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Abstract. We consider infinite random causal Lorentzian triangulations
emerging in quantum gravity for critical values of parameters. With each ver-
tex of the triangulation we associate a Hilbert space representing a bosonic
particle moving in accordance with the standard laws of Quantum Mechanics.
The particles interact via two-body potentials decaying with the graph dis-
tance. A Mermin–Wagner type theorem is proven for infinite-volume reduced
density matrices related to solutions to DLR equations in the Feynman–Kac
(FK) representation.

1 Introduction

In this paper, we prove a Mermin–Wagner (MW) type theorem (cf. Mermin and
Wagner (1966), Dobrushin and Shlosman (1975), Bonato et al. (1982), Ioffe et al.
(2002)) for a system of quantum bosonic particles on an (infinite) random graph
represented by a causal dynamical Lorentzian triangulation (in brief: CDLT). The
CDLTs arise naturally when physicists attempt to define a fundamental path inte-
gral in quantum gravity. The reader is referred to Loll et al. (2006) for a review
of related publications and to Malyshev et al. (2001) for a rigorous mathematical
background behind the model of CDLTs. More precisely, we analyze a quantum
system on a random 2D graph T generated by a natural “uniform” measure on the
CDLTs corresponding to a “critical” regime (see below).

In modern language, the spirit of the quantum MW theorem is that in a 2D lat-
tice model (more generally, for a model on a countable bi-dimensional graph), any
infinite-volume Gibbs state (regardless of whether it is unique or not) is invariant
under the action of a Lie group G provided that the ingredients of local Hamilto-
nians are G-invariant; see Mermin and Wagner (1966). These ingredients include
the kinetic energy part, the single-site potential and the interaction potential. The
mathematical constructions used for the proof of this theorem require a certain
control over these ingredients: compactness of a configuration space associated
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with a single vertex of the lattice (or a more general bi-dimensional graph), a cer-
tain smoothness of the interaction potential (or its essential part), sufficiently fast
decay of the interaction potential for large distances on the lattice (or on the graph),
“regularity” of the lattice (graph) geometry. In particular, the bi-dimensionality of
the underlying graph is guaranteed by equation (4.1).

A principal question that needs a careful consideration is about the definition
of a quantum Gibbs state in an infinite volume. For the so-called quantum spin
systems, with a finite-dimensional phase space of a single spin (and consequently,
with bounded local Hamiltonians), such a definition is given within the theory of
KMS (Kubo–Martin–Schwinger) states; see, for example, Bratteli and Robinson
(2002b). A version of the MW theorem for a model of this type on a 2D square
lattice was established in Fröhlich and Pfister (1981), Pfister (1981) and has been
generalised in subsequent publications. The KMS-based results (under suitable
aforementioned assumptions) can be extended to the model of classical spins on a
random graph of the type considered in the present paper; cf. Kelbert et al. (2013).
However, the KMS-theory is not efficient for the case of interacting quantum par-
ticles where the one-particle kinetic energy operator is equal to −�/2 (� stands
for a Laplacian on a compact manifold). This is a standard quantum-mechanical
model, and the fact that the concept of infinite-volume Gibbs state did not receive
so far a properly working definition for such a system was perceived as a regret-
table hindrance.

In this paper, we adopt the definition of an infinite-volume Gibbs state (more
precisely, of an infinite-volume reduced density matrix (RDM, for short)) from
the papers of Kelbert and Suhov (cf. Kelbert and Suhov (2013a, 2013b)). Similar
methodologies have been developed in a number of earlier references; see, e.g., Al-
beverio et al. (2009) and the bibliography therein (viz., Klein and Landau (1981)).
In papers of Kelbert and Suhov (2013a, 2013b) a class of so-called FK-DLR states
has been introduced, and an MW theorem was established for quantum systems
on a bi-dimensional graph T ∼ (V,E) where V = V(T ) is the set of vertices and
E = E(T ) the set of edges. As was said above, in the present paper we deal with
a random graph T (a CDLT for critical values of parameters). After checking that
a typical realization T = T∞ of the random CDLT satifies certain required proper-
ties, we use the constructions from Kelbert and Suhov (2013a, 2013b) (going back
to Fröhlich and Pfister (1981), Pfister (1981)) and prove the main results of the
paper (see Theorems 2.1, 2.2 and Theorems 3.1, 3.2).

It is appropriate to say that, although we use here some methodology developed
in Kelbert and Suhov (2013a, 2013b), the current work deals with a situation dif-
ferent from the above papers, and a number of issues here require specific technical
tools. On the other hand, the present paper can be considered as a continuation of
Kelbert et al. (2013) where a MW theorem was established for a classical proto-
type of a quantum system treated here. We believe that models of quantum gravity
where various types of quantum matter are incorporated form a natural direction
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of research, interesting from both physical and mathematical points of view. Ex-
tension of results from Kelbert et al. (2013) to the case of quantum systems is a
novel element of the present paper.

2 Basic definitions

2.1 Lorentzian triangulations in a critical phase

The graph under consideration is a triangulation T of a cylinder C = S × [0,∞)

with the base S, which is a unit circle in R
2. Physically, C represents a (1 + 1)-

dimensional space–time complex. (Pictorially, in the critical case, the graph T

develops like a cone, getting “wider” further from the base.) Geometrically, C can
be visualized as a complex plane C with a family of concentric circles {z : |z| = n}:
here the origin z = 0 is treated as a “circle” of infinitesimal radius. The following
properties of T are assumed: each triangle belongs to some strip S × [�, � + 1],
� = 0,1,2, . . . such that either (i) two vertices lie on S ×{�} and one on S ×{�+1}
or (ii) two vertices lie on S × {� + 1} and one on S × {�} and exactly one edge of
triangle is an arc of a circle S ×{�} in the case (i), or S ×{�+ 1} in the case (ii). In
case (i) we speak of an upward triangle, or simply up-triangle, and in case (ii) of
an downward triangle, or down-triangle. This includes also a “degenerate” picture
where two vertices of a triangle coincide, and the corresponding edge forms the
circle. For � = 0 it is requested that the graph under consideration generates a
degenerate picture (i.e., the graph has a single up-triangle in the strip S × [0,1],
see Figure 1(a). This particular triangle is called the root triangle, and its side
represented by the edge along the boundary S × {0} of the strip is called the root
edge. Moreover, the (double) vertex lying on S × {0} is called the root vertex.

Figure 1 (a) An example of Lorentzian triangulation. Some (not all) up- and down-triangles are
marked. (b) The triangulation T is parametrized by the spanning tree T, which is represented by bold
lines.
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Finally, we consider graphs modulo an equivalence (that is, up to a homeomor-
phism of C preserving all circles S × {�}, � = 0,1,2, . . .).

Definition 1. A rooted infinite CDLT is defined as an equivalence class of (count-
able) graphs with the above-listed properties, under the above equivalence. De-
pending on the context, we use the notation T = T∞ for a representative or for the
whole equivalence class of graphs involved, and speak of the vertex set V = V(T )

and the edge set E = E(T ) in the same fashion.

