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A bivariate CLT under rho-prime mixing

R. J. Niichel
Indiana University

Abstract. The main result is a bivariate central limit theorem for “rectan-
gular” sums of dependent complex-valued random variables, indexed by Z

d ,
which are ρ′-mixing. An interesting corollary concerning the limiting behav-
ior of the moments of the sums is then proved.

1 Introduction

The basic background material will be provided in this section.

1.1 A brief history

In the early 19th Century, Legendre published a paper in which he proved the first
central limit theorem. For the next 140 years, it was the object of nearly contin-
uous study by mathematicians. The classical result states that a normalized sum
of independent, identically distributed random variables converges in distribution
to a normal random variable. In 1951, Donsker published the proof of his weak
invariance principle, basically giving the final word on CLTs under independence
assumptions.

The independence assumption having been exhausted, in 1956 Murray Rosen-
blatt published a paper in which he allowed dependence in the random sequence.
His method involved developing a way to measure the dependence, and then in-
sisting that if the random variables were far removed from each other, then their
measured dependence should be small. This, as well as a few additional assump-
tions, permitted the proof of a CLT. Since that time, a number of new measures
of dependence have been developed, each measuring the dependence in a more or
less intuitive way.

1.2 The setting

This paper will deal with a very specialized set of hypotheses. First, instead of us-
ing sequences (or even two-sided sequences) of random variables, fields of random
variables shall be the object of study. A field of random variables is a collection
X := {Xk, k ∈ Z

d}, where each of the Xk’s is a complex-valued random variable,
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and d is a fixed whole number. Usually, it is best to have EXk = 0 for every k, in
which case the field is called centered. Moreover, it will usually be necessary to
assume that X is strictly stationary, which means that for every S ⊂ Z

d , S �= ∅,
and any fixed vector p ∈ Z

d , the collections {Xk, k ∈ S} and {Xk+p, k ∈ S} have
the same distribution. In other words, the joint distributions are fixed under trans-
lations of the indexing sets. So, if X is strictly stationary, the assumption that X is
centered requires no loss of generality.

Various methods of studying these fields have been developed, and the following
has yielded a number of interesting results:

Consider vectors λ = (λ1, . . . , λd) ∈ [−π,π]d , and write eiλ := (eiλ1, eiλ2, . . . ,

eiλd ), and notice that each coordinate is an element of the unit circle in C. (The
notation is abused a bit, but hopefully the context will clarify the meaning below.)
Now define the random field X(λ) := {X(λ)

k := e−ik·λXk :k ∈ Z
d}, where “·” de-

notes the usual dot product. It is not hard to see that if X is a centered, complex
(i.e., the random variables Xk are complex-valued), strictly stationary random field

(“CCSS” for short), and if E|Xk|2 = σ 2 < ∞, then the covariance EX
(λ)
k X

(λ)
l de-

pends only on the vector k − l. This latter criterion is the definition of what it
means to be weakly stationary, and so the field X(λ) is called centered, complex,
weakly stationary (CCWS).

The interesting thing about these weakly stationary random fields is that they
often have spectral densities. To understand what that means, first take the normal-
ized Lebesgue measure on the complex unit circle (denoted by T), μT := dz/2πiz,
and consider the d-dimensional product measure μd

T
= μT × μT × · · · × μT. Now

you can define the spectral density of the CCWS random field Y := {Yk :k ∈ Z
d}

to be the nonnegative Borel function f :Td → R which satisfies

EYkY l =
∫
Td

ei(k−l)·θf (θ) dμd
T

(
eiθ ).

The spectral density doesn’t always exist, but the spectral measure always does.
And as you may have already guessed, the spectral density is just the Radon–
Nicodym derivative of the spectral measure. More will be said about the spectral
density later.

1.3 Mixing conditions

Intuitively, many phenomena in the real-world are dependent, and independence
is often a lot to ask. Take, for instance, the disturbance in a radio signal measured
every minute. If there is a large amount of static in the current signal, our expec-
tation for the next signal is that it will also have a lot of static, perhaps due to a
storm or other phenomenon. Thus, the time-dependence of this sequence is appar-
ent in small time intervals. On the other hand, if there is a lot of signal disruption
in the present signal, what can be said about the measurement taken a day or a
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month from now? In this case, it seems reasonable to assume that measurements
separated by large intervals of time should be more or less independent.

Capturing this idea in a rigorous form means first of all that the dependence
must be measured. Consider then the correlation coefficient for two sigma-fields
A and B:

ρ(A,B) = sup
f,g

Corr(f, g),

where the supremum is taken over all f ∈ L2(A) and g ∈ L2(B), and Corr(f, g) =
(Efg − Ef Eg)/‖f ‖2‖g‖2.

To apply the correlation coefficient to the context of a random field X, take a
nonempty subset V ⊂ Z

d , and let σ(V ) denote the sigma field generated by the
random variables Xk ∈ X with indices in k ∈ V . Then, define

ρ′(X,n) = sup
S,T

ρ
(
σ(S), σ (T )

)
,

where now the supremum is taken over all finite nonempty sets S and T which are
separated by n units in (at least) one dimension. That is to say, there is a subscript u,
1 ≤ u ≤ d so that if S 
 k = (k1, . . . , kd) and T 
 l = (l1, . . . , ld), then |ku − lu| ≥
n. It is important to note that the sets S and T can be “interlaced,” meaning there
may be k, j ∈ S and l ∈ T such that ku ≤ lu ≤ ju, and vice versa.

It is now possible to describe what is meant by “ρ′-mixing.” A random field
X is said to be ρ′-mixing if ρ′(X,n) → 0 as n → ∞. Again, what is being said
here is that the random variables are “asymptotically independent,” insofar as ρ′
measures dependence.

Another, perhaps better-known, measure of dependence is the ρ∗ condition. It
is very similar to ρ′:

ρ∗(X,n) = sup
S,T

ρ
(
σ(S), σ (T )

)
.

The only difference is that the elements k and l of the finite nonempty sets S and
T (respectively) must satisfy ‖k − l‖ ≥ n:

min
k∈S,l∈T

‖k − l‖ ≥ n.

