. random variables with X̃
d= X, in-

dependently of {X,X1,X2, . . .}. We define S̃n, Z̃j , Ỹj , Ỹ
∗
j , S̃∗

n and Ṽn similarly to
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Sn,Zj ,Yj , Y
∗
j , S∗

n and Vn. Define

Sk,n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Sk

k
− S̃n−[n/2] + S[n/2] − Sk

n − k
, if 1 ≤ k ≤ n/2;

S[n/2] + S̃n−[n/2] − S̃n−k

k
− S̃n−k

n − k
, if n/2 < k < n,

S∗
k,n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S∗
k

k
− S̃∗

n−[n/2] + S∗[n/2] − S∗
k

n − k
, if 1 ≤ k ≤ n/2;

S∗[n/2] + S̃∗
n−[n/2] − S̃∗

n−k

k
− S̃∗

n−k

n − k
, if n/2 < k < n,

B2
k,n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B2
k

k2 + B2
n−[n/2] + B2[n/2] − B2

k

(n − k)2 , if 1 ≤ k ≤ n/2;
B2[n/2] + B2

n−[n/2] − B2
n−k

k2 + B2
n−k

(n − k)2 , if n/2 < k < n,

V 2
k,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V 2
k

k2 − S2
k

k3 + Ṽ 2
n−[n/2] + V 2[n/2] − V 2

k

(n − k)2

− (S̃n−[n/2] + S[n/2] − Sk)
2

(n − k)3 , if 1 ≤ k ≤ n/2;
V 2[n/2] + Ṽ 2

n−[n/2] − Ṽ 2
n−k

k2 − (S[n/2] + S̃n−[n/2] − S̃n−k)
2

k3

+ Ṽ 2
n−k

(n − k)2 − S̃2
n−k

(n − k)3 , if n/2 < k < n,

V̄ 2
k,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V 2
k

k(k − 1)
− S2

k

k2(k − 1)
+ Ṽ 2

n−[n/2] + V 2[n/2] − V 2
k

(n − k)(n − k − 1)

− (S̃n−[n/2] + S[n/2] − Sk)
2

(n − k)2(n − k − 1)
, if 2 ≤ k ≤ n/2;

V 2[n/2] + Ṽ 2
n−[n/2] − Ṽ 2

n−k

k(k − 1)
− (S[n/2] + S̃n−[n/2] − S̃n−k)

2

k2(k − 1)

+ Ṽ 2
n−k

(n − k)(n − k − 1)
− S̃2

n−k

(n − k)2(n − k − 1)
,

if n/2 < k ≤ n − 2.

Clearly, with {Tk,n,2 ≤ k ≤ n − 2} as in (1.10), we have

{Tk,n,2 ≤ k ≤ n − 2} d=
{

Sk,n

V̄k,n

,2 ≤ k ≤ n − 2
}

for each n ≥ 4,

where, and throughout, d= stands for equality in distribution.
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Lemma 2.1. As n → ∞, we have

l(ηn) − l(ηn/(log logn)5)

l(ηn)
= o(1/ log logn). (2.5)

Proof. Since

1 ≥ l(ηn/(log logn)5)

l(ηn)
≥ exp

{
−C0

∫ ηn

η
n/(log logn)5

1

u logu
du

}

≥ exp
{
−C0

ηn

ηn/(log logn)5 logηn/(log logn)5

}
,

and ηn is a regularly varying function with index 1/2, for any ε > 0, we have
ηn/ηn/(log logn)5 ≤ (log logn)5/2+ε for sufficiently large n, and logηn/(log logn)5 ∼
(1/2) logn as n → ∞. Hence,

l(ηn) − l(ηn/(log logn)5)

l(ηn)
= o(1/ log logn). �

Lemma 2.2. As n → ∞, we have∑n
j=1(|Zj | + E|Zj |)
Bn/

√
log logn

P→ 0.