A similar definition can be used to introduce a rooted CDLT on a cylinder CN =
S × [0,N] (a rooted CDLT of height N ). The corresponding notation is TN ∼
(V(TN),E(TN)) or even TN ∼ (VN,EN). As in Kelbert et al. (2013), we denote by
LTN and LT∞ the sets of CDLTs on CN and C, respectively.

To introduce a probability distribution on LTN and ultimately on LT∞, we use
a special 1–1 correspondence between the rooted CDLTs and rooted trees (that
is, graphs without cycles and with distinguished vertices). Namely, we extract a
subgraph in T by selecting, for each vertex v ∈ T , the leftmost edge going from
v downwards and discarding all other edges going from v horizontally or down-
wards, see Figure 1(b). The graph T⊂ T thus obtained is a spanning tree of T , cf.
Durhuus et al. (2007) and Malyshev et al. (2001). Moreover, if one indicates, for
each vertex of T, its height in T then T can be completely reconstructed when we
know T. We call the correspondence T↔ T the tree parametrization of the CDLT.
It determines a one-to-one bijection m between the set LT∞ and the set of infinite
rooted trees T∞:

m :T∞ ↔ LT∞.

We will use the same symbol m for the bijection TN ↔ LTN where TN is the set
of all rooted planar trees of height N .

By virtue of the tree-parametrization, we will specify a probability distribution
on CDLTs by specifying a distribution defined on trees. More precisely, suppose
Ptree

N is a probability measure on TN . Then the measure PLT
N on LTN is determined

by

PLT
N

(
m(T)

) = Ptree
N (T) ∀T ∈ TN.

Conversely, let Ptree be a probability distribution on T∞. Then the distribution PLT

on LT∞ is given by

PLT(
m(A)

) = Ptree(A) ∀A ∈F(T∞),

where F(T∞) is standard σ -algebra generated by cylinder sets. In future we omit
indices in the notation for the distribution P.

To construct a critical CDLT model we define the corresponding measure on
T∞ related to a critical Galton–Watson (GW) process ξ . For this aim, we set μ =
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{pk} to be an offspring distribution on N = {0,1, . . .} with mean 1, and define the
critical Galton–Watson (GW) branching process ξ . Conditional on the event of
non-extinction, the GW process becomes the so-called size-biased (SB) process
ξ̂ = {kn, n = 0,1,2, . . .}. In our context, kn yields the number of vertices on the
circle S × {n} in the random infinite rooted CDLT. The reader can consult Lyons
et al. (1995) for the formal background for SB branching processes.

In particular, the distribution of an SB process ξ̂ is concentrated on the subset
S of T∞ formed by the so-called single-spine trees. A single-spine tree consists of
a single infinite linear chain s0, s1, . . . called the spine, to each vertex sj of which
there is attached a finite random tree with its root at sj . (Here s0 is the root vertex
of the whole tree.) Furthermore, the generating function for the branching number
ν at each vertex sj is f ′(x) where f (x) is the generating function of the initial
offspring distribution μ. Moreover, the individual branches are independently and
identically distributed in accordance with the original critical GW process Lyons
et al. (1995).

Let σ 2 stand for the variance of the offspring distribution ν. Then

E(kn | kn−1) = kn−1 + σ 2. (2.1)

In fact, let ν = {p̃k} be the SB offspring distribution with p̃k = kpk (recall, in the
critical case under consideration, the sum

∑
k kpk = 1). Then the distribution for

kn conditioned upon the value kn−1 is identified as follows (cf. Lyons et al. (1995)).
We choose at random one particle among kn−1 particles and generate the number
of its descendants according to the distribution ν with mean σ 2 + 1. According
to (2.1), the number of descendants for the other kn−1 − 1 particles is generated,
independently, by the distribution μ.

Throughout the paper, we assume that the offspring distribution μ has the mean
1 with finite second moment. Let P be the corresponding SB Galton–Watson tree
distribution.

2.2 The local quantum Hamiltonians on CDLTs

Let M = R
d/Zd be a unit d-dimensional torus with flat metric and induced vol-

ume v. A basic quantum model uses the Hilbert space H = L2(M,v) as the phase
space of a single quantum particle. The single-particle Hamiltonian H acts in H
as the sum:

(Hφ)(x) = −1

2
(�φ)(x) + U(x)φ(x), x ∈ M,φ ∈ H. (2.2)

Here � is the Laplacian on M and the function U :x ∈ M 	→ R gives an exter-
nal potential. Under the assumptions upon U adopted in this paper (see equa-
tion (2.10)), H is a self-adjoint operator bounded from below and with a discrete
spectrum such that ∀β > 0, exp[−βH ] is a (positive definite) trace class operator.

Given a CDLT T we use the notation TN for the subgraph in T with the set
of vertices VN = V(TN) of the form VN = V(T ) ∩ {S × {0, . . . ,N}} and the set of
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edges E(TN) = E(T )∩(VN ×VN). The phase space of a (bosonic) quantum system
in VN is the tensor product HN = H

⊗
VN ; an element φN ∈HN is a function

φN : x(N) = xVN
= {

x(i), i ∈ VN

} ∈ M×VN 	→C (2.3)

square-integrable in dx(N) = ∏
i∈VN

v(dx(i)). The Cartesian power M×VN can
be considered as the configuration space for the classical prototype of the quantum
system in VN .

The local Hamiltonian HN of the system in VN acts on functions φ ∈ H
⊗

VN :

given x(N) = (x(j), j ∈ VN) ∈ M×VN ,

(HNφ)
(
x(N)

)
(2.4)

=
[ ∑
i∈VN

H(i) + ∑
j,j ′∈VN×VN

J
(
d

(
j, j ′))V (

x(j), x
(
j ′))]φ(

x(N)
)
,

where J (d(j, j ′))V (x(j), x(j ′)) represents the interaction between spins x(j) and
x(j ′) at sites j and j ′. Next, H(i) stands for the copy of operator H acting on
variable x(i) ∈ M and d(j, j ′) for the graph distance from vertex j to j ′.

A more general concept is a Hamiltonian HN |xc(N) in the external field gen-

erated by an (infinite) configuration xc(N) = {x(j ′), j ′ ∈ VN } ∈ M×VN where
VN = V(T ) \ VN . As before, operator HN |xc(N) acts in HN : given φ ∈ HN and

x(N) = (x(j), j ∈ VN) ∈ M×VN ,

(HN |xc(N)φ)
(
x(N)

)
(2.5)

=
[
HN + ∑

(j,j ′)∈VN×VN

J
(
d

(
j, j ′))V (

x(j), x
(
j ′))]φ(

x(N)
)
.