(Here and below, ‖ ·‖ is the standard Euclidean norm.) Note that in one dimension,
the two mixing conditions are equivalent.

It is easy to see that ρ∗-mixing implies ρ′-mixing, since ρ∗(n) ≥ ρ′(n). There-
fore, since only ρ′-mixing is assumed below, all of the results proved in this paper
apply to ρ∗-mixing fields as well.
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1.4 A bit more history

The ρ∗ dependence measure has a number of well-known applications. One im-
portant example is the class of stationary fields of Gaussian random variables.
These fields are the source of a significant body of research, dating back to Ibrag-
imov and Rozanov (1978). In addition, Murray Rosenblatt (1985) implies in that
if such a field has a positive continuous spectral density function, then the field is
ρ∗-mixing.

Regarding the ρ′ coefficient, Bradley (1994) constructed strictly stationary ran-
dom fields for which ρ∗(n) = 1 for all n ≥ 1, but ρ ′(2) = 0 (which implies that
ρ′(n) = 0 for all n ≥ 3). The result proves that there exist random fields which
are ρ ′-mixing, but not ρ∗-mixing. Bradley (2010) further shows that if {an}∞n=1
and {bn}∞n=1 are two sequences such that 0 ≤ an ≤ bn ≤ 1 for every n, then
there is a strictly stationary random field such that ρ∗(n) = bn and ρ′(n) = an.
This implies that there is no relationship between the two conditions, except that
0 ≤ ρ′(n) ≤ ρ∗(n) ≤ 1. Consequently, the results proved in this paper apply not
only to ρ∗-mixing fields, but to the strictly larger class of ρ′-mixing fields.

To understand the specific motivation for this paper, a bit of notation will be
necessary. First of all, take an arbitrary vector v = (v1, v2, . . . , vd) in N

d . Now
consider the d-dimensional “box”

B(v) = {u ∈ Z
d : 1 ≤ uj ≤ vj , j = 1,2, . . . , d

}
.

Next, since CLTs require an analysis of the sums of random variables, take an
arbitrary, nonempty subset S ⊂ Z

d and write

S
(λ)
S

:=∑
k∈S

X
(λ)
k .

NB: From this point forward, assume that {v(n) = (v
(n)
1 , v

(n)
2 , . . . , v

(n)
d )}∞n=1 is some

fixed sequence of vectors in N
d which satisfies the following property:

lim
n→∞ min

{
v

(n)
1 , v

(n)
2 , . . . , v

(n)
d

}= ∞. (1.1)

The reason for insisting on condition (1.1) will be explained momentarily.
Since the sequence of vectors is fixed, substitute the notations

B(n) := B
(
v(n)) and S(λ)

n := S
(λ)
B(n)

and name the product of the components of v(n):

Vn :=
d∏

j=1

v
(n)
j .

Notice that Vn = Card(B(v(n))).
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Finally, the periodogram I
(λ)
n is defined to be

I (λ)
n := |S(λ)

n |2
Vn

.

The periodogram is fairly interesting, even though it is not the main object of study
in this paper.

So, getting back to the specific motivation of this paper, in 1995 Curtis Miller
proved that for the specific sequence of vectors v(n) := (n,n, . . . , n), n = 1,2, . . .

lim
n

E
(
I (λ)
n

)2 = 2
(
f (λ)
)2 + 4

∣∣h(λ)
∣∣2. (1.2)

The function f in (1.2) is the (continuous) spectral density, and h is another func-
tion which is zero except when eiλ ∈ {−1,1}d , and will be defined more specif-
ically at a later point. To prove (1.2), Miller assumed that the random field X is
ρ∗-mixing, and that E[(Xk)

4] < ∞ for all k.
In 2006, Frederic Picard proved for v(n) := (n,n, . . . , n) that

lim
n

E
(
I (λ)
n

)3 = 6
(
f (λ)
)3 + 36

∣∣h(λ)
∣∣2f (λ). (1.3)

Here, Picard again assumed that X was ρ∗-mixing, and that the Xk had finite sixth
moments. The function h in (1.3) is the same as in (1.2).

The results herein are similar to Miller’s and Picard’s results. The two formu-
lae (1.2) and (1.3) are special cases of the theorem I intend to prove in this pa-
per (though technically speaking, neither Miller’s nor Picards results are special
cases of the results in this work). Basically, I would like to show that for most
λ ∈ [−π,π ]d ,

lim
n

E
(
I (λ)
n

)r = Eχr,

where χ is an exponential (f (λ)) random variable. What I mean by “most” is that
the choice of λ is restricted so that eiλ /∈ {−1,1}d . The general result requires a
few minor details which need not be presented at this time.

The most crucial part of proving this will be proving a Bivariate CLT.

Theorem 1. Suppose X is a CCSS random field such that E|X0|2 < ∞. Suppose
also that ρ ′(n) → 0 as n → ∞. Let f (λ) denote the (continuous) spectral density
of X. If

lim
n→∞ min

{
v

(n)
1 , v

(n)
2 , . . . , v

(n)
d

}= ∞,

then whenever eiλ /∈ {−1,1}d ,

1√
Vn

(�S(λ)
n ,�S(λ)

n

)⇒ N
(
0,�(λ)),
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where “⇒” denotes weak convergence (convergence in distribution), and

�(λ) :=
⎡⎢⎣

f (λ)

2
0

0
f (λ)

2

⎤⎥⎦ .

1.5 Important results

The proofs for the theorems in this paper do not require the complex machinery
that Miller and Picard used, and they apply to the strictly more general collection
of ρ′-mixing random fields. The most important new tool which neither Miller
nor Picard had is the following “Rosenthal” inequality (see Bradley (2007), Theo-
rem 29.30).

Theorem 2 (A Rosenthal inequality). Suppose β is a number in the interval
[2,∞), and that X is a random field of complex-valued random variables (X does
not have to be stationary). Suppose further that X is such that for each k ∈ Z

d ,
EXk = 0 and E|Xk|β < ∞. Finally, assume that ρ ′(n) < 1 for some n ∈ Z. Then,
for any finite set S ⊂ Z

d ,

E

∣∣∣∣∑
S

Xk

∣∣∣∣β ≤ C ·
[∑

S

E|Xk|β +
(∑

S

E|Xk|2
)β/2]

,

where C is a constant that depends on d , n, ρ′(n) and β .

