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PCA and eigen-inference for a spiked covariance model with
largest eigenvalues of same asymptotic order
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Abstract. In this paper, we work under the setting of data with high dimen-
sion d greater than the sample size n (HDLSS). We study asymptotics of the
first p ≥ 2 sample eigenvalues and their corresponding eigenvectors under a
spiked covariance model for which its first p largest population eigenvalues
have the same asymptotic order of magnitude as d tends to infinity and the
rest are constant. We get the asymptotic joint distribution of the nonzero sam-
ple eigenvalues when d → ∞ and the sample size n is fixed. We then prove
that the p largest sample eigenvalues increase jointly at the same speed as
their population counterpart, in the sense that the vector of ratios of the sam-
ple and population eigenvalues converges to a multivariate distribution when
d → ∞ and n is fixed, and to the vector of ones when both d,n → ∞ and
d � n. We also show the subspace consistency of the corresponding sample
eigenvectors when d goes to infinity and n is fixed. Furthermore, using the
asymptotic joint distribution of the sample eigenvalues we study some infer-
ence problems for the spiked covariance model and propose hypothesis tests
for a particular case of this model and confidence intervals for the p largest
eigenvalues. A simulation is performed to assess the behavior of the proposed
statistical methodologies.

1 Introduction

There is an increasing current interest in the statistical analysis of data arising
in problems of genomics, medical image analysis, climatology, finance and func-
tional data analysis, where one frequently observes multivariate data with high
dimension greater than the sample size; see, for example, Hall et al. (2005) and
Johnstone (2001). An important problem for this kind of data is the inference about
the eigen-structure of the population covariance matrix. When the data dimension
is greater than the sample size, Principal Component Analysis (PCA) often fails to
estimate the population eigenvalues and eigenvectors since the sample covariance
matrix is not a good approximation to the population covariance matrix. As pointed
out in Johnstone (2001), one often observes one or a small number of large sample
eigenvalues well separated from the rest. This case is of special interest, and is
called the spiked covariance model.
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More specifically, suppose X = [X1,X2, . . . ,Xn] is a d × n data matrix where
the sample Xj = (x1j , . . . , xdj )

�, j = 1,2, . . . , n are independent and identically
distributed random vectors with mean zero and unknown covariance matrix �, and
X has rank n with probability one (it is not assumed that the Xj ’s have a multi-
variate Gaussian distribution). The spiked covariance model considers a covariance
matrix of the type

� = O�O� where � = diag(τ1, τ2, . . . , τp, σ, . . . , σ ), (1.1)

with τ1 ≥ τ2 ≥ · · · ≥ τp > σ > 0, for some 1 ≤ p < d , and O is a d ×d orthogonal
matrix.

We assume that the spiked covariance model is such that τi = τi(d) and

τi

dαi
−→ ci as d → ∞, (1.2)

where α1 ≥ α2 ≥ · · · ≥ αp > 1 and ci > 0, i = 1,2, . . . , p. We say that the p

largest population eigenvalues of the spiked covariance model (1.1) have the same
asymptotic order of magnitude in d if α1 = α2 = · · · = αp = α > 1; and we say
that the p largest population eigenvalues have different asymptotic order of mag-
nitude in d if α1 > α2 > · · · > αp > 1. In this paper, we focus our attention on the
spiked covariance models where the p ≥ 2 largest eigenvalues have same asymp-
totic order of magnitude in d .

There are three different contexts in which the study of PCA for the spiked
covariance model arises: (i) the Classical case, (ii) the Random Matrix Theory
(RMT) context and (iii) the High-Dimensional, Low Sample Size (HDLSS) con-
text. Each context depends on the particular data analytic setting, the modelling
features and the way the corresponding asymptotics are considered with respect to
the data dimension d and the sample size n.