Proof. Let τj = ηj (log log j)3 and Z∗
j = XjI (ηj < |Xj | < τj ). From the proof

of Lemma 2 in Csörgő et al. (2003), we have P(Zj �= Z∗
j , i.o.) = 0. Hence, by

Chebyshev’s inequality, in order to prove Lemma 2.2, we only need to prove that,
as n → ∞,

n∑
j=1

E
∣∣Z∗

j

∣∣ = o(Bn/
√

log logn), (2.6)

n∑
j=1

EZ∗2
j = o

(
B2

n/ log logn
)
, (2.7)

n∑
j=1

E|Xj |I (|Xj | > τj

) = o(Bn/
√

log logn). (2.8)

We only prove (2.6) and (2.8), for the proof of (2.7) is similar to that of (2.6). Since
ηn is a regularly varying function with index 1/2, we have that for sufficiently
large n,

ηn/(log logn)16(log logn)3 ≤ ηn/(log logn)9 .
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Also, similarly, by the fact that
√

j(log log j)2/
√

l(ηj ) is a regularly varying func-
tion with index 1/2, we have that for sufficiently large n,

max
1≤j≤n/(log logn)9

j

ηj

= max
1≤j≤n/(log logn)9

√
j(log log j)2√

l(ηj )
≤

√
n√

l(ηn)(log logn)2
.

Hence, by using the same method as that in the proof of Lemma 2.1, we have

n∑
j=1

E
∣∣Z∗

j

∣∣ ≤
n/(log logn)16∑

j=1

E|X1|I (
ηi < |X1| < ηn/(log logn)9

)

+ nE|X1|I (
ηn/(log logn)16 < |X1| < ηn(log logn)3)

≤
n/(log logn)9∑

j=1

jE|X1|I (
ηj < |X1| < ηj+1

)

+ n(l(ηn(log logn)3) − l(ηn/(log logn)16))

ηn/(log logn)16

= o
(
Bn/(log logn)

)
, n → ∞.

Thus, (2.6) is proved.
Next, we prove (2.8). By the fact that E|X|I (|X| ≥ x) = o(1)l(x)/x as x → ∞,

n∑
j=1

E|Xj |I (|Xj | > τj

) = o(1)

n∑
j=1

l(τj )

τj

≤ o(1)l(τn)

n∑
j=1

1

τj

.

Since 1/τn is a regularly varying function with index −1/2, by Tauberian theorem
(see, for instance, Theorem 5 in Feller (1971, p. 447), we have

∑n
j=1

1
τj

∼ 2n/τn

as n → ∞. Hence, as n → ∞,

n∑
j=1

E|Xj |I (|Xj | > τj

) = o(1)
nl(τn)

τn

= o(1)Bn/(log logn).

Thus, (2.8) is proved and the proof of Lemma 2.2 is complete. �

Lemma 2.3. For all t ∈ R, we have

lim
n→∞P

(
a(n) max

1≤k<n
S∗

k,n/Bk,n ≤ t + b(n)
)

= exp
(−e−t ), (2.9)

and

lim
n→∞P

(
a(n) max

1≤k<n

∣∣S∗
k,n

∣∣/Bk,n ≤ t + b(n)
)

= exp
(−2e−t ). (2.10)
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Proof. We only prove (2.9), since the proof of (2.10) is similar. Since l(x2) ≤
2C0 l(x), by (42) in Csörgő et al. (2003), there exist two independent Wiener pro-
cesses W(1) and W(2) such that, as n → ∞,

S∗
n − W(1)(B2

n

) = o(Bn/
√

log logn) a.s. (2.11)

and

S̃∗
n − W(2)(B2

n

) = o(Bn/
√

log logn) a.s. (2.12)

Define Kn = exp{log1/3 n} and

W(n, t) =
⎧⎪⎨
⎪⎩

n−1/2(
W(1)(nt) − t

(
W(1)(n/2) + W(2)(n/2)

))
, 0 ≤ t ≤ 1/2,

n−1/2(−W(2)(n − nt) + (1 − t)
(
W(1)(n/2) + W(2)(n/2)

))
,

1/2 < t ≤ 1.