Again, under assumptions upon J and V described in (2.10)–(2.11), HN and
HN |xc(N) are self-adjoint operators bounded from below and with a discrete spec-
trum such that ∀β > 0, Gβ,N = exp[−βHN ] and Gβ,N |xc(N) = exp[−βHN |xc(N)]
are (positive definite) trace class operators.

The operators Gβ,N and Gβ,N |xc(N) are called the Gibbs operators (in volume
VN for the inverse temperature β and, in the case of Gβ,N |xc(N), with the boundary
condition xc(N) = xc

VN
). The traces

	β,N = trHN
Gβ,N and 	β,N |xc(N) = trHN

Gβ,N |xc(N) (2.6)

give the corresponding partition functions. The normalized operators

Rβ,N = 1

	β,N

Gβ,N and Rβ,N |xc(N) = 1

	β,N |xc(N)

Gβ,N |xc(N) (2.7)

are called the density matrices (for the corresponding Gibbs ensembles); these are
positive definite operators of trace 1. Given n ∈ {0, . . . ,N}, the partial traces

R
(n)
β,N = trHN\n Rβ,N and R

(n)
β,N |xc(N) = trHN\n Rβ,N |xc(N) (2.8)
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yield positive definite operators R
(n)
β,N and R

(n)
β,N |xc(N) in Hn, of trace 1. Here HN\n

stands for the Hilbert space H
⊗

(VN\Vn). These operators are called the reduced
density matrices (RDMs). Note the compatibility relation: ∀0 ≤ n < n′ < N :

R
(n)
β,N = trHn′\n R

(n′)
β,N and R

(n)
β,N |xc(N) = trHn′\n R

(n′)
β,N |xc(N). (2.9)

2.3 Assumptions on the potentials. The group of symmetries

We suppose that the potential U has continuous derivatives whereas V has contin-
uous first and second derivatives: ∀x, x′, x′′ ∈ M ∣∣U(x)

∣∣, ∣∣∇xU(x)
∣∣ ≤ U, (2.10)∣∣V (

x′, x′′)∣∣, ∣∣∇x′V
(
x′, x′′)∣∣, ∣∣∇x′′V

(
x′, x′′)∣∣, ∣∣∇x′∇x′′V

(
x′, x′′)∣∣ ≤ V , (2.11)

where U,V ∈ (0,∞) are constants.
Next, suppose that a d ′ × d matrix A is given, of the row rank d ′ where

d ′ ≤ d . We consider a d ′-dimensional group G acting on M and preserving the
volume v : (g, x) ∈ G× M 	→ gx ∈ M . More precisely, g is identified with a real
d ′-dimensional vector θ = (θ1, . . . , θd ′) and the action is given by

gx = x + θAmod 1. (2.12)

Remark 2.1. The group G can be compact (in which case G is a torus of dimension
d ′) or non-compact (then G is Rd ′

).

We assume that the functions U(x) and V (x, x′) are invariant with respect to
the group G: ∀g ∈ G and x, x′ ∈ M

U(gx) = U(x), V
(
gx,gx′) = V

(
x, x′). (2.13)

Finally, we assume that the function r ∈ (0,∞) 	→ J (r) in (2.4) and (2.5) is a
bounded monotone decreasing function satisfying the condition

J (r) ≤
(

1

r ln r

)3

, r ≥ 2. (2.14)

These assumptions are in place throughout the paper. (We do not analyze the
issue of necessity of condition (2.14).)

As usually, the action of the group G generates unitary operators in H:

S(g)φ(x) = φ
(
g−1x

)
, x ∈ M,φ ∈ H. (2.15)

Let S(N)(g) be the tensor power of S(g) which acts in HN : for any φN ∈ HN

S(N)(g)φN

(
x(N)

) = φN

(
g−1x(N)

)
, (2.16)

where x(N) = {x(i), i ∈ VN } ∈ M×VN and g−1x(N) = {g−1x(i), i ∈ VN }.
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2.4 Limiting RDMs in an infinite volume

We are interested in the “thermodynamic” limit N → ∞. In the absense of phase
transitions, one would like to establish a convergence of the RDMs R

(n)
β,N and

R
(n)
β,N |xc(N) to a limiting RDM in Hn as N → ∞. A suitable form of convergence is

in the trace norm in Hn, guaranteeing that the limiting operator is positive-definite
and has trace 1. When phase transitions are not excluded (which is the case un-
der consideration), a more general question is whether the families {R(n)

β,N } and

{R(n)
β,N |xc(N)} are compact. If we manage to check that {R(n)

β,N } and {R(n)
β,N |xc(N)}

are compact families for any given n then, invoking a diagonal process, we can
consider a family of limiting RDMs {R(n)

β , n = 0,1,2, . . .} (in the case of oper-

ators R
(n)
β,N |xc(N) the limiting RDMs may depend on the choice of the boundary

conditions xc(N)). The consistency property (2.9) will be inherited in the limit:
∀0 ≤ n < n′ < N ,

R
(n)
β = trHn′\n R

(n′)
β . (2.17)

A consistent family of RDMs R
(n)
β defines a state of (i.e., a linear positive nor-

malized functional on) the quasilocal C∗-algebra constructed as the closure of the
inductive limit of BN as N → ∞ where BN is the C∗-algebra of the bounded
operators in HN , cf. Bratteli et al. (2002a). This motivates a study of properties
of limiting RDM families {R(n)

β }. Our results in this direction are summarised in
Theorems 2.1 and 2.2.

Theorem 2.1. Fix β > 0. For P-a.a. CDLT T ∈ T∞,∀n = 0,1,2, . . . , the family
of the RDMs {R(n)

β,N ,N = 1,2, . . .} is compact in the trace norm in Hn. Similarly,

{R(n)
β,N |xc(N),N = 1,2, . . .} is a compact family ∀ choice of the boundary conditions

xc(N).

Theorem 2.2. Let R
(n)
β be any limiting-point operator for the family {R(n)

β,N |xc(N),

N = 1,2, . . .}. Then, ∀g ∈ G, operator S(n)(g) commutes with R
(n)
β :

R
(n)
β = S(n)(g)R

(n)
β

(
S(n)(g)

)−1
. (2.18)

Remark 2.2. The statement of Theorem 2.2 is straightforward for the limit points
R

(n)
β of the family {R(n)

β,N ,N = 1,2, . . .} but requires a proof for the family

{R(n)
β,N |xc(N),N = 1,2, . . .}.
The main role in the proof of Theorems 2.1 and 2.2 is played by the Feynman–

Kac (FK) representation for the RDMs R
(n)
β,N and R

(n)
β,N |xc(N) and their limiting

counterparts R
(n)
β . This representation is discussed in the next section.
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3 The FK ensembles of paths and loops

3.1 The FK representation for the Gibbs operators

The Gibbs operators Gβ,N and Gβ,N |xc(N) act as integral operators, with kernels
Kβ,N and Kβ,N |xc(N)

(Gβ,NφN)
(
x(N)

) =
∫
M×VN

Kβ,N

(
x(N),y(N)

)
φN

(
y(N)

)
dy(N),

(3.1)
(Gβ,N |xc(N)φN)

(
x(N)

) =
∫
M×VN

Kβ,N |xc(N)

(
x(N),y(N)

)
φN

(
y(N)

)
dy(N).