Note the simplification of Rosenthal’s inequality when β = 2.
Rosenthal’s inequality will be very useful in controlling the moments of S

(λ)
n ,

and makes the application of Lyapounov’s CLT much easier. It will also be used
in proving the final corollary, in addition to the following theorem, which may not
be well known (see Billingsley (1995), the corollary to Theorem 25.12).

Theorem 3. Let r be a positive integer. If Xn ⇒ X and supn E|Xn|r+ε < ∞,
where ε > 0, then E|X|r < ∞ and E(Xn)

r → EXr .

The theorem above is quite handy in showing the convergence of the moments,
provided that the supremum is indeed finite. The next result displays an interesting
connection between the field X(λ) and the spectral density (see Bradley (2007),
Theorem 28.21).

Theorem 4. Suppose that v(n) ≡ (n,n, . . . , n) for all n. If X is a CCWS random
field such that ρ′(n) → 0 as n → ∞, then X has a continuous spectral density
f (λ) on T

d and

f (λ) = lim
n→∞EI(λ)

n ,

and the convergence is uniform over all λ ∈ [−π,π ]d .
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In Section 2, an analogue of Theorem 4 is provided which basically says the
same thing, except that the condition (1.1) holds, instead of the condition v(n) ≡
(n,n, . . . , n).

The last major result was developed by Miller with the Cramer–Wold device
(see Billingsley (1995), Theorem 29.4) in mind: In the following, let a and b be two
arbitrary but fixed numbers. Then, define Ga,b :C → R by Ga,b(z) = a�z + b�z.
The following theorem comes from Miller (1995), Lemma 4.1:

Lemma 1. Suppose X is a CCWS random field such that ρ∗(n) → 0 as n → ∞
and EXkXj = EXk−jX0 for all k, j ∈ Z

d . Let v(n) = (n,n, . . . , n) and let f (λ)

denote the (continuous) spectral density of X. If λ ∈ [(−π,0) ∪ (0, π)]d , then for
any a, b ∈ R,

lim
n→∞ sup

β∈Zd

∣∣∣∣(a2 + b2)f (λ)

2
−
∑

k∈B(n) Ga,b(e
−i(k+β)·λXk+β)

nd

∣∣∣∣= 0. (1.4)

Note that (1.4) implies that the “location” of the box in Z
d makes no difference

to the convergence. Suffice it to say for now that this will be useful in Section 3,
where a Bernstein blocking argument is used.

The final result might be an appropriate problem for 400-level analysis. Never-
theless, it will be quite useful.

Lemma 2. Suppose that a ∈ [0,∞) and {ak :k ∈ Z
d} is a field of nonnegative

numbers such that for every ε > 0 there exists an M = M(ε) > 0 so that whenever
the Euclidean norm of any vector k ∈ Z

d is greater than M , it holds that |ak −a| <
ε. Then, as n → ∞,

lim
n

∑
k∈B(n) ak

Vn

= a.

2 Preliminaries

This section consists of some basic calculations which will serve a greater purpose
later. Most of these results are minor modifications of others’ work, and in those
cases the proofs are left to the reader to verify.

In Section 2.2, I will state and prove a theorem which resembles Lemma 1,
though the two results are not comparable (their respective hypotheses are a bit
different).

2.1 Some adaptations

Lemma 3. Suppose that X is a CCWS random field which satisfies ρ ′(n) → 0.
Let v(n) be a sequence which satisfies (1.1). Let f (λ) be the continuous spectral
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density of X. Then,

lim
n→∞ I (λ)

n = f (λ).

Moreover, the convergence is uniform over all λ ∈ [−π,π ]d .

Proof. This proof is essentially the same as the proof of the standard Fejer The-
orem, and so it is omitted. (For a proof of the Fejer theorem, see Rudin (1964),
p. 176, Theorem 8.15.) �

Lemma 4. Suppose X is a complex and centered random field which is ρ′-mixing,
and suppose further that E|X0|2 < ∞ and EXkXj = EXk−jX0 for all k, j ∈ Z

d .
Suppose v(n) is a sequence of vectors which satisfies (1.1). If there is a subscript s

so that exp{iλs} �= ±1, then

lim
n→∞

E(S
(λ)
n )2

Vn

= 0.

Proof. The proof is a minor modification of one of Curtis Miller’s results (1995,
Lemma 3.6), and so it is also omitted. �

The next result is named after Curtis Miller, who proved an analogous result
under ρ∗-mixing (Lemma 1 in this paper). Recall that Ga,b(z) = a�z + b�z.

Lemma 5. Suppose X is a CCWS random field which is ρ ′-mixing. Suppose fur-
ther that EXkXj = EXk−jX0 for any k, j,∈ Z. Suppose the sequence of vectors
v(n) satisfies (1.1). Let λ ∈ [−π,π ]d be such that eiλ /∈ {−1,1}d , and let f (λ)

denote the (continuous) spectral density of X. Then

lim
n→∞

[
sup
ν∈Zd

∣∣∣∣12 (a2 + b2)f (λ) − 1

Vn

E

( ∑
k∈B(n)

Ga,b

(
X

(λ)
k+ν

))2∣∣∣∣]= 0.

Proof. In his 1995 paper, Miller used his analogues of Lemmas 3 and 4 to prove
his version of Lemma 5 (see Miller (1995), Lemma 4.1). The proof of the cur-
rent lemma is therefore nearly identical to Miller’s own proof, and so again it is
omitted. �

2.2 Implications

Assume now that X is CCSS. Let η
(λ)
k := �X

(λ)
k and let ξ

(λ)
k := �X

(λ)
k . Lemma 3

implies that

lim
n→∞E

[
(
∑

B(n) η
(λ)
k )2

Vn

+ (
∑

B(n) ξ
(λ)
k )2

Vn

]
= f (λ).
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In addition, if λ /∈ {−π,0, π}d , then Lemma 4 implies that

lim
n→∞ Cov

(∑
B(n) η

(λ)
k√

Vn

,

∑
B(n) ξ

(λ)
k√

Vn

)
= 0.