In the well-known classical case, one considers d fixed and n goes to infinity. In
the RMT situation one considers d and n go to infinity simultaneously, in the sense
that d/n → γ , where γ ∈ [0,∞]; see Bai and Yang (2008), Baik and Silverstein
(2006). In this context, the population eigenvalues of the covariance matrix � do
not depend on d and the basic analytic tool is the so-called Marchenko–Pastur
theorem; see Baik and Silverstein (2006).

On the other hand, in the so-called HDLSS context the asymptotic results are
developed by letting the data dimension d → ∞ while keeping fixed the sample
size n. Some references on this framework are Ahn et al. (2007), Hall et al. (2005),
Jung and Marron (2009), Jung et al. (2012) and Yata and Aoshima (2009). One can
also consider in this framework the case of letting first the data dimension d → ∞
while keeping fixed the sample size n and in a second step, letting n → ∞; see
Ahn et al. (2007), Jung and Marron (2009) and Jung et al. (2012). In other words,
d,n tend to infinity successively with d increasing at a much faster rate than n,
that is, d � n. In contrast to the RMT context, in the HDLSS context it may be
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assumed that the p largest population eigenvalues of the covariance � depend also
on the data dimension d .

Under a sample Gaussian assumption on Xj , Ahn et al. (2007) show for p = 1
and � = diag(dα,1, . . . ,1) with α > 1, that the largest sample eigenvalue in-
creases at the same speed as its population eigenvalue, in the sense that its ratio
converges to the distribution X 2

n /n when d → ∞ and n is fixed, where X 2
n is a

r.v. with chi-square distribution with n degrees of freedom; and converges to one
when d,n → ∞ and d � n. Moreover, they show that the first sample eigenvector
is consistent when d,n → ∞ and d � n.

In the Gaussian case and when the p ≥ 2 largest sample eigenvalues have differ-
ent asymptotic order of magnitude, it follows from the results in Jung and Marron
(2009) that if τ̂1 ≥ τ̂2 ≥ · · · ≥ τ̂p are the p largest sample eigenvalues then

τ̂i

τi

w−→ X 2
n

n
as d → ∞ (1.3)

for i = 1,2, . . . , p. Since X 2
n /n

w→ 1 as n → ∞, in this case, we have that

τ̂i

τi

w−→ 1 as d → ∞, n → ∞ (1.4)

for i = 1,2, . . . , p, where the limits are applied successively. Thus, the p largest
sample eigenvalues increase at the same speed as their population eigenvalues.
We give multivariate extensions of these asymptotic results for the non-Gaussian
case and when the p largest population eigenvalues have same asymptotic order
of magnitude. The work of Jung and Marron (2009) does not address this asymp-
totic behavior of the p largest sample eigenvalues in those cases, even when they
have results for the case of same asymptotic order of magnitude and consider-
ing non-Gaussian distributions, only the marginal convergence in distribution of
these sample eigenvalues is shown in their Lemma 1 considering a ρ-mixing con-
dition. Moreover, they show the subspace consistency and the consistency of the
corresponding sample eigenvectors in the case of same and different asymptotic
order of magnitude, respectively. We do not consider ρ-mixing conditions in our
assumptions.

Yata and Aoshima (2009) study the asymptotic behavior of the sample eigenval-
ues and their corresponding eigenvectors for a spiked covariance model where the
p largest population eigenvalues may have same asymptotic order of magnitude
in d . They prove a result similar to (1.4) with different hypotheses from the con-
sidered in the present paper, and without assuming either a Gaussian distributions
or a ρ-mixing condition. However, the result (1.4) alone does not contribute to do
inference for the p largest population eigenvalues, and therefore it is important
to have multivariate extensions of (1.3) as we do in the present paper. Yata and
Aoshima (2009) show a kind of central limit theorem for the ratios of the sample
and population eigenvalues assuming that the first p largest population eigenvalues
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are different. In the present paper we prove, under a Gaussian assumption, a kind
of multivariate central limit theorem for the vector of these ratios, where the first p

largest population eigenvalues have same asymptotic order, and in particular they
may be the same.