Here y(N) = {y(i) : i ∈ VN } and we use a shorthand notation dy(N) =∏
i∈VN

v(dy(i)).
Further, the kernels Kβ,N and Kβ,N |xc(N) admit the FK-representations sum-

marized in Lemma 3.1. The proof of this lemma follows the standard lines and is
omitted. The reader can confer Ginibre (1973) for details.

Given points x, y ∈ M , let W
β
x,y denote the space of continuous paths ω =

ωx,y : τ ∈ [0, β] 	→ ω(τ) ∈ M , of time-length β , beginning at x and terminat-

ing at y. Next, let Pβ
x,y stand for the (unnormalized) Wiener measure on W

β
x,y ,

with P
β
x,y(W

β
x,y) = pβ(x, y) where pβ(x, y) is the value of the transition density

from x to y in time β . Furthermore, given particle configurations x(N) = {x(i)},
y(N) = {y(i)} ∈ M×VN , we set:

W
β
x(N),y(N) =×

i∈VN

W
β
x(i),y(i), P

β
x(N),y(N) =×

i∈VN

P
β
x(i),y(i). (3.2)

In other words, an element ω(N) = ωx(N),y(N) ∈ W
β
x(N),y(N) is represented by a

collection of paths {ωx(i),y(i)} where ωx(i),y(i) ∈ W
β
x(i),y(i). We call such a collec-

tion a path configuration over VN . Moreover, under measure P
β
x(N),y(N) the paths

ωx(i),y(i) are independent and each of them follows its own marginal measure

P
β
x(i),y(i).
Further, we need to introduce functionals h(ω(N)) and h(ω(N)|xc(N)) describ-

ing an integral energy of the path configuration ω(N) and its energy in the potential
field generated by xc(N):

h
(
ω(N)

) = ∑
(i,i′)∈VN×VN

hi,i′(ω(i),ω
(
i ′

))
, (3.3)

where hi,i′(ω(i),ω(i ′)) represents an integral along trajectories ω(i) and ω(i′).
Namely, for i = i′ and ω ∈ W

β
x(i),y(i):

hi,i(ω,ω) =
∫ β

0
dτU

(
ω(τ)

)
. (3.4)
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and for i �= i ′ and ω ∈ W
β
x(i),y(i), ω′ ∈ W

β

x(i′),y(i′):

hi,i′(ω,ω′) = J
(
d

(
i, i′

)) ∫ β

0
dτV

(
ω(τ),ω′(τ )

)
. (3.5)

Pictorially, hi,i(ω(i),ω(i)) yields an energy of the path ω(i) in the external field
generated by the potential U and hi,i′(ω(i),ω(i ′)) the energy of interaction be-
tween paths ω(i) and ω(i′). Accordingly, h(ω(N)) gives a full potential energy of
the path configuration ω(N).

Similarly,

h
(
ω(N)|xc(N)

) = h
(
ω(N)

) + ∑
i∈VN,i′∈VN

hi,i′(ω(i),xc(i ′)), (3.6)

where hi,i′(ω(i),xc(i ′)) = J (d(i, i ′))
∫ β

0 dτV (ω(i, τ ),xc(i ′)).

Lemma 3.1. The integral kernels Kβ,N(x(N),y(N)) and Kβ,N |xc(N)(x(N),y(N))

are given by:

Kβ,N

(
x(N),y(N)

) =
∫
W

β
x(N),y(N)

P
β
x(N),y(N)

(
dω(N)

)
exp

[−h
(
ω(N)

)]
(3.7)

and

Kβ,N |xc(N)

(
x(N),y(N)

)
(3.8)

=
∫
W

β
x(N),y(N)

P
β
x(N),y(N)

(
dω(N)

)
exp

[−h
(
ω(N)|xc(N)

)]
.

3.2 The FK representation for the partition functions and RDMs

Lemma 3.1 implies a working representation for the partition functions 	β,N and
	β,N |xc(N) (see (2.6)). More precisely, a key ingredient in the corresponding for-

mulas will be the space W
β
x,x = W

β
x of closed paths (starting and ending up at the

same marked point x ∈ M); we will employ the term “loop” to make a distinc-
tion with a general case. Accordingly, the notation P

β
x,x = P

β
x will be in place here.

Note that measure Pβ
x in essence does not depend on the choice of the point x ∈ M .

Furthermore, the notation ω = ωx ∈ W
β
x will be used for a loop with the marked

initial/end point x, omitting the bar in the previous symbol ω. Next, we set:

W
β
x(N) =×

i∈VN

W
β
x(i), P

β
x(N) =×

i∈VN

P
β
x(i). (3.9)

An element ω(N) ∈ W
β
x(N) is represented by a collection of loops {ωx(i)} where

ωx(i) ∈ W
β
x(i); such a collection is called a loop configuration over VN . As before,

under measure P
β
x(N) the loops ωx(i) are independent and each of them follows its

own marginal measure P
β
x(i).
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At this point we apply the Mercer theorem guaranteeing that the traces
trHN

Gβ,N and 	β,N |xc(N) = trHN
Gβ,N |xc(N) are given by the integrals of the

corresponding kernels Kβ,N(x(N),y(N)) and Kβ,N |xc(N)(x(N),y(N)) along the
diagonal x(N) = y(N). This leads to Lemma 3.2 below.

Let us denote:∫
dω(N) :=

∫
M×VN

dx(N)

∫
W

β
x(N)

P
β
x(N)

(
dω(N)

)
. (3.10)

Lemma 3.2. The partition functions 	β,N and 	β,N |xc(N) are given by:

	β,N =
∫

dω(N) exp
[−h

(
ω(N)

)]
(3.11)

and

	β,N |xc(N) =
∫

dω(N) exp
[−h

(
ω(N)|xc(N)

)]
. (3.12)

Let us now turn to the RDMs R
(n)
β,N and R

(n)
β,N |xc(N). These operators are again

given by their integral kernels:

(
R

(n)
β,Nφn

)(
x(n)

) =
∫
M×Vn

F
(n)
β,N

(
x(n),y(n)

)
φn

(
y(n)

)
dy(n),

(3.13)(
R

(n)
β,N |xc(N)φn

)(
x(n)

) =
∫
M×Vn

F
(n)
β,N |xc(N)

(
x(n),y(n)

)
φn

(
y(n)

)
dy(n).