Computing its covariance function, one concludes that W(n, t) is a Brownian
bridge in 0 ≤ t ≤ 1 for each n ≥ 1. Now, as n → ∞, we have

√
log logn max

Kn≤k≤n/2

∣∣∣∣ S
∗
k,n

Bk,n

− B2
nW(B2

n,B2
k /B2

n)√
B2

k (B2
n − B2

k )

∣∣∣∣ P→ 0. (2.13)

To prove (2.13), we notice that for k ≤ n/2,

S∗
k,n = n

k(n − k)

(
S∗

k − k

n

(
S̃∗

n−[n/2] + S∗[n/2]
))

.

Hence, for k ≤ n/2,∣∣∣∣ S
∗
k,n

Bk,n

− B2
nW(B2

n,B2
k /B2

n)√
B2

k (B2
n − B2

k )

∣∣∣∣

≤ ∣∣W (
B2

n,B2
k /B2

n

)∣∣∣∣∣∣ nBn

k(n − k)Bk,n

− B2
n√

B2
k (B2

n − B2
k )

∣∣∣∣
(2.14)

+ nBn

k(n − k)Bk,n

∣∣∣∣k(n − k)

nBn

S∗
k,n − W

(
B2

n,B2
k /B2

n

)∣∣∣∣
:= L1(k, n) + L2(k, n).

First, we estimate L1(k, n). We have

k2(n − k)2B2
k,n

n2B2
n

− B2
k (B2

n − B2
k )

B4
n

=
(

B2
k

B2
n

− k

n

)2

− k2(B2
n − B2[n/2] − B2

n−[n/2])
n2B2

n

.
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Note that (k/n)5/8 ≤ Bk/Bn ≤ (k/n)3/8 holds for all Kn ≤ k ≤ n and sufficiently
large n by the fact that Bn is a regularly varying function with index 1/2. Then

max
Kn≤k≤n/(log logn)5

B3
n

B3
k

(
B2

k

B2
n

− k

n

)2

≤ 2 max
Kn≤k≤n/(log logn)5

(
Bk

Bn

+ B3
nk2

B3
k n2

)

≤ 4(log logn)−5/8.

Also, by Lemma 2.1,

max
n/(log logn)5<k≤n/2

B3
n

B3
k

(
B2

k

B2
n

− k

n

)2

≤ max
n/(log logn)5<k≤n/2

k2B3
n

n2B3
k

(l(ηn) − l(ηn/(log logn)5))2

l(ηn)2

= o(1/
√

log logn), n → ∞.

Hence, as n → ∞,
√

log logn max
Kn≤k≤n/2

B3
n

B3
k

(
B2

k

B2
n

− k

n

)2

→ 0. (2.15)

Again by Lemma 2.1, as n → ∞,

√
log logn max

Kn≤k≤n/2

B3
n

B3
k

k2(B2
n − B2[n/2] − B2

n−[n/2])
n2B2

n

≤
√

log logn
l(ηn) − l(η[n/2])

l(ηn)
→ 0.

Thus, as n → ∞,

√
log logn max

Kn≤k≤n/2

B3
n

B3
k

∣∣∣∣k
2(n − k)2B2

k,n

n2B2
n

− B2
k (B2

n − B2
k )

B4
n

∣∣∣∣ → 0. (2.16)

This implies that for large n and all Kn ≤ k ≤ n/2,∣∣∣∣k
2(n − k)2B2

k,n

n2B2
n

− B2
k (B2

n − B2
k )

B4
n

∣∣∣∣ ≤ 1

4

B3
k

B3
n

≤ 1

4

B2
k (B2

n − B2
k )

B4
n

BnB[n/2]
B2

n − B2[n/2]

≤ 1

2

B2
k (B2

n − B2
k )

B4
n

.