Therefore, if eiλ /∈ {−1,1}d , then

fη(λ) := lim
n

E
(
∑

B(n) η
(λ)
k )2

Vn

= 1

2
f (λ)

and also

fξ (λ) := lim
n

E
(
∑

B(n) ξ
(λ)
k )2

Vn

= 1

2
f (λ).

2.3 The missing values

The question at this point concerns the missing values from Lemma 5; namely
those λ ∈ [−π,π ]d where eiλ ∈ {−1,1}d . Obviously, the reason they have been
omitted from Lemma 5 is on account of Lemma 4.

However, in his 1995 paper, Curtis Miller showed that when eiλ ∈ {−1,1}d ,
then the random fields η

(λ)
k and ξ

(λ)
k defined above are both weakly stationary, and

hence have their own spectral densities. Thus, Lemma 3 implies that

fη(λ) := lim
n

E
(
∑

B(n) η
(λ)
k )2

Vn

and fξ (λ) := lim
n

E
(
∑

B(n) ξ
(λ)
k )2

Vn

both exist. Moreover, a simple adaptation to Miller’s proof of his Lemma 3.7 (from
1995) shows that

h(λ) := lim
n→∞ Cov

(∑
B(n) η

(λ)
k√

Vn

,

∑
B(n) ξ

(λ)
k√

Vn

)
still exists when eiλ ∈ {−1,1}d . These facts lead to the following conclusion.

Lemma 6. Let X be a CCSS random field which is ρ′-mixing, and suppose further
that EX2

0 < ∞. Let f (λ) denote the continuous spectral density of X, and define
fη, fξ , and h as above. Suppose finally that the sequence of vectors v(n) satisfies
(1.1). Then, for any a, b ∈R,

lim
n

[
sup
ν∈Zd

∣∣∣∣a2fη(λ) + b2fξ (λ) + 2h(λ)ab − 1

Vn

E

(∑
B(n)

Ga,b

(
X

(λ)
k+ν

))2∣∣∣∣]= 0.

Proof. There are two cases to consider. The first case is when eiλ /∈ {−1,1}d . Ob-
viously, this case is covered by Lemma 5. Therefore, assume that eiλ ∈ {−1,1}d .
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In this case,

E

( ∑
k∈B(n)

Ga,b

(
X

(λ)
k+ν

))2

= a2E

(∑
B(n)

η
(λ)
k+ν

)2

+ b2E

(∑
B(n)

ξ
(λ)
k+ν

)2

(2.1)

+ 2ab Cov
(∑
B(n)

η
(λ)
k ,
∑
B(n)

ξ
(λ)
k

)
.

However, since eiλ ∈ {−1,1}d ,∑
B(n)

�[e−iν·(λ)e−ik·λXk+ν

]= ±∑
B(n)

�[e−ik·λXk+ν

]
. (2.2)

Notice that because of the stationarity of the field X, the right-hand side of (2.2)
has the same distribution as ±∑B(n) �[eik·λXk]. Thus,

E

(∑
B(n)

�[e−iν·(λ)e−ik·λXk+ν

])2

= E

(∑
B(n)

�[e−ik·λXk

])2

.

Similarly, it is easy to see that

E

(∑
B(n)

�[e−iν·(λ)e−ik·λXk+ν

])2

= E

(∑
B(n)

�[e−ik·λXk

])2

and

E

[(∑
B(n)

η
(λ)
k+ν

)(∑
B(n)

ξ
(λ)
k+ν

)]
= E

[(∑
B(n)

η
(λ)
k

)(∑
B(n)

ξ
(λ)
k

)]
.

It should now be clear that Equation (2.1) is the same no matter what the value of
ν is. Hence, Lemma 6 is proved. �

3 The main result

3.1 Presentation

Here is the main result of this paper.

Theorem 5. Let X be a CCSS, ρ′-mixing random field such that E|X0|2 < ∞. Let
f (λ) denote the continuous spectral density of X, and let v(n) be a sequence which
satisfies (1.1). Define the quantities fη(λ), fξ (λ), and h(λ) as in Section 2.3. Then,
for each λ ∈ [−π,π ]d ,

1√
Vn

(�S(λ)
n ,�S(λ)

n

)⇒ N
(
0,�(λ)), (3.1)
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where

�(λ) :=
[
fη(λ) h(λ)

h(λ) fξ (λ)

]
.

Remark. Miller (1995, Lemma 4.2) proved an analogue of Theorem 5 under ρ∗-
mixing and E|X0|4 < ∞.

Remark. Christina Tone (2011) proved a central limit theorem for strictly station-
ary, ρ ′-mixing random fields X := {Xk, k ∈ Z

d} with the random variables taking
their values in a separable real Hilbert space. Theorem 5 involves a different con-
text in that the complex-valued random fields X(λ), λ ∈ [−π,π ]d are in view, and
these fields are not generally strictly stationary.

Remark. Notice that if λ is such that eiλ /∈ {−1,1}d , then the limiting distribution
is the joint distribution of two independent normal random variables, since the
covariance matrix in that case is

�(λ) := 1

2

[
f (λ) 0

0 f (λ)

]
,

and uncorrelated normals are independent.

3.2 Description of the proof

Generally speaking, the proof consists of two reductions. The first involves truncat-
ing the individual random variables (i.e., the Xk’s). The second reduction involves
the Bernstien blocking argument. In both reductions, it must be borne in mind that
L2-convergence to zero implies weak convergence to zero. This fact, when com-
bined with Slutsky’s lemma (see Ibragimov and Linnik (1971), Lemma 18.4.1),
will provide the means to show that both reductions are valid.

The proof of Theorem 5 begins below. However, the proof does not conclude
until the end of Section 3.8.

Proof of Theorem 5. Fix λ ∈ [−π,π ]d . If fη(λ) = fξ (λ) = h(λ) = 0, then
Miller’s lemma shows that

1√
Vn

(�S(λ)
n ,�S(λ)

n

)⇒ 0.