Next, F
(n)
β,N(x(n),y(n)) and F

(n)
β,N |xc(N)(x(n),y(n)) are called reduced density ma-

trix kernels (RDMKs). They can be written in the form

F
(n)
β,N

(
x(n),y(n)

) = 	
(n)
β,N(x(n),y(n))

	β,N

,

(3.14)

F
(n)
β,N |xc(N)

(
x(n),y(n)

) = 	
(n)
β,N |xc(N)(x(n),y(n))

	β,N |xc(N)

,

where quantities 	
(n)
β,N(x(n),y(n)) and 	

(n)
β,N |xc(N)(x(n),y(n)) admit representa-

tions similar to (3.11) and (3.12), see Lemma 3.3.
We will use a notation similar to (3.10):∫

dω(N \ n) :=
∫
M×VN \Vn

dx(N \ n)

∫
W

β
x(N\n)

P
β
x(N\n)

(
dω(N \ n)

)
, (3.15)

where x(N \n) stands for a particle configuration {x(j), j ∈ VN \Vn} and ω(N \n)

for the loop configuration {ω(j), j ∈ VN \Vn}. Symbol ∨ will be used for concate-
nation of particle configurations and for concatenation of path and loop configura-
tions (originally defined over disjoint sets). Accordingly, for a path configuration
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ω(n) ∈ W
β
x(n),y(n) over Vn and a loop configuration ω(N \ n) over VN \ Vn, the

energies h(ω(n) ∨ ω(N \ n)) and h(ω(n) ∨ ω(N \ n)|xc(N)) are defined as in
(3.2)–(3.5).

Lemma 3.3. The numerators 	
(n)
β,N(x(n),y(n)) and 	

(n)
β,N |xc(N)(x(n),y(n)) are

given by:

	
(n)
β,N

(
x(n),y(n)

) =
∫
W

β
x(n),y(n)

P
β
x(n),y(n)

(
dω(n)

)
(3.16)

×
∫

dω(N \ n) exp
[−h

(
ω(n) ∨ ω(N \ n)

)]

and

	
(n)
β,N |xc(N)

(
x(n),y(n)

) =
∫
W

β
x(n),y(n)

P
β
x(n),y(n)

(
dω(n)

)
(3.17)

×
∫

dω(N \ n) exp
[−h

(
ω(n) ∨ ω(N \ n)|xc(N)

)]
.

The proof of Lemma 3.3 consists in translating the partial traces into the inte-
grals of the kernels F

(n)
β,N and F

(n)
β,N |xc(N) of the operators R

(n)
β,N and R

(n)
β,N |xc(N). We

omit it from the paper.

3.3 The FK-DLR equations

The representations (3.11)–(3.12) suggest introducing probability distributions μN

and μN |xc(N) on loop configurations ωN , with the densities (the Radon–Nikodym
derivatives)

pN

(
ω(N)

) := μN(dω(N))

dω(N)
= exp[−h(ω(N))]

	β,N

,

(3.18)

pN |xc(N)

(
ω(N)

) := μN |xc(N)(dω(N))

dω(N)
= exp[−h(ω(N)|xc(N))]

	β,N |xc(N)

.

A crucial property is that the measures μN and μN |xc(N) satisfy DLR (Dobrushin–

Lanford–Ruelle)-type equations. Namely, let p
(n)
N (ω(n)|ω(N \ n)) and

p
(n)
N |xc(N)(ω(n)|ω(N \ n)) stand for the conditional densities generated by μN and

μN |xc(N), respectively, for the loop configuration ω(n) over Vn given a loop con-
figuration ω(N \ n) over VN \ Vn. Then

p
(n)
N

(
ω(n)|ω(N \ n)

) := μN(dω(n)|ω(N \ n))

dω(N)

= exp[−h(ω(n)|ω(N \ n))]
	β,n(ω(N \ n))

, (3.19)
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p
(n)
N |xc(n)

(
ω(n)|ω(N \ n)

) := μN |xc(N)(dω(n)|ω(N \ n))

dω(N)

= exp[−h(ω(n)|ω(N \ n) ∨ xc(N))]
	β,n|xc(N)(ω(N \ n))

.

Here h(ω(n)|ω(N \ n)) and h(ω(n)|ω(N \ n) ∨ xc(N)) stand for “conditional”
energies and 	β,n(ω(N \ n)) and 	β,n|xc(N)(ω(N \ n)) for “conditional” partition
functions:

h
(
ω(n)|ω(N \ n)

) = h
(
ω(n) ∨ ω(N \ n)

) − h
(
ω(N \ n)

)
, (3.20)

h
(
ω(n)|ω(N \ n) ∨ xc(N)

) = h
(
ω(n) ∨ ω(N \ n)|xc(N)

)
(3.21)

− h
(
ω(N \ n)|xc(N)

)
,

	β,n

(
ω(N \ n)

) =
∫

dω(n) exp
[−h

(
ω(n)

)|ω(N \ n)
]

(3.22)

and

	β,n|xc(N)

(
ω(N \ n)

) =
∫

dω(n) exp
[−h

(
ω(n)|ω(N \ n) ∨ xc(N)

)]
. (3.23)

We call equation (3.19) the FK-DLR equation in volume VN .
Concluding this section, we give an expression for the kernels F

(n)
β,N(x(n),y(n))

and F
(n)
β,N |xc(N)(x(n),y(n)): ∀0 < n ≤ n′ < N :

F
(n)
β,N

(
x(n),y(n)

)

=
∫

dω
(
N \ n′)p(N\n′)

N (ω(N \ n′))
	β,n′(ω(N \ n′))

∫
dω

(
n′ \ n

)

×
∫
W

β
x(n),y(n)

P
β
x(n),y(n)

(
dω(n)

)

× exp
[−h

(
ω(n) ∨ ω

(
n′ \ n

)|ω(
N \ n′))],

(3.24)
F

(n)
β,N |xc(N)

(
x(n),y(n)

)

=
∫

dω
(
N \ n′) p

(N\n′)
N |xc(N)(ω(N \ n′))

	β,n′(ω(N \ n′) ∨ xc(N))

∫
dω

(
n′ \ n

)

×
∫
W

β
x(n),y(n)

P
β
x(n),y(n)

(
dω(n)

)

× exp
[−h

(
ω(n) ∨ ω

(
n′ \ n

)|ω(
N \ n′) ∨ xc(N)

)]
.

For n = n′, the integral
∫

dω(n′ \ n) is omitted.
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Our next goal is to write down FK-DLR equations for the whole of V = V(T ).
Here we consider a probability measure μ = μV on infinite loop configurations
� = �V over V (for a formal background, see Kelbert and Suhov (2013a)). The
equation is written for p(n)(ω(n)|�c(n)), the conditional probability density for a
loop configuration ω(n) over Vn, given a loop configuration �c(n) over V \ Vn.
This density should be given by

p(n)(ω(n)|�c(n)
) := μ(dω(n)|�c(n))

dω(n)
= exp[−h(ω(n)|�c(n))]

	β,n(�
c(n))

. (3.25)

Like h(ω(n)|ω(N \ n)) and 	β,n(ω(N \ n)) before, the quantities h(ω(n)|
�c(n)) and 	β,n(�

c(n)) represent the conditional energy and the conditional par-
tition function. They can be defined as the limits

h
(
ω(n)|�c(n)

) = lim
N→∞h

(
ω(n)|�(N \ n)

)
, (3.26)

	β,n

(
�c(n)

) = lim
N→∞	β,n

(
�(N \ n)

)
, (3.27)

where �(N \ n) stands for the restriction of �c(n) to VN \ Vn. The existence of
the limit will be guaranteed by the assumption (2.14) ∀ω(n) and �c(n) for P-a.a.
T ∈ T∞.