Hence, for large n and all Kn ≤ k ≤ n/2,

(1/2)B2
n√

B2
k (B2

n − B2
k )

≤ nBn

k(n − k)Bk,n

≤ 2B2
n√

B2
k (B2

n − B2
k )

. (2.17)
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Noting that |1/
√

x − 1/
√

y| ≤ |x − y|/(x√
y) for all x, y > 0, it follows from

(2.16) and (2.17) that√
log logn max

Kn≤k≤n/2

∣∣∣∣ nBn

k(n − k)Bk,n

− B2
n√

B2
k (B2

n − B2
k )

∣∣∣∣

≤
√

2 log logn max
Kn≤k≤n/2

∣∣∣∣k
2(n − k)2B2

k,n

n2B2
n

− B2
k (B2

n − B2
k )

B4
n

∣∣∣∣
(2.18)

×
(

B2
k (B2

n − B2
k )

B4
n

)−3/2

≤ 4
√

log logn max
Kn≤k≤n/2

B3
n

B3
k

∣∣∣∣k
2(n − k)2B2

k,n

n2B2
n

− B2
k (B2

n − B2
k )

B4
n

∣∣∣∣ → 0.

By properties of Brownian motion,

max
Kn≤k≤n/2

∣∣W (
B2

n,B2
k /B2

n

)∣∣ ≤ 2B−1
n sup

0≤t≤B2
n

∣∣W(1)(t)
∣∣ + B−1

n

∣∣W(2)(B2
n/2

)∣∣
d= 2 sup

0≤t≤1

∣∣W(1)(t)
∣∣ + ∣∣W(2)(1/2)

∣∣.
This together with (2.18) yields√

log logn max
Kn≤k≤n/2

L1(k, n)
P→ 0, n → ∞. (2.19)

Next, we estimate L2(k, n). By (2.11) and (2.12),∣∣∣∣k(n − k)

nBn

S∗
k,n − W

(
B2

n,B2
k /B2

n

)∣∣∣∣
≤ k

nBn

∣∣W(1)(B2
n/2

) − W(1)(B2[n/2]
)∣∣

+ k

nBn

∣∣W(2)(B2
n/2

) − W(2)(B2
n−[n/2]

)∣∣
+

∣∣∣∣kn − B2
k

B2
n

∣∣∣∣ |W
(1)(B2

n/2)| + |W(2)(B2
n/2)|

Bn

+ ok(1)Bk

Bn

√
log log k

,

where ok(1) → 0 as k → ∞. Similarly to the proof of (2.15), we have
√

log logn max
Kn≤k≤n/2

Bn

Bk

∣∣∣∣B
2
k

B2
n

− k

n

∣∣∣∣ → 0, n → ∞.

This, together with (2.17) and the fact that

|W(1)(B2
n/2)| + |W(2)(B2

n/2)|
Bn

d= ∣∣W(1)(1/2)
∣∣ + ∣∣W(2)(1/2)

∣∣,
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as n → ∞, yields√
log logn max

Kn≤k≤n/2

nBn

k(n − k)Bk,n

∣∣∣∣kn − B2
k

B2
n

∣∣∣∣ |W
(1)(B2

n/2)| + |W(2)(B2
n/2)|

Bn

P→ 0.

Similarly to the proof of Lemma 2.1, we have that, as n → ∞,√
log logn

Bn

∣∣W(1)(B2
n/2

) − W(1)(B2[n/2]
)∣∣

d=
√

log logn

(B2
n/2 − B2[n/2]

B2
n

)1/2∣∣W(1)(1)
∣∣

=
√

log logn

(
(n/2)l(ηn) − [n/2]l(η[n/2])

nl(ηn)

)1/2∣∣W(1)(1)
∣∣ P→ 0.

Hence, by (2.17), as n → ∞,√
log logn max

Kn≤k≤n/2

nBn

k(n − k)Bk,n

k

nBn

∣∣W(1)(B2
n/2

) − W(1)(B2[n/2]
)∣∣ P→ 0.

Similarly, as n → ∞,√
log logn max

Kn≤k≤n/2

nBn

k(n − k)Bk,n

k

nBn

∣∣W(2)(B2
n/2

) − W(2)(B2
n−[n/2]

)∣∣ P→ 0.

Also, by (2.17), as n → ∞,√
log logn max

Kn≤k≤n/2

nBn

k(n − k)Bk,n

ok(1)Bk

Bn

√
log logk

P→ 0.