(Since L2-convergence to zero implies weak convergence to zero.) So, from here
on out, assume that at least one of fη(λ), fξ (λ), or h(λ) is nonzero. The Cramer–
Wold device (see Billingsley (1995), Theorem 29.4) implies that proving (3.1) is
equivalent to proving that

Ga,b(S
(λ)
n )√

Vn

⇒ N
(
0, a2fη(λ) + 2ab · h(λ) + b2fξ (λ)

)
(3.2)
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for an arbitrary point (a, b) ∈ R
2.

Therefore, let (a, b) ∈ R
2 be arbitrary but fixed. Since it is fixed, write “G”

instead of “Ga,b.” To reiterate, if (3.2) can be proved for these values of a and b,
then (3.1) will also hold.

The next sections should be considered as parts of the (lengthy) proof, which
concludes in Section 3.8.

3.3 The first reduction: Truncation

For any vector k ∈ Z
d , define 〈k〉 := k1 · k2 · · ·kd . Then let 0 < q be a real number

(later q will be chosen in the interval (0,1/4)), and define the random variables

B
(λ)
k,q = X

(λ)
k I
{|Xk| ≤ 〈k〉q}− EX

(λ)
k I
{|Xk| ≤ 〈k〉q}, (3.3)

T
(λ)
k,q = X

(λ)
k I
{|Xk| > 〈k〉q}− EX

(λ)
k I
{|Xk| > 〈k〉q}. (3.4)

Notice that EB
(λ)
k,q = ET

(λ)
k,q = 0 for every k and q . Next, define

S(λ)
n,q := ∑

k∈B(n)

B
(λ)
k,q,

R(λ)
n,q := �[S(λ)

n,q

]
,

Q(λ)
n,q := �[S(λ)

n,q

]
.

The following lemma constitutes the substance of the first reduction:

Lemma 7. In the same context and with the same notations as Theorem 5 and
Section 3.3, and for any q ∈ (0,1/4),

(R
(λ)
n,q,Q

(λ)
n,q)√

Vn

⇒ N
(
0,�(λ)), (3.5)

and

E|∑k∈B(n) T
(λ)
k,q |2

Vn

→ 0 (3.6)

as n → ∞.

In light of Slutsky’s lemma, equation (3.6) implies that equation (3.5) will prove
the main result (i.e., (3.1)), since L2-convergence to zero implies weak conver-
gence to zero).

The proof of Lemma 7 is in two parts. Proving (3.6) is relatively simple and so
that will be done first. The proof of (3.5) is more involved (it requires a number
of other auxiliary results), and so it will be proved over the course of the next few
sections.
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Proof of equation (3.6). First of all, notice that because E|X0|2 is finite, the val-
ues ET

(λ)
k,q satisfy the conditions of Lemma 2 (when 〈k〉 is large, ET

(λ)
k,q ≈ 0). If the

Rosenthal inequality (Theorem 2) is applied to the right-hand side of (3.6):

E|∑k∈B(n) T
(λ)
k,q |2

Vn

≤ C ·∑B(n) E|T (λ)
k,q |2

Vn

. (3.7)

Application of Lemma 2 to the right-hand side of (3.7) proves (3.6). �

3.4 The blocking argument

What follows is an argument that involves the Bernstein Blocking technique
(which actually dates back to at least Markov). Heuristically, the gist of the ar-
gument involves slicing S

(λ)
n,q like a loaf of bread, except that the “width” of the

slices is not to be uniform. Instead, the first slice should be thick, the second thin,
the third thick, the fourth thin, and so on. The thin slices should grow in thickness
as S

(λ)
n,q grows in size, and since they come between the thick slices, these latter

pieces should be quasi-independent because of the mixing condition. However,
when taken all together, the thin slices can’t account for too much of S

(λ)
n,q , since it

will be desirable to be able to neglect the small slices and focus on the big ones.
Thus, much care must be taken to ensure that both of these criteria are satisfied.

The most crucial part of the process is in determining the “dimensions” of the
various “slices.” To that end, define the width of the “thin” slices (a.k.a. the “small
blocks”):

w(n) := ⌊ 3
√

v
(n)
1

⌋
, (3.8)

where �·� denotes the largest integer less than or equal to the argument. Next, the
number of large blocks will be

l(n) := min
{
w(n),

⌊
1√

ρ′(X,w(n)
)⌋}. (3.9)

Finally, the width of the large blocks is pretty much determined; the width of the
thick slices will be the unique integer p(n) satisfying(

p(n) − 1 + w(n)
)
l(n) ≤ v

(n)
1 <

(
p(n) + w(n)

)
l(n). (3.10)

Notice that each of w(n), l(n) and p(n) goes to infinity with n.
Now let’s define the big blocks. For each j = 1,2, . . . , l(n), define the sets

B(j, n) := {k ∈ B(n) : (j − 1)
(
p(n) + w(n)

)
< k1 ≤ jp(n) + (j − 1)w(n)

}
(k1 is the first coordinate of k). Also define the random variables

�(j,n,λ, q) = �(j,n) := ∑
k∈B(j,n)

G
(
B

(λ)
k,q

)
.
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It will also be convenient to collect the leftovers:

Z(n) := B(n)
∖{ l(n)⋃

j=1

B(j, n)

}
.

With the above notations, it is possible to show that

Lemma 8. In the current context,∑
k∈Z(n) G(B

(λ)
k,q)√

Vn

⇒ 0.

Proof. Observe that the cardinality of Z(n) is (v
(n)
1 − l(n)p(n))v

(n)
2 · · ·v(n)

d . Next,
from (3.8)–(3.10), it is not hard to see that

v
(n)
1 − (v(n)

1

)2/3 ≤ v
(n)
1 − l(n)w(n) ≤ l(n)p(n), (3.11)

and therefore that

Vn − l(n)p(n)v
(n)
2 · · ·v(n)

d ≤ Vn − (v(n)
1 − (v(n)

1

)2/3)
v

(n)
2 · · ·v(n)

d

= (v(n)
1

)2/3
v

(n)
2 · · ·v(n)

d (3.12)

= o(Vn).