Formulas (3.24) admit a generalization to the infinite-volume situation: ∀0 ≤
n < n′,

F
(n)
β

(
x(n),y(n)

)

=
∫

μ(d�c(n′))
	β,n′(�c(n′))

∫
dω

(
n′ \ n

)
(3.28)

×
∫
W

β
x(n),y(n)

P
β
x(n),y(n)

(
dω(n)

)
exp

[−h
(
ω(n) ∨ ω

(
n′ \ n

)|�c(n′))];
owing to the FK-DLR propety, the RHS in (3.28) does not depend on the choice
of n′ > n. Moreover, the integral∫

dx(n)F
(n)
β

(
x(n),x(n)

) = μ(V) = 1.

Consider the operator R
(n)
β in H(n) = H

⊗
Vn with the integral kernel F

(n)
β (x(n),

y(n)) given by (3.21). The aforementioned properties imply that the trace
trH(n) R

(n)
β = 1 and the following compatibility relation holds true:

R
(n)
β = trH(n′\n) R

(n′)
β . (3.29)

Thus, were the operators R
(n)
β positive definite, we could speak of an infinite-

volume state of the quasilocal C∗-algebra B. Cf. Remark 2.2. Notwithstanding,
we state our main result.
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Theorem 3.1. Under the above assumptions, any limit-point operator R
(n)
β from

Theorem 2.1 is a positive definite trace-class integral operator of trace 1 and with
the kernel F

(n)
β admitting the representation (3.21) where probability distribution

μ satisfies the infinite-volume FK-DLR equations (3.25).

Theorem 3.2. Let an integral operator R
(n)
β admit the representation (3.28) where

probability distribution μ satisfies the infinite-volume FK-DLR equations (3.25).
Then ∀g ∈ G

R
(n)
β = S(n)(g)R

(n)
β

(
S(n)(g)

)−1
. (3.30)

4 The proofs: The compactness and the tuned-action arguments

The proof of Theorems 2.1 and 3.1 is based on a compactness argument (cf. Kel-
bert and Suhov (2013a, 2013b)). We want to note that this argument does not
depend upon the dimensionality of the system.

4.1 Proof of Theorems 2.1 and 3.1

As in Kelbert and Suhov (2013a, 2013b), we first prove that, ∀n ≥ 0, the sequences
of RDMKs {F (n)

β,N ,N = n+1, n+2, . . .} and {F (n)
β,N |xc(N),N = n+1, n+2, . . .} are

compact in the space C0(M×Vn × M×Vn). Applying Lemma 1.5 from Kelbert
and Suhov (2013a) (this lemma goes back to Suhov (1970)), we will obtain that
the sequences of RDMs {R(n)

β,N } and {R(n)
β,N |xc(N)} are compact in the trace-norm

topology in H(n). This yields the statement of Theorem 2.1. A straightforward
consequence of the convergence will be that any limiting RDMK F

(n)
β admits the

representation (3.21) where μ satisfies the infinite-volume FK-DLR equation, that
is, the assertion of Theorem 3.1.

To verify compactness of the RDMKs {F (n)
β,N } and {F (n)

β,N |xc(N)}, we follow the
same line as in Kelbert and Suhov (2013a, 2013b), that is, employ the Ascoli–
Arzela theorem. To this end, we need to check the properties of uniform bounded-
ness and equicontinuity. For definiteness, we focus on the (slightly more complex)
case of the sequence {F (n)

β,N |xc(N)}.
More precisely, to show uniform boundedness, we first use an upper bound for

the number of vertices ki on Vi \Vi−1 under the measure P; cf. Kelbert et al. (2013),
equation (4.1). Namely, ∀ε ∈ (0,1), for P-a.a. T ∈ T∞ ∃ a constant C = C(T ) such
that

ki ≤ Ci(ln i)1/2+ε, i = 2,3, . . . (4.1)

(see Kelbert et al. (2013)). This yields that
∞∑
i=1

kiJ (i) < C1(T ) + C(T )

∞∑
i=2

i(ln i)1/2+ε

(
1

i ln i

)3

:= C(T )J ∗. (4.2)
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We use (4.1) and (4.2) to bound the quantity

q
(
ω(n)|ω(N \ n) ∨ xc(N)

)
(4.3)

:= exp[−h(ω(n)|ω(N \ n) ∨ xc(N))]
	β,n(ω(N \ n) ∨ xc(N))

;
cf. (3.24) for n′ = n. Namely, (4.2) implies that, for P-a.a. T ∈ T∞, ∀n ≥ 0 and
N > n,

exp
[−β

(
U + C(T )J ∗V

)
�Vn

]
≤ exp

[−h
(
ω(n)|ω(N \ n) ∨ xc(N)

)]
(4.4)

≤ exp
[
β

(
U + C(T )J ∗V

)
�Vn

]
for all path configurations ω ∈ Wx(n),y(n) and loop configurations ω(N \ n) ∈
WVN\Vn . Here �Vn = ∑n

i=1 ki stands for the number of vertices in the set Vn, cf.
(4.1).

The lower bound in (4.4) yields that

	β,n

(
ω(N \ n) ∨ xc(N)

) ≥ exp
[−β

(
U + C(T )J ∗V

)
�Vn

] × (
p

β
M

)�Vn, (4.5)

where

p
β
M = 1

(2πβ)d/2

∑
n=(n1,...,nd )∈Zd

exp
(−|n|2/2β

)
(4.6)

is the probability density of transition from x ∈ M to x in time β in the Brownian
motion on M . Next, (4.5) and the upper bound in (4.4) imply that

q
(
ω(n)|ω(N \ n) ∨ xc(N)

) ≤ 1

(p
β
M)�Vn

exp
[
2β

(
U + C(T )J ∗V

)
�Vn

]
. (4.7)

Substituting (4.7) in (3.24), we obtain that

F
(n)
β,N |xc(N)

(
x(n),y(n)

) ≤ exp
[
2β

(
U + C(T )J ∗V

)
�Vn

]
(4.8)

which gives the desired uniform upper bound.
To check equicontinuity, we analyze the derivatives ∇x(i)F

(n)
β,N |xc(N)(x(n),y(n))

and ∇y(i)F
(n)
β,N |xc(N)(x(n),y(n)), i ∈ Vn. Again we use the representation (3.24)

with n = n′. We need to differentiate the integral∫
W

β
x(n),y(n)

P
β
x(n),y(n)

(
dω(n)

)
exp

[−h
(
ω(n)|ω(N \ n) ∨ xc(N)

)]
. (4.9)

For definiteness, consider one of the gradients ∇y(i). It is convenient to represent
the integral (4.8) in the form

∏
j∈Vn

p
β
M

(
x(j), y(j)

) 1

[pβ
M ]#Vn

(4.10)
×

∫
W

β
x(n),x(n)

P
β
x(n),x(n)

(
dω(n)

)
exp

{−h
[(

ω(n) + η(n)
)|ω(N \ n) ∨ xc(N)

]}
.
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Here p
β
M(x, y) denotes the transition probability density

p
β
M(x, y) = 1

(2πβ)d/2

∑
n=(n1,...,nd )∈Zd

exp
(−|x − y + n|2/2β

)
, (4.11)

and p
β
M has been determined in (4.6).