Hence, √
log logn max

Kn≤k≤n/2
L2(k, n)

P→ 0, n → ∞. (2.20)

Now (2.13) follows from (2.14), (2.19) and (2.20). Now, similarly, as n → ∞,√
log logn max

n/2<k≤n−Kn

∣∣∣∣ S
∗
k,n

Bk,n

− B2
nW(B2

n,B2
k /B2

n)√
B2

k (B2
n − B2

k )

∣∣∣∣ P→ 0.

Hence, as n → ∞,√
log logn

∣∣∣∣ max
Kn≤k≤n−Kn

S∗
k,n

Bk,n

− sup
Kn≤k≤n−Kn

W(B2
n, t)√

(B2
k /B2

n)(1 − B2
k /B2

n)

∣∣∣∣ P→ 0.

Next, we will show that, as n → ∞,√
log logn

∣∣∣∣ sup
B2

Kn
/B2

n≤t≤B2
n−Kn

/B2
n

W(B2
n, t)√

t (1 − t)

(2.21)

− sup
Kn≤k≤n−Kn

W(B2
n, t)√

(B2
k /B2

n)(1 − B2
k /B2

n)

∣∣∣∣ P→ 0.
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Write

�n = inf
Kn+1≤k≤n−Kn

B2
k − B2

k−1

B2
n

= l(ηKn)

B2
n

and recall that W(B2
n, t) is a Brownian bridge in t ∈ [0,1] for each n ≥ 1. Hence,

to prove (2.21), we only need to show that, as n → ∞,√
log logn sup

B2
Kn

/B2
n≤t,s≤B2

n−Kn
/B2

n

sup
|t−s|≤�n

∣∣∣∣W(t) − tW(1)√
t (1 − t)

− W(s) − sW(1)√
s(1 − s)

∣∣∣∣ P→ 0,

where W(t) is a standard Brownian motion. This follows from results on the in-
crements of a Brownian motion (see, for instance, Csörgő and Révész (1981, The-
orem 1.2.1)) and by some basic calculations. We omit the details here. Hence, as
n → ∞,

√
log logn

∣∣∣∣ max
Kn≤k≤n−Kn

S∗
k,n

Bk,n

− sup
B2

Kn
/B2

n≤t≤B2
n−Kn

/B2
n

W(B2
n, t)√

t (1 − t)

∣∣∣∣ P→ 0. (2.22)

By using (A.4.30) and (A.4.31) in Csörgő and Horváth (1997), as n → ∞, we
conclude

(
2 log logB2

n

)−1/2 sup
1/B2

n≤t≤c(B2
n)

W(B2
n, t)√

t (1 − t)

P→
√

5/12,

(
2 log logB2

n

)−1/2 sup
1−c(B2

n)≤t≤1/B2
n

W(B2
n, t)√

t (1 − t)

P→
√

5/12,

where c(B2
n) = exp{(logB2

n)5/12}/B2
n . Notice that B2

Kn
/B2

n ≤ c(B2
n) and

B2
n−Kn

/B2
n ≥ 1 − c(B2

n) for sufficiently large n. Hence, as n → ∞,

a
(
B2

n

)
sup

1/B2
n≤t≤B2

Kn
/B2

n

W(B2
n, t)√

t (1 − t)
− b

(
B2

n

) P→ −∞, (2.23)

a
(
B2

n

)
sup

B2
n−Kn

/B2
n≤t≤1−1/B2

n

W(B2
n, t)√

t (1 − t)
− b

(
B2

n

) P→ −∞. (2.24)

By (A.4.29) and Theorem A.3.1 in Csörgő and Horváth (1997), we arrive at

lim
n→∞P

(
a
(
B2

n

)
sup

1/B2
n≤t≤1−1/B2

n

W(B2
n, t)√

t (1 − t)
≤ t + b

(
B2

n

)) = exp
(−e−t ). (2.25)

Now, from (2.22)–(2.25) it follows that for all t ∈R,

lim
n→∞P

(
a
(
B2

n

)
max

Kn≤k≤n−Kn

S∗
k,n/Bk,n ≤ t + b

(
B2

n

)) = exp
(−e−t ).
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This, together with (2.28) below, implies that for all t ∈ R,

lim
n→∞P

(
a
(
B2

n

)
max

1≤k<n
S∗

k,n/Bk,n ≤ t + b
(
B2

n

)) = exp
(−e−t ).