Under the assumption of same asymptotic order of magnitude in d , we get the
asymptotic joint distribution of the nonzero sample eigenvalues, which implies a
multivariate extension of (1.3) when d → ∞ and keeping n fixed. We then obtain
that the p largest sample eigenvalues increase jointly at the same speed as their
population counterpart, in the sense that the vector of ratios of the sample and
population eigenvalues converges to a multivariate distribution when d → ∞ and
n is fixed, and to the vector of ones when both d,n → ∞ and d � n. In the work
of Jung and Marron (2009), only the marginal convergence of the sample eigen-
values is taken into account. The advantage of considering the joint convergence
in distribution of the nonzero sample eigenvalues is that it is possible to derive
asymptotic results for functions of them. Furthermore, these asymptotic results are
useful to consider some inference problems, as those considered in the present pa-
per. We also show the subspace consistency of the first p sample eigenvectors for
our spiked covariance model.

As an important contribution of this article, we also develop some results be-
hind hypothesis tests and confidence intervals in the two asymptotic settings of the
HDLSS context. Namely, we apply the above results under a Gaussian assumption,
to consider hypothesis tests for our spiked covariance model and confidence inter-
vals for the p largest population eigenvalues. It is seen that some classical statistics
are also useful when d goes to infinity and n is fixed, and when d,n go to infinity
and d � n.

The organization of the paper is as follows. In Section 2, we study the asymp-
totic behavior of the p largest sample eigenvalues in two situations: when d → ∞
and n is fixed; and when first the dimension d → ∞ and then subsequently
n → ∞. In Section 3, the subspace consistency of the corresponding eigenvec-
tors is considered. In Section 4, we consider some eigen-inference problems in the
case when the sample is taken from a multivariate Gaussian distribution and there-
fore the sample covariance matrix follows a Wishart distribution. In this section,
hypothesis tests for a particular case of our spiked covariance model and confi-
dence interval for the p largest eigenvalues are proposed in the HDLSS context.
Finally, in Section 5 a simulation study is conducted to show the good performance
of the statistical methodologies proposed in Section 4.

2 Asymptotics of sample eigenvalues

In this section, we consider the spiked covariance model (1.1) where the p largest
population eigenvalues have the same asymptotic order of magnitude as d goes to
infinity. We consider two situations of the HDLSS framework. We first deal with
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the case when d → ∞ and n is kept fixed; then we consider the case when d → ∞
first and in a second step n → ∞.

2.1 Sample size n fixed and data dimension d → ∞
We consider the following assumptions for the matrix X:

(a) Let Z = �−1/2O�X and assume that its entries have uniformly bounded
fourth moments with respect to d , in the sense that for each n = p + 1,p +
2, . . . there exists Kn > 0 such that E(z4

ij ) ≤ Kn for all i = 1,2, . . . , d ,
j = 1,2, . . . , n and d = n + 1, n + 2, . . . .

(b) Let Zi be the i-th row vector of Z and define Z̃p = [Z�
1 , . . . ,Z�

p ]�. Assume
that Z̃p converges in distribution to some p × n matrix Yn as d → ∞, which
has rank p with probability one.

We observe that the columns of Z are independent and identically distributed
random vectors with mean zero and identity covariance matrix. These assumptions
do not cover all random matrices but are still very general and include some inter-
esting settings. In the case when the independent columns of X have the Gaussian
distribution Nd(0,�), assumptions (a) and (b) are automatically satisfied and the
random matrix W1 = Z�

i Zi’s have a Wishart distribution with one degree of free-
dom. The assumption (b) is also satisfied in the case when the Z̃p’s have a station-
ary distribution in d , that is the distribution of Yn is the distribution of the Z̃p’s for
all d > n. Assumption (b) also holds in the case considered by Jung and Marron
(2009) where a ρ-mixing condition is assumed; see proof of their Lemma 1. We do
not assume ρ-mixing conditions, as Yata and Aoshima (2009) mention this kind
of conditions are too strict and have obvious shortcoming, since it is needed an
ordering of the variables and in some settings as microarray data there is not a nat-
ural ordering of the gene expressions and there exists a clear dependence between
them.