One final consequence of these definitions is that

lim
n

Vn

p(n) · l(n) · v(n)
2 · · ·v(n)

d

= 1. (3.13)

The trick now is to apply the Rosenthal inequality (Theorem 2); the field B
(λ)
q :=

{B(λ)
k,q :k ∈ Z

d} is ρ′-mixing, so the application is justified.

E

∣∣∣∣
∑

k∈Z(n) B
(λ)
k,q√

Vn

∣∣∣∣2 ≤ K

∑
k∈Z(n) E|B(λ)

k,q |2
Vn

≤ K

∑
k∈Z(n) E|X0|2

Vn

. (3.14)

However, the extreme right-hand side of equation (3.14) is equal toK·Card(Z(n))×
E|X0|2/Vn = KE|X0|2/(v(n)

1 )1/3 → 0 as n → ∞. Since L2-convergence to zero
implies weak convergence to zero, Lemma 8 is proved. �

3.5 The second reduction: Independent big blocks

The goal now is to show that it is possible to consider independent copies of the
big blocks, instead of the dependent ones. Lemma 9 accomplishes this task by
showing that the characteristic function of the independent copies is sufficiently
close to the characteristic function of the dependent ones. In Section 3.8, I will
explain how this fact is used in the proof of Theorem 5.
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Consider ∑l(n)
j=1 �(j,n)√

Vn

and the corresponding characteristic function

φ(n)(t) := E

[
exp
{
it

∑l(n)
j=1 �(j,n)√

Vn

}]
.

Also, for each n, define the functions ψ(n)(t) :=∏l(n)
j=1 E[it�(j, n)/

√
Vn].

Now it would be good to show that

Lemma 9. In the same context as Theorem 5, and with all the current notations,

lim
n

∣∣φ(n)(t) − ψ(n)(t)
∣∣= 0

for every t ∈ R.

Proof. Fix t ∈ R. For every m, 1 ≤ m ≤ l(n), let Am := E[exp{it�(m,n)/
√

Vn}].
Then, for every 1 < m < l(n), define Bm := E[exp{it∑l(n)

j=m �(j,n)/
√

Vn}]. It is
not hard to see that

|A1 · · ·Am−1Bm − A1 · · ·AmBm+1| = |A1 · · ·Am−1||Bm − AmBm+1|
≤ |Bm − AmBm+1|.

Because of Theorem 1.1 in Withers (1981), it holds that |Bm − AmBm+1| ≤
ρ′(w(n))‖Am+1‖2‖Bm+1‖2 ≤ ρ′(w(n)). Therefore, by adding and subtracting
the appropriate terms, it follows that |φ(n)(t) − ψ(n)(t)| ≤ l(n)ρ′(w(n)). But,
because of the definition of l(n) (see (3.9)), l(n)ρ′(w(n)) → 0, which proves
Lemma 9. �

3.6 Preparation for Lyapounov’s condition

For every n, take a family {�(j,n)}l(n)
j=1 of independent random variables so that

�(j,n) has the same distribution as �(j,n). The last major step in the proof of
Theorem 5 is proving that Lyapounov’s condition holds for the �(j,n)’s, which is
Lemma 11 below. The proof of Lemma 11 relies on the following claim.

Lemma 10. In the current context, and with all the current notations,

lim
n→∞

∑l(n)
j=1 E|�(j,n)|2

(a2fη(λ) + 2ab · h(λ) + b2fξ (λ))Vn

= 1.
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Proof. Define U(j,n) :=∑k∈B(j,n) G(X
(λ)
k ) and Z(j,n) :=∑k∈B(j,n) G(T

(λ)
k,q ).

Let K ′ = a2fη(λ) + 2ab · h(λ) + b2fξ (λ). Finally, let V ′
n = l(n)p(n)v

(n)
2 · · ·v(n)

d .
First of all, notice that because of (3.11),

lim
n

∣∣∣∣1 − V ′
n

Vn

∣∣∣∣≤ lim
n

∣∣∣∣o(Vn)

Vn

∣∣∣∣= 0. (3.15)

Therefore,

lim
n→∞

∑
j E|�(j,n)|2

K ′Vn

= lim
n→∞

∑
j E|�(j,n)|2

K ′l(n)p(n)v
(n)
2 · · ·v(n)

d

. (3.16)

Secondly, observe that Rosenthal’s inequality implies

E
∣∣Z(j,n)

∣∣2 ≤ C
∑

k∈B(j,n)

E
∣∣T (λ)

k,q

∣∣2 = C
∑

k∈B(j,n)

Var
(
X

(λ)
k I
{|Xk| > 〈k〉q})

≤ C
∑

k∈B(j,n)

E
∣∣X(λ)

k I
{|Xk| > 〈k〉q}∣∣2.

(It is important to note that the constant C does not depend on j .) Now let β be any
element of B(1, n), and define the vector α := (p(n) + w(n),0,0, . . . ,0). Then,
β + jα ∈ B(j, n). Furthermore, 〈β〉 ≤ 〈β + jα〉 for all β ∈ B(1, n) and all j .
Therefore (since E|X0|2 < ∞), E|X(λ)

k I{|Xk| > 〈β + jα〉q}|2 < E|X(λ)
k I{|Xk| >

〈β〉q}|2. This implies that∑
k∈B(j,n) E|X(λ)

k I{|Xk| > 〈k〉q}|2
p(n)v

(n)
2 · · ·v(n)

d

≤
∑

k∈B(1,n) E|X(λ)
k I{|Xk| > 〈k〉q}|2

p(n)v
(n)
2 · · ·v(n)

d

,

and the right-hand side converges to zero by Lemma 2. Therefore, the terms

E|Z(j,n)|2
(p(n)v

(n)
2 · · ·v(n)

d )
→ 0 (3.17)

uniformly (i.e., uniformly over j ).
Finally, notice that Lemma 6 implies that

1 = lim
n

∑l(n)
j=1 E|U(j,n)|2

K ′V ′
n

.