Since, as n → ∞, log logB2
n = log logn + o(1), we have

a(n) max
1≤k<n

S∗
k,n/Bk,n − b(n)

= a(n)

a(B2
n)

(
a
(
B2

n

)
max

1≤k<n
S∗

k,n/Bk,n − b
(
B2

n

)) + a(n)

a(B2
n)

b
(
B2

n

) − b(n)

= (
1 + o(1)

)(
a
(
B2

n

)
max

1≤k<n
S∗

k,n/Bk,n − b
(
B2

n

)) + o(1),

which implies (2.9). Lemma 2.3 is proved. �

Proof of Theorem 1.2. Write Kn = exp{log1/3 n}, and put

�1 =
{
Kn < k ≤ n/4 :

k∑
i=1

|Zi | ≤ Bk/ log log k

}
,

�2 =
{
Kn < k ≤ n/4 :

k∑
i=1

|Z̃i | ≤ Bk/ log log k

}
.

Define �′ = �1 ∪ {k :n/4 < k ≤ n/2}, �′′ = {k :n − k ∈ �2} ∪ {k :n/2 < k <

3n/4} and �′
1 = {k : 2 ≤ k ≤ n/4}−�1,�

′
2 = {k : 3n/4 ≤ k ≤ n−2}− {k :n− k ∈

�2}.
Notice that, as n → ∞, S[nt]/bn

d→ W(t) and V 2
n /b2

n

P→ 1, where W is a Brow-
nian motion and bn is a regularly varying function with index 1/2. Hence

mink≤n/4(Ṽ
2
n−[n/2] + V 2[n/2] − V 2

k − (S̃n−[n/2] + S[n/2] − Sk)
2/(n − k))

b2
n

≥ Ṽ 2
n−[n/2]
b2
n

− 3S̃2
n−[n/2] + 6(max1≤k≤n/2 |Sk|)2

(n/2)b2
n

P→ 1/2, n → ∞.

Notice that by the self-normalized LIL of Griffin and Kuelbs (1989), as n → ∞,
we have

lim sup
n→∞

|Sn|√
2 log logn(V 2

n − S2
n/n)

= 1 a.s.

Consequently,
1√

2 log logn
max

2≤k≤Kn

|Sk|√
(V 2

k − S2
k /k)

≤
√

2 log logKn√
2 log logn

(
1 + o(1)

) =
√

1/3 + o(1) a.s.
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Similarly, by (18) in Csörgő et al. (2003), we conclude

1√
2 log logn

max
k>Kn and k∈�′

1

|Sk|√
(V 2

k − S2
k /k)

≤
√

1/2 + o(1) a.s., n → ∞.

Thus, by noting that a+b√
c+d

≤ a√
c
+ b√

d
holds for all a, b, c, d > 0,

1√
2 log logn

max
k∈�′

1

|Sk,n|
V̄k,n

≤ 1√
2 log logn

max
k∈�′

1

n

n − k

|Sk|√
V 2

k − S2
k /k

+
((|S[n/2]| + |S̃n−[n/2]|)/(bn

√
2 log logn)

)
/(

min
k≤n/4

√√√√
Ṽ 2

n−[n/2] + V 2[n/2] − V 2
k − (S̃n−[n/2] + S[n/2] − Sk)2

(n − k)

/
bn

)

≤ 2
√

2/3 + oP (1), n → ∞.