Denote by τ̂1 ≥ τ̂2 ≥ · · · ≥ τ̂n the nonzero sample eigenvalues of the sample
covariance matrix S = n−1XX�. The first result is an analogue of Lemma 1 of
Jung and Marron (2009). In the next theorem, we observe the joint convergence in
distribution of the vector of nonzero sample eigenvalues when dimension d goes
to infinity and the sample size n is fixed. Note that Lemma 1 of Jung and Marron
(2009) states only the convergence in distribution of each component of this vector
(marginal convergence).

Theorem 2.1. Suppose that the unknown covariance matrix � of the columns
of X is given by the spiked covariance model (1.1), with p < n < d and where
τ1 ≥ τ2 ≥ · · · ≥ τp have the same asymptotic order of magnitude in d . Consider
the assumptions (a) and (b) for the matrix X. Then when n is fixed

d−α(τ̂1, τ̂2, . . . , τ̂n)
� w−→ n−1(	1, 	2, . . . , 	p,0, . . . ,0)�
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as d → ∞, where 	1 ≥ 	2 ≥ · · · ≥ 	p > 0 are the eigenvalues of the random matrix

Ũ0 = C 1/2
p YnY

�
n C 1/2

p , with Cp = diag(c1, c2, . . . , cp).

Proof. The proof is based on the ideas of Section 4.2 of Ahn et al. (2007)
where the case p = 1 was considered. We have � = O�O� where � =
diag(τ1, . . . , τp, σ, . . . , σ ) is the diagonal matrix of the eigenvalues of � and the
corresponding eigenvectors are the column vectors of the matrix O . The sample
covariance matrix S and the dual sample covariance matrix SD = n−1X�X have
the same nonzero eigenvalues. Moreover, the following representation holds

nSD = Z��Z =
d∑

i=1

λiWi =
p∑

i=1

τiWi + σ

d∑
i=p+1

Wi,

where Wi = Z�
i Zi and Zi , i = 1,2, . . . , d , are the row vectors of Z. Hence

d−αnSD = d−α
p∑

i=1

τiWi + d−ασ

d∑
i=p+1

Wi = U + σd−αV, (2.1)

where U = ∑p
i=1 d−ατiWi and V = ∑d

i=p+1 Wi .
Let τ̃p = diag(τ1, . . . , τp) and Cp = diag(c1, c2, . . . , cp). Note that U =

Z̃�
p (d−ατ̃p)Z̃p converges in distribution to Ũ = Y�

n CpYn as d → ∞. On the other
hand, we can show that d−αV converges to the zero matrix in distribution as
d → ∞. In order to see that, consider the norm ‖A‖ = [tr(A�A)]1/2 for the n × n

matrix A. By the Markov’s inequality, we have that for any ε > 0

P
(‖d−αV ‖ > ε

) = P
(‖d−αV ‖2 > ε2) ≤ (

d2αε2)−1
E

(‖V ‖2)
.

Using properties of the trace and the fact that the Wi’s are symmetric, it can be
seen that the right side of the last inequality is equal to

(
d2αε2)−1

d∑
i=p+1

d∑
j=p+1

E
[(

ZiZ
�
j

)2] = (
d2αε2)−1

d∑
i=p+1

d∑
j=p+1

n∑
k=1

n∑
r=1

E
(
z2
ikz

2
jr

)
.