Next, η(n) = {η(j), j ∈ Vn} is a collection of linear paths

η(j, τ ) = τ

β

(
y(j) − x(j)

)
, j ∈ Vn, (4.12)

and the component-wise addition in ω(n) + η(n):

ω(n) + η(n) = {
ω(j) + η(j), j ∈ Vn

}
(4.13)

where ω(j) + η(j) : τ ∈ [0, β] 	→ (
ω(j, τ ) + η(j, τ )

)
mod 1.

It is now clear that there will be two contributions into ∇y(i)F
(n)
β,N |xc(N)(x(n),y(n)):

one coming from

∇y(i)p
β
M

(
x(j), y(j)

)
,

the other from

∇y(i) exp
{−h

[(
ω(n) + η(n)

)|ω(N \ n) ∨ xc(N)
]}

= −∇y(i)h
[(

ω(n) + η(n)
)|ω(N \ n) ∨ xc(N)

]
× exp

{−h
[(

ω(n) + η(n)
)|ω(N \ n) ∨ xc(N)

]}
.

The uniform bound
∣∣∇y(i)p

β
M

(
x(j), y(j)

)∣∣ ≤ C(β) ∈ (0,+∞) (4.14)

is straightforward. Next, we have the estimate
∣∣∇y(i)h

[(
ω(n) + η(n)

)|ω(N \ n) ∨ xc(N)
]∣∣

≤ β(#Vn)
[
U + C(T )J ∗V

]
.

Together with (4.4) it implies that

∇y(i) exp
{−h

[(
ω(n) + η(n)

)|ω(N \ n) ∨ xc(N)
]}

(4.15)
≤ (#Vn)

[
U + C(T )J ∗V

]
exp

[
β

(
U + C(T )J ∗V

)
�Vn

]
.

The bounds (4.14) and (4.16) lead to a uniform bound upon |∇y(i)F
(n)
β,N |xc(N)(x(n),

y(n))|. This completes the proof of Theorems 2.1 and 3.1.
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4.2 Proof of Theorems 2.2 and 3.2

Theorem 2.2 follows from Theorem 3.2; therefore, we focus on the proof of The-
orem 3.2. Equation (3.30) follows from the property

lim
n′→∞

q
(n)
n′ (S(g)ω(n)|�c(n′))
q

(n)
n′ (ω(n)|�c(n′))

= 1, g ∈ G, (4.16)

uniformly in the path configurations ω(n) = {ω(j), j ∈ Vn} ∈ W
β
x(n),y(n) and the

loop configurations �c(n′) over V \ Vn′ . Here, the functional q
(n)
n′ (ω(n)|�c(n′))

emerges from representation (3.28):

q
(n)
n′

(
ω(n)|�c(n′))(x(n),y(n)

)

= 1

	β,n′(�c(n′))

∫
dω

(
n′ \ n

)
(4.17)

×
∫
W

β
x(n),y(n)

P
β
x(n),y(n)

(
dω(n)

)
exp

[−h
(
ω(n) ∨ ω

(
n′ \ n

)|�c(n′))],

and

S(g)ω(n) = {
S(g)ω(i), i ∈ Vn

}

where S(g)ω(i) : τ ∈ [0, β] 	→ S(g)ω(i, τ ).

To check (4.16), we again follow the argument used in Kelbert and Suhov
(2013a, 2013b) (which goes back to Pfister (1981) and Fröhlich and Pfister (1981);
cf. also Georgii (1988)). The backbone of the argument is the following inequal-
ity: ∀ given a > 1, g ∈ G and positive integer n, if n′ is large enough then,

∀ω(n) ∈ W
β
x(n),y(n), x(n),y(n) ∈ M×Vn and the loop configurations �c(n′) over

V \ Vn′ ,

aq
(n)
n′

(
gω(n)|�c(n′)) + aq

(n)
n′

(
g−1ω(n)|�c(n′))

(4.18)
≥ 2q

(n)
n′

(
ω(n)|�c(n′)).

The verification of equation (4.18) is based on a special construction related
to a family of “tuned” actions gn′\nω(n′ \ n) on loop configurations ω(n′ \ n); see
equations (4.20), (4.21) below. (A tuned action can be described as an interpolation
between the unity (identity) and the group action by g.) A particular feature of the
tuned action gn′\n is that it “decays” to e, the unit element of G (which generates a
“trivial” identity action), when we move the vertex of the tree T from Vn towards
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V \ Vn′ . Formally, (4.18) is implied by the following estimate: ∀ given n, ω(n) ∈
W

β

x(n),y(n), g ∈ G and a ∈ (1,∞), for any n′ large enough, ω(n′ \ n) and �c(n′),
a

2
exp

[−h
(
gω(n) ∨ gn′\nω

(
n′ \ n

)|�c(n′))]

+ a

2
exp

[−h
(
g−1ω(n) ∨ g−1

n′\nω
(
n′ \ n

)|�c(n′))] (4.19)

≥ exp
[−h

(
ω(n) ∨ ω

(
n′ \ n

)|�c(n′))].
Indeed, (4.18) follows from (4.19) by integrating in dω(n′ \ n) and normalizing

by 	β,n′(�c(n′)); cf. (4.17). Here it is important that the Jacobian of the map
ω(n′ \ n) 	→ gn′\nω(n′ \ n) is equal to 1.

The rest of the argument concentrates on verifying (4.19). The tuned family

gn′\n consists of individual actions g(n′)
j ∈ G at vertices j ∈ Vn′ \ Vn:

gn′\n = {
g(n′)

j , j ∈ Vn′ \ Vn

}
. (4.20)

We use the representation (2.12) and identify the element g ∈ G with a vector

θ = θA ∈ R
d . Then the actions g(n′)

j ∈ G correspond to multiples of the vector
θ ; cf. equation (4.21) below. It is convenient to fix a positive integer r > n and
identify

g(n′)
j with θγ

(
n′, k

)
, (4.21)

where k = d(s0, j) (recall, s0 is the root of T ) and

γ
(
n′, k

) =
{

1, k ≤ r ,
ϑ

(
k − r, n′ − r

)
, k > r . (4.22)

In turn, the function ϑ(a, b) is determined by

ϑ(a, b) = 1(a ≤ 0) + 1(0 < a < b)

Q(b)

∫ b

a
z(u)du, a, b ∈R, (4.23)

with the same functions Q(b) and z(u) as in Fröhlich and Pfister (1981)

Q(b) =
∫ b

0
z(u)du,

(4.24)

where z(u) = 1(u ≤ 2) + 1(u > 2)
1

u lnu
,b > 0.