This, as n → ∞, implies

a(n) max
k∈�′

1

|Sk,n|
V̄k,n

− b(n)
P→ −∞, (2.26)

and, similarly

a(n) max
k∈�′

2

|Sk,n|
V̄k,n

− b(n)
P→ −∞. (2.27)

Furthermore, similarly, by using (20) in Csörgő et al. (2003), and by the facts

that, as n → ∞, S∗
n/Bn

d→ N(0,1) and lim supn→∞ S∗
n/(2B2

n log logn)1/2 = 1 a.s.
(by (2.11)), we infer

a(n) max
k∈�′

1∪�′
2

|S∗
k,n|

Bk,n

− b(n)
P→ −∞. (2.28)

Now, in order to prove Theorem 1.2, we only need to show that, as n → ∞,

a(n)max
k∈�′

∣∣∣∣Sk,n

Vk,n

− S∗
k,n

Bk,n

∣∣∣∣ P→ 0, (2.29)

and

a(n) max
k∈�′′

∣∣∣∣Sk,n

Vk,n

− S∗
k,n

Bk,n

∣∣∣∣ P→ 0. (2.30)
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In fact, if (2.29) and (2.30) hold true, then it follows from (2.28) and Lemma 2.3
that, for all t ∈ R,

lim
n→∞P

(
a(n) max

k∈�′∪�′′ Sk,n/Vk,n ≤ t + b(n)
)

= exp
(−e−t ). (2.31)

And also by Lemma 2.3, we obtain that

1√
2 log logn

max
1≤k<n

|S∗
k,n|

Bk,n

P→ 1, n → ∞. (2.32)

By noting that

V 2
k,n ≤ V̄ 2

k,n ≤ max
{

k

k − 1
,

n − k

n − k − 1

}
V 2

k,n,

and by applying (2.29), (2.30) and (2.32), we get that,

a(n) max
k∈�′∪�′′

∣∣∣∣Sk,n

V̄k,n

− Sk,n

Vk,n

∣∣∣∣
≤ a(n)√

Kn

max
k∈�′∪�′′

|Sk,n|
Vk,n

(2.33)

≤ a(n)√
Kn

max
k∈�′∪�′′

∣∣∣∣Sk,n

Vk,n

− S∗
k,n

Bk,n

∣∣∣∣ + a(n)√
Kn

max
k∈�′∪�′′

|S∗
k,n|

Bk,n

P→ 0, n → ∞.

This, together with (2.26), (2.27) and (2.31), yields Theorem 1.2.
Now we go to prove (2.29) and (2.30). We only prove (2.29), since the proof of

(2.30) is similar. Clearly, we have

a(n)max
k∈�′

∣∣∣∣Sk,n

Vk,n

− S∗
k,n

Bk,n

∣∣∣∣
≤ a(n)max

k∈�′

∣∣∣∣Sk,n

Vk,n

− Sk,n

Bk,n

∣∣∣∣ + a(n)max
k∈�′

∣∣∣∣Sk,n − S∗
k,n

Bk,n

∣∣∣∣ (2.34)

≤ a(n)max
k∈�′

∣∣∣∣Sk,n

Vk,n

V 2
k,n − B2

k,n

B2
k,n

∣∣∣∣ + a(n)max
k∈�′

∣∣∣∣Sk,n − S∗
k,n

Bk,n

∣∣∣∣.
By the self-normalized LIL of Griffin and Kuelbs (1989), we get that, as n → ∞,

sup
Kn≤k≤n/2

V 2
k,n

V 2
k /k2 + (Ṽ 2

n−[n/2] + V 2[n/2] − V 2
k )/(n − k)2

→ 1 a.s.
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Hence, for sufficiently large n,

a(n)max
k∈�′

∣∣∣∣Sk,n

Vk,n

V 2
k,n − B2

k,n

B2
k,n

∣∣∣∣
≤ 2a(n)max

k∈�′

∣∣∣∣Sk

Vk

V 2
k,n − B2

k,n

B2
k,n

∣∣∣∣
(2.35)

+ 2a(n)max
k∈�′

|S̃n−[n/2]|
Ṽn−[n/2]

∣∣∣∣V
2
k,n − B2

k,n

B2
k,n

∣∣∣∣
+ 2a(n)

Vn

Ṽn−[n/2]
max
k∈�′

∣∣∣∣S[n/2] − Sk

Vn

V 2
k,n − B2

k,n

B2
k,n

∣∣∣∣.
Since EX = 0 and E|X1|r < ∞ for any 1 < r < 2, it follows from the
Marcinkiewicz–Zygmund strong law of large number (cf. Chow and Teicher
(1978, p. 125)) that Sn/n

1/r → 0 a.s. Hence, as n → ∞,

(log logn)S2
n

nB2
n

→ 0 a.s.