Since there exist Kn > 0 such that E(z4
ij ) ≤ Kn for all i, j , and by the Holder’s

inequality E(z2
ikz

2
jr ) ≤ E(z4

ik)
1/2E(z4

jr )
1/2, we have that the right side of the last

equation is less than or equal to (d2αε2)−1(d − p)2n2Kn, then

P
(‖d−αV ‖ > ε

) ≤ (d − p)2n2Kn

d2αε2 =
(

d − p

d

)2(
1

dα−1

)2 n2Kn

ε2 (2.2)

and the right side of the inequality tends to zero when d → ∞ because α > 1.
Thus the second term in the right-hand side of (2.1) goes to the zero matrix in
probability, and therefore in distribution, as d increases. Hence,

d−αnSD
w−→ Ũ as d → ∞.
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Then the vector of the roots of the characteristic polynomial of d−αnSD converge
in distribution to the vector of the roots of the characteristic polynomial of Ũ as
d → ∞.

Since Ũ = Y�
n CpYn, the nonzero eigenvalues of Ũ are the p nonzero eigenval-

ues 	1 ≥ 	2 ≥ · · · ≥ 	p of Ũ0 = (C 1/2
p Yn)(C 1/2

p Yn)
� = C 1/2

p YnY
�
n C 1/2

p . Hence, if
τ̂1 ≥ τ̂2 ≥ · · · ≥ τ̂n are the nonzero eigenvalues of SD , or of S, we have

d−αn(τ̂1, τ̂2, . . . , τ̂n)
� w−→ (	1, . . . , 	p,0, . . . ,0)�

when d → ∞. �

The following consequence of Theorem 2.1 shows the usefulness of the joint
convergence in distribution of the sample eigenvalues when the dimension d goes
to infinity. The result is a multivariate extension of (1.3). It gives the joint conver-
gence in distribution of the ratios of the sample and population eigenvalues to a
random vector of multiples of the eigenvalues corresponding to the random matrix
Ũ0 of Theorem 2.1.

Proposition 2.1. Under the assumptions of Theorem 2.1 and for n fixed, we have
the joint weak convergence(

τ̂1

τ1
,
τ̂2

τ2
, . . . ,

τ̂p

τp

)�
w−→ n−1

(
	1

c1
,
	2

c2
, . . . ,

	p

cp

)�

when d → ∞, where 	1 ≥ 	2 ≥ · · · ≥ 	p > 0 are the eigenvalues of the random
matrix Ũ0.

Proof. Note the following(
τ̂1

τ1
,
τ̂2

τ2
, . . . ,

τ̂p

τp

)�
= diag

(
dα

τ1
,
dα

τ2
, . . . ,

dα

τp

)(
τ̂1

dα
,

τ̂2

dα
, . . . ,

τ̂p

dα

)�

which by Theorem 2.1 tends in distribution to

diag
(

1

c1
,

1

c2
, . . . ,

1

cp

)(
	1

n
,
	2

n
, . . . ,

	p

n

)�
= n−1

(
	1

c1
,
	2

c2
, . . . ,

	p

cp

)�
. �

Remark 2.1. Suppose τ1 ≥ · · · ≥ τp ≥ σp+1 ≥ · · · ≥ σd > 0 are functions of d .
The two previous results hold if we consider the covariance matrix

� = O�O� where � = diag(τ1, . . . , τp, σp+1, . . . , σd),

where τ1, . . . , τp have the same asymptotic order of magnitude in d ,

max(σp+1, . . . , σd)/dα−1 −→ 0 as d → ∞,
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and O is a d × d orthogonal matrix. The proof is similar to that of Theorem 2.1;
we only need to prove that

d−α
d∑

i=p+1

σiWi
w−→ 0 as d → ∞, (2.3)

where Wi is as in the proof of Theorem 2.1 and 0 is the n × n matrix of zeros.
We use the result that if Ad , Bd and Ad − Bd are nonnegative definite matrices
and Ad → 0 as d → ∞, then Bd → 0 as d → ∞. Let Md = max(σp+1, . . . , σd)

and V = ∑d
i=p+1 Wi . Since Wi is non-negative definite and Md − σi > 0 for i =

p + 1, . . . , d , we have that Ad = d−αMdV , Bd = d−α ∑d
i=p+1 σiWi and Ad − Bd

are nonnegative definite matrices. Let ε > 0; analogously to the proof of (2.2) it
can be seen that

P
(‖Ad‖ > ε

) ≤ (d − p)2M2
dn2Kn

d2αε2 =
(

d − p

d

)2(
Md

dα−1

)2 n2Kn

ε2

and the right side of the last inequality tends to zero as d → ∞ since d−(α−1) ×
Md → 0. Therefore Ad → 0 in probability and in distribution as d → ∞. Then we
have (2.3).