Next, g−1
n′\n is the collection of the inverse elements:

g−1
n′\n = {

g(n′)
j

−1
, j ∈ Vn′ \ Vn

}
.

It will be convenient to use formulas (4.21)–(4.23) for g(n)
j for j ∈ Vn, or even for

j ∈ V , as these formulas agree with the requirement that g(n′)
j ≡ g when j ∈ Vn



534 M. Kelbert, Yu. Suhov and A. Yambartsev

and g(n′)
j ≡ e for j ∈ V \ Vn′ . Accordingly, we will employ the notation gn′ =

{g(n′)
j , j ∈ Vn′ }.
Next, we use the invariance property (2.13). The Taylor formula for the function

V ∈ C2(R2) yields for j, j ′ ∈ Vn:
∣∣V (

g(n′)
j ω(j),g(n′)

j ′ ω
(
j ′))

+ V
(
g(n′)

j

−1
ω(j),g(n′)

j ′
−1

ω
(
j ′)) − 2V

(
ω(j),ω

(
j ′))∣∣ (4.25)

≤ C|θ |2∣∣γ (
n′, j

) − γ
(
n′, j ′)∣∣2V .

Here C ∈ (0,∞) is a constant, the upper bound V is taken from (2.11), and we use
the notation from (4.22).

The bound (4.25) is crucial: this where the structure of the group action is ex-
ploited. It is based on the fact that the first-order terms in the expansion in the LHS

of (4.25) cancel each other, due to the presence of elements g(n′)
j and g(n′)

j ′ and

their inverses, g(n′)
j

−1
and g(n′)

j ′
−1

. This idea can be traced back to Pfister (1981)
and Fröhlich and Pfister (1981).

Further, the term |γ (n′, j) − γ (n′, j ′)|2 can be specified as

∣∣γ (
n′, k

) − γ
(
n′, k′)∣∣2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if k, k′ ≤ r, or k, k′ ≥ n′,[
ϑ

(
k − r, n′ − r

) − ϑ
(
k′ − r, n′ − r

)]2
,

if r < k, k′ ≤ n′,
ϑ

(
k − r, n′ − r

)2
,

if r < k ≤ n′, k′ /∈ ]
r, n′[,

ϑ
(
k′ − r, n′ − r

)2
,

if r < k′ ≤ n′, k /∈ ]
r, n′[

(4.26)

with notations k = d(j, s0), k
′ = d(j ′, s0).

The convexity property of the function exp, together with equation (4.25), yield
that, ∀a > 1,

a

2
exp

[−h
(
gn′

(
ω(n) ∨ ω

(
n′ \ n

))|�c(n′))]

+ a

2
exp

[−h
(
g−1

n′
(
ω(n) ∨ ω

(
n′ \ n

))|�c(n′))]

≥ a exp
[
−1

2
h
(
gn′

(
ω(n) ∨ ω

(
n′ \ n

))|�c(n′)) (4.27)

− 1

2
h
(
g−1

n′
(
ω(n) ∨ ω

(
n′ \ n

))|�c(n′))]

≥ a exp
[−h

(
ω(n) ∨ ω

(
n′ \ n

)|�c(n′))]e−C�/2.
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Here

� = �(n,g) = |θ |2 ∑
(j,j ′)∈Vn×V

J
(
d

(
j, j ′))∣∣γ (

n′, k
) − γ

(
n′, k′)∣∣2. (4.28)

The series in (4.28) converges for P-a.a. T , owing to condition (2.14) and estimate
(4.31) below.

The next observation is that

� ≤ 3|θ |2 ∑
(j,j ′)∈Vn′×V

1
(
k ≤ k′)J (

d
(
j, j ′))

(4.29)
× [

ϑ
(
k − r, n′ − r

) − ϑ
(
k′ − r, n′ − r

)]2
,

where, by virtue of the triangle inequality, for all j, j ′: k ≤ k′

0 ≤ ϑ
(
k − r, n′ − r

) − ϑ
(
k′ − r, n′ − r

)
(4.30)

≤ d
(
j, j ′) z(k − r)

Q(n′ − r)
.

Thus,

� ≤ 3|θ |2
Q(n′ − r)2

∑
(j,j ′)∈Vn′×V

J
(
d

(
j, j ′))d(

j, j ′)2
z(k − r)2

≤ 3|θ |2
Q(n′ − r)2

[
sup
j∈V

∑
j ′∈V

J
(
d

(
j, j ′))d(

j, j ′)2
] ∑

j∈Vn′+r

z(k − r)2.

Owing to (2.14), it remains to bound the sum
∑

j∈Vn+r
z(k − r)2. Note that

u(lnu)1/2+εz(u) < 1 when u ∈ (u0(ε),∞). Next, we use the bound (4.1) on the
number of vertices in Vn \ Vn−1. Therefore,∑

j∈Vn′+r

z(k − r)2 = ∑
1≤k≤n′+r

z(k − r)
∑

j∈Vk\Vk−1

z(k − r)

≤ C0
∑

1≤k≤n′+r

z(k − r) ≤ C1Q
(
n′ − r

)

and

� ≤ C(T )

Q(n′ − r)
→ ∞, as n′ → ∞. (4.31)

Hence, given a > 1 for n′ large enough, the term ae−C�/2 in the RHS of (4.27)
becomes >1. Consequently,

a

2
exp

[−h
(
gn′

(
ω(n) ∨ ω

(
n′ \ n

))|�c(n′))]

+ a

2
exp

[−h
(
g−1

n′
(
ω(n) ∨ ω

(
n′ \ n

))|�c(n′))] (4.32)

≥ exp
[−h

(
ω(n) ∨ ω

(
n′ \ n

)|�c(n′))].
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Equation (4.32) implies that

q
(n)
n′

(
ω(n)|�c(n′))

(4.33)

=
∫
W

β

x(n′\n)

dω
(
n′ \ n

)exp[−h(ω(n) ∨ ω(n′ \ n)|�c(n))]
	β,n′(�c(n′))

for any n and n′ large enough obeys

a
[
q

(n)
n′

(
gω(n)|�c(n′)) + q

(n)
n′

(
g−1ω(n)|�c(n′))]

(4.34)
≥ 2q

(n)
n′

(
ω(n)|�c(n′))

uniformly in the boundary condition �c(n′). Thus, (4.18) is established, which
completes the proof of Theorem 3.2.
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