Note that for n/4 < k ≤ n/2,∑k
j=1(Z

2
j + |EZj |2)/k2

B2[n/2]/(n − k)2
≤ 9

∑k
j=1(Z

2
j + |EZj |2)

B2[n/2]
,

and, by Lemma 2.2,∑n
j=1 |Zj |2

B2
n/ log logn

≤
( ∑n

j=1 |Zj |
Bn/

√
log logn

)2
P→ 0,

∑n
j=1 |EYj |2

B2
n/ log logn

=
∑n

j=1 |EZj |2
B2

n/ log logn
≤

( ∑n
j=1 |EZj |

Bn/
√

log logn

)2

→ 0, n → ∞.

Now, by (40) of Csörgő et al. (2003), we have

(log logn)max
k∈�′

∣∣∣∣V
2
k,n − B2

k,n

B2
k,n

∣∣∣∣
≤ 3 max

k∈�′
log log k|∑k

j=1(Y
2
j − EY 2

j )|
B2

k

+ log logn|∑[n/2]
j=1 (Y 2

j − EY 2
j )|

B2[n/2]
+ log logn|∑n−[n/2]

j=1 (Ỹ 2
j − EY 2

j )|
B2

n−[n/2]
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+ 3 max
k∈�1

log log k
∑k

j=1(Z
2
j + |EYj |2)

B2
k

(2.36)

+ 10
log logn

∑[n/2]
j=1 (Z2

j + |EYj |2)
B2[n/2]

+ log logn
∑n−[n/2]

j=1 (Z̃2
j + |EYj |2)

B2
n−[n/2]

+ 12 max
k∈�′

(log log k)S2
k

kB2
k

+ 3
(log logn)S̃2

n−[n/2]
(n/2)B2

n−[n/2]
+ 3

(log logn)S2[n/2]
(n/2)B2[n/2]

P→ 0, n → ∞.

By the self-normalized LIL of Griffin and Kuelbs (1989), we conclude

max
k≤n/2

|S[n/2] − Sk|
Vn

√
2 log logn

≤ 2 maxk≤n/2 |Sk|
Vn

√
2 log logn

≤ 2 a.s, n → ∞. (2.37)

By the facts that V 2
n /b2

n

P→ 1 and Ṽ 2
n /b2

n

P→ 1, as n → ∞, we get

Vn

Ṽn−[n/2]
= Vn

b2
n

b2
n−[n/2]

Ṽn−[n/2]
b2
n

b2
n−[n/2]

P→ 2. (2.38)

Thus, by using (2.35)–(2.38) and applying again the self-normalized LIL of Griffin
and Kuelbs (1989), as n → ∞, we arrive at

a(n)max
k∈�′

∣∣∣∣Sk,n

Vk,n

V 2
k,n − B2

k,n

B2
k,n

∣∣∣∣ P→ 0. (2.39)

Similarly to the proof of (2.36), by using Lemma 2.2, we have

a(n)max
k∈�′

∣∣∣∣Sk,n − S∗
k,n

Bk,n

∣∣∣∣ ≤ √
3 max

k∈�1

√
log logk

∑k
j=1(|Zj | + |EZj |)
Bk

+ 4

√
log logn

∑[n/2]
j=1 (|Zj | + |EZj |)
B[n/2]

(2.40)

+
√

log logn
∑n−[n/2]

j=1 (|Z̃j | + |EZj |)
Bn−[n/2]

P→ 0, n → ∞.

Now (2.29) follows from (2.34), (2.39) and (2.40). This also completes the proof
of Theorem 1.2. �
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Csörgő, M. and Horváth, L. (1988). Nonparametric methods for changepoint problems. In Quality

Control and Reliability (P. R. Krishnaiah and C. R., Rao, eds.). Handbook of Statistics 7 403–425.
Amsterdam: Elsevier.
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