In particular, the last remark allows us to generalize the previous results to
spiked covariance models such that their p largest eigenvalues have same asymp-
totic order of magnitude and the rest are bounded for a constant as d tends to
infinity.

2.2 First d → ∞ and then n → ∞ in a second step

In this section, we study the asymptotic behavior of the sample eigenvalues of our
spiked covariance model by letting first the data dimension d → ∞ and in a second
step letting the sample size n → ∞. The next theorem is a generalization of the
result given in Section 4.2 of Ahn et al. (2007) which considers the case p = 1.

Theorem 2.2. Suppose that the unknown covariance matrix of the columns of X

is given by the spiked covariance model (1.1), with p < n < d and where τ1 ≥
τ2 ≥ · · · ≥ τp have the same asymptotic order of magnitude in d . Suppose that X

satisfies (a) and the following assumption:

(b′) Let Zi be the i-th row of Z and define Z̃p = [Z�
1 , . . . ,Z�

p ]�. Assume that Z̃p

converges in distribution to some p ×n matrix Yn = (yij,n) as d → ∞, which
has rank p with probability one and its entries have uniformly bounded fourth
moments with respect to n, that is for some M > 0 we have E(y4

ij,n) ≤ M for
all i = 1,2, . . . , p, j = 1,2, . . . , n and n = p + 1,p + 2, . . . . Furthermore,
suppose that the matrix distribution of YnY

�
n is continuous.
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Then we have(
τ̂1

τ1
,
τ̂2

τ2
, . . . ,

τ̂p

τp

)�
w−→ (1,1, . . . ,1)� as d → ∞, n → ∞, (2.4)

where the limits are applied successively.

For the proof of this theorem, we first have the following Law of Large Num-
bers for random matrices and vector of eigenvalues. It also gives an extension of
the one-dimensional fact that if χ2

n is a chi-square random variable with n degrees
of freedom, then χ2

n/n converges to 1 in probability (almost surely and in distri-
bution), as n → ∞.

Proposition 2.2. Let Yn be a sequence of p×n random matrices with p < n, such
that its columns are independent with mean zero and identity covariance matrix.
Assume that the rank of Yn = (yij,n) is p with probability one and its entries have
uniformly bounded fourth moments with respect to n, that is E(y4

ij,n) ≤ K for all

i = 1,2, . . . , p, j = 1,2, . . . , n and n = p + 1,p + 2, . . . . Let An = YnY
�
n . Then

we have:

(i)

n−1An
w−→ Ip as n → ∞.

(ii) Assume that � = O�O� is a p × p positive definite matrix, where � =
diag(λ1, . . . , λp) is the diagonal matrix of its eigenvalues and O is the p × p

orthogonal matrix of its eigenvectors. Let 	1 ≥ 	2 ≥ · · · ≥ 	p be the eigenval-
ues of Wn = O�1/2An�

1/2O�. Then

n−1
(

	1

λ1
,
	2

λ2
, . . . ,

	p

λp

)�
w−→ (1,1, . . . ,1)� as n → ∞.