But, E|U(j,n)|2 = E|�(j,n)|2 +2E|�(j,n)||Z(j,n)|+E|Z(j,n)|2, so consider
the term

∑
j=1 l(n)E|Z(j,n)|2/V ′

n. This obviously converges to zero because it is
a Cesaro mean of the terms from (3.17).
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To deal with the second term, apply the Cauchy–Schwarz and Minkowski in-
equalities:

E|�(j,n)||Z(j,n)|
p(n)v

(n)
2 · · ·v(n)

d

≤
√

E|�(j,n)|2
√

E|Z(j,n)|2
p(n)v

(n)
2 · · ·v(n)

d

≤
(√√√√ E|U(j,n)|2

p(n)v
(n)
2 · · ·v(n)

d

+
√√√√ E|Z(j,n)|2

p(n)v
(n)
2 · · ·v(n)

d

)
(3.18)

·
√√√√ E|Z(j,n)|2

p(n)v
(n)
2 · · ·v(n)

d

=
√√√√ E|U(j,n)|2

p(n)v
(n)
2 · · ·v(n)

d

√√√√ E|Z(j,n)|2
p(n)v

(n)
2 · · ·v(n)

d

+ E|Z(j,n)|2
p(n)v

(n)
2 · · ·v(n)

d

.

Now, uniformly over all j ,
√

E|Z(j,n)|2/p(n)v
(n)
2 · · ·v(n)

d → 0. Lemma 6 implies

that
√

E|U(j,n)|2/p(n)v
(n)
2 · · ·v(n)

d → K ′, uniformly over all j , and so the last
line of (3.18) converges to zero as well. Therefore,

1

K ′l(n)

l(n)∑
j=1

2E|�(j,n)||Z(j,n)| + E|Z(j,n)|2
p(n)v

(n)
2 · · ·v(n)

d

→ 0

as well. This implies that the right-hand side (and hence both sides) of (3.16) con-
verge to 1, which proves Lemma 10. �

3.7 Statement of Lyapounov’s condition

Lemma 11. In the same context as Theorem 5, and with all the current notations,

lim
n→∞

∑l(n)
j=1 E|�(j,n)|4

(
∑l(n)

j=1 E|�(j,n)|2)2
= 0. (3.19)

Proof. Apply Lemma 10 and Rosenthal’s inequality:

lim
n→∞

∑l(n)
j=1 E|�(j,n)|4

(
∑l(n)

j=1 E|�(j,n)|2)2

= lim ·
∑

j E|�(j,n)|4
(K ′l(n)p(n)v

(n)
2 · · ·v(n)

d )2
(3.20)
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≤ lim
n

C0

K ′

∑
j (
∑

B(j,n) E|G(B
(λ)
k,q)|4 + (

∑
B(j,n) E|G(B

(λ)
k,q)|2)2)

l(n)p(n)v
(n)
1 · · ·v(n)

d

≤ lim
n

C1

K ′

∑
j (
∑

B(j,n) E|B(λ)
k,q |4 + (

∑
B(j,n) E|B(λ)

k,q |2)2)

l(n)p(n)v
(n)
1 · · ·v(n)

d

.

The final inequality follows since for any complex-valued random variable
Y , E|G(Y)|r ≤ C(r)E|Y |r . Now, from the definition of B

(λ)
k,q , it is clear that

E|B(λ)
k,q |4 ≤ 〈k〉4q ≤ (Vn)

4q . However, limn(Vn)
4q/(l(n)p(n)v

(n)
1 · · ·v(n)

d )4q = 1,
hence

lim
n

∑
j

∑
B(j,n) E|B(λ)

k,q |4
l(n)p(n)v

(n)
1 · · ·v(n)

d

→ 0.

Similarly, E|B(λ)
k,q |2 ≤ E|X0|2, and so∑

j (
∑

B(j,n) E|B(λ)
k,q |2)2

(l(n)p(n)v
(n)
1 · · ·v(n)

d )2
≤ l(n)(p(n)v

(n)
2 · · ·v(n)

d · E|X0|2)2

(l(n)p(n)v
(n)
1 · · ·v(n)

d )2
→ 0.

Thus, Lemma 11 holds. �

3.8 Conclusion of the Proof of Theorem 5

Before Theorem 5 can be completed, we need to finish the proof of Lemma 7.

Proof of Lemma 7, equation (3.5). Lemmas 11 and 10 together imply that∑
j �(j, n)√

(a2fη(λ) + 2abh(λ) + b2fξ (λ))Vn

⇒ N(0,1). (3.21)

However, Lemma 9 proves that (3.21) is equivalent to∑
j �(j, n)√

(a2fη(λ) + 2abh(λ) + b2fξ (λ))Vn

⇒ N(0,1). (3.22)

Next, an application of Slutsky’s lemma together with Lemma 8 implies that

G(S
(λ)
n,q)√

(a2fη(λ) + 2abh(λ) + b2fξ (λ))Vn

⇒ N(0,1), (3.23)

and the Cramer–Wold device takes care of the rest. �

It is now time to prove Theorem 5.
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Proof of Theorem 5. Lemma 7 implies that the entire sum of the tails (T (λ)
k,q )

converges weakly to zero. Therefore, another application of Slutsky’s Lemma,
together with Lemma 7, and equation (3.6) shows that Theorem 5 holds (since
L2-convergence to zero implies weak convergence to zero). �

4 A corollary about moments

As promised in the Introduction, I need to show why

E
(
I (λ)
n

)r = E

( |S(λ)
n |2
Vn

)r

⇒ Eχr, (4.1)

where χ is an exponential (f (λ)) random variable, and λ /∈ {−π,0, π}d . Of course,
it must be assumed that E|X0|2r < ∞, since otherwise there is no reason to believe
that the expectation on the left hand side of the equal sign exists. However, this
is the only additional assumption which needs to be added to the hypotheses of
Theorem 5.

4.1 The intuition

There is good reason to believe this convergence should hold. Notice first of all
that |S(λ)

n |2 = (�S
(λ)
n )2 + (�S

(λ)
n )2. Therefore, define the function H : R2 → R by

H(x,y) = x2 + y2. This function is continuous, hence it satisfies the conditions
of the Mapping Theorem (see Billingsley (1995), Theorem 25.7). Therefore, for
arbitrary λ, Theorem 5 and the Mapping Theorem imply that

I (λ)
n ⇒ Z2

η + Z2
ξ , (4.2)

where Zη is a normal (0, fη(λ)), Zξ is a normal (0, fξ (λ)), and Cov(Zη,Zξ ) =
h(λ).