Proof. (i) We have that YnY
�
n = (

∑n
k=1 yik,nyjk,n); therefore

n−1YnY
�
n − Ip =

(
n−1

n∑
k=1

yik,nyjk,n − δi,j

)
,

where δi,j is one if i = j and zero otherwise. It is sufficient to prove that for all
ε > 0

P

(∣∣∣∣∣
n∑

k=1

n−1yik,nyjk,n − δi,j

∣∣∣∣∣ > ε

)
−→ 0 as n → ∞. (2.5)
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For the case i = j , by the Chebyshev’s inequality and the assumptions for Yn

we have that

P

(∣∣∣∣∣n−1
n∑

k=1

y2
ik,n − 1

∣∣∣∣∣ > ε

)

≤ ε−2 Var

(
n−1

n∑
k=1

y2
ik,n

)

= (nε)−2E

[(
n∑

k=1

y2
ik,n − n

)2]
(2.6)

= (nε)−2E

(
n∑

k=1

y4
ik,n + 2

n∑
k1<k2

y2
ik1,n

y2
ik2,n

− 2n

n∑
k=1

y2
ik,n + n2

)

= (nε)−2

(
n∑

k=1

E
(
y4
ik,n

) − n

)
.

Since E(y4
ik,n) ≤ M for all i, k and n = p + 1,p + 2, . . . , the last expression of

(2.6) is less than or equal to (nε)−2(nM − n) = n−1ε−2(M − 1) which tends to
zero as n → ∞. Thus, we have (2.5).

Analogously, for the case i �= j , by the Chebyshev’s inequality and the assump-
tions for Yn we have

P

(∣∣∣∣∣n−1
n∑

k=1

y2
ik,n

∣∣∣∣∣ > ε

)
≤ (nε)−2 Var

(
n∑

k=1

yik,nyjk,n

)

= (nε)−2
n∑

k1=1

n∑
k2=1

E(yik1,nyjk1,nyik2,nyjk2,n) (2.7)

= (nε)−2
n∑

k=1

E
(
y2
ik,ny

2
jk,n

)
.

By the Holder’s inequality, we have E(y2
ik,ny

2
jk,n) ≤ E(y4

ik,n)
1/2E(y4

jk,n)
1/2 ≤ M ,

thus the last expression of (2.7) is less than or equal to n−1ε−2M which tends to
zero as n → ∞.

(ii) Suppose that Wn = Vn	nV
�
n , where 	n = diag(	1, . . . , 	p) is the diagonal

matrix of the eigenvalues of Wn and Vn is the orthogonal matrix of its eigenvectors.
Since n−1An

w→ Ip as n → ∞ by (i), we have that Vn(n
−1	n)V

�
n = n−1Wn

w→
� = O�O� and therefore n−1	n

w→ � as n → ∞. It follows that n−1�−1	n
w→

Ip as n → ∞. �
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Proof of Theorem 2.2. Let 	1 ≥ 	2 ≥ · · · ≥ 	p > 0 be the eigenvalues of the ma-

trix Ũ0 = C 1/2
p YnY

�
n C 1/2

p with Cp = diag(c1, . . . , cp). Let F1p
, Fτ̂/τ and Fn−1	/Cp

be the distribution functions of 1p = (1,1, . . . ,1)�, τ̂ /τ = ( τ̂1
τ1

, τ̂2
τ2

, . . . ,
τ̂p

τp
)� and

n−1	/Cp = n−1(	1
c1

, 	2
c2

, . . . ,
	p

cp
)�, respectively. Since YnY

�
n has continuous matrix

distribution then Ũ0 and n−1	/Cp have continuous distributions. Therefore, the
continuity set of Fn−1	/Cp

is given by C(Fn−1	/Cp
) = R

p . By Proposition 2.1

lim
d→∞|Fτ̂/τ (t) − Fn−1	/Cp

(t)| = 0

for all t ∈ R
p . Therefore,

lim
d→∞|Fτ̂/τ (t) − F1p

(t)| = |Fn−1	/Cp
(t) − F1p

(t)| ∀t ∈ R
p.

Since Z̃p has independent column vectors and it converges in distribution to Yn,
the column vectors of Yn are also independent. Because Z̃p has uniformly bounded