This may seem to go against (4.1), but remember that when h(λ) = 0 (which
happens whenever λ /∈ {−π,0, π}d ), then Zη and Zξ are independent (it is a stan-
dard fact of probability theory that uncorrelated normals are independent) and
identically distributed (since fη(λ) = fξ (λ) = f (λ)/2). This implies that Z2

η + Z2
ξ

has a scaled chi-squared distribution with two degrees of freedom, which is an
exponential (f (λ)) random variable.

So, the more general statement of (4.1) is (for arbitrary λ ∈ (−π,π ]d )

E
(
I (λ)
n

)r → E
(
Z2

η + Z2
ξ

)r
.

It must be borne in mind that weak convergence does not imply convergence of
moments, and so further work must be done. However, the weak convergence,
combined with Miller’s and Picard’s work (see (1.2) and (1.3)), suggests that it
might be possible.
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4.2 The corollary

Corollary 1. Suppose that X is a CCSS ρ′-mixing field and λ ∈ (−π,π ]d . Assum-
ing that v(n) is a sequence that satisfies (1.1), and that fη(λ), fξ (λ), and h(λ) are
as discussed in Section 2.3. Suppose further that E|X0|2s < ∞ for some s > 1.
Then

lim
n

E
(
I (λ)
n

)r = E
(
Z2

η + Z2
ξ

)r (4.3)

for all r ≤ s, where Zη is a normal (0, fη(λ)), Zξ is a normal (0, fξ (λ)), and
Cov(Zη,Zξ ) = h(λ).

Proof. It must be shown that (4.3) holds for r = s; all other values follow from
Theorem 3.

Let ε > 0 be arbitrary but fixed. Next, consider the truncated random variables
from the proof of Lemma 7, where this time q is chosen so that

0 < q < min
{

1

4
,
s + ε − 1

2s + 2ε

}
.

Lemma 7 together with the Mapping Theorem implies that |S(λ)
n,q |2/Vn ⇒ Z2

η +Z2
ξ .

Next, apply Rosenthal’s inequality (Theorem 2):

E|S(λ)
n,q |2s+2ε

(Vn)s+ε
≤ C

∑
k∈B(n) E|B(λ)

k,q |2s+2ε

(Vn)s+ε
+ C

(
∑

k∈B(n) E|B(λ)
k,q |2)s+ε

(Vn)s+ε
. (4.4)

Because of the truncation level and the definition of q ,∑
k∈B(n) E|B(λ)

k,q |2s+2ε

(Vn)s+ε
≤ Vn((2Vn)

q)2s+2ε

(Vn)sε
→ 0. (4.5)

Also notice that (∑
k∈B(n) E|B(λ)

k,q |2
Vn

)s+ε

→ (E|X0|2)s+ε
, (4.6)

since Lemma 2 applies to the fraction on the left-hand side. Equation (4.6) implies
that

sup
n

(∑
k∈B(n) E|B(λ)

k,q |2
Vn

)s+ε

< ∞. (4.7)

Therefore, if equations (4.4)–(4.7) are combined, it is easy to see that

sup
n

E

( |S(λ)
n,q |2
Vn

)s+ε

< ∞,

hence by Theorem 3,

lim
n

E

( |S(λ)
n,q |2
Vn

)s

= E
(
Z2

η + Z2
ξ

)s
. (4.8)
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The burden now is to prove that

lim
n

E|T (λ)
k,q |2s

(Vn)s
= 0. (4.9)

The Rosenthal inequality again does the job:

E|T (λ)
k,q |2s

(Vn)s
≤ C

1

(Vn)s−1 ·
∑

B(n) E|T (λ)
k,q |2s

Vn

+ C

(∑
B(n) E|T (λ)

k,q |2
Vn

)s

. (4.10)

Equation (3.6) of Lemma 7 implies that the second summand on the right-hand
side of (4.10) converges to zero. As for the other summand, notice that for every
k ∈ B(n), E|T (λ)

k,q |2s ≤ E|X0|2s , hence so is the average:∑
B(n) E|T (λ)

k,q |2s

Vn

≤ E|X0|2s < ∞.

Since s > 1, 1/(Vn)
1−s → 0, which proves that (4.9) holds.

Finally, apply Minkowski’s inequality to ‖S(λ)
n ‖2s :∥∥S(λ)

n,q

∥∥
2s −
∥∥∥∑T

(λ)
k,q

∥∥∥
2s

≤ ∥∥S(λ)
n

∥∥
2s ≤ ∥∥S(λ)

n,q

∥∥
2s +
∥∥∥∑T

(λ)
k,q

∥∥∥
2s

. (4.11)

Divide by
√

Vn in the appropriate places in (4.11) to see that∥∥I (λ)
n

∥∥
s → (E(Z2

η + Z2
ξ

)s)1/2s
,

which proves Corollary 1. �

4.3 Coming full circle

In Section 1.4, I mentioned how Miller and Picard proved similar results under
the ρ∗-mixing assumption. To reiterate, Miller (1995) showed that when s = 2, in
(4.3), the formula becomes

lim
n

E
(
In(λ)
)2 = 2

(
f (λ)
)2 + 4

∣∣h(λ)
∣∣2,

and, Picard (2006) showed that when s = 3, it is

lim
n

E
(
In(λ)
)3 = 6

(
f (λ)
)3 + 36

∣∣h(λ)
∣∣2f (λ).

To see why these two formulae agree with Corollary 1, note that

Zξ = h(λ)

fη(λ)
Zη +

√√√√fξ (λ) − (h(λ))2

fη(λ)
· Z,

where Z is a N(0,1) random variable which is independent of Zη. By symmetry

Zη = h(λ)

fη(λ)
Zξ +

√√√√fη(λ) − (h(λ))2

fξ (λ)
· Z̃,
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where Z̃ is a N(0,1) random variable which is independent of Zξ . The remaining
work consists of standard calculations, which are left to the reader.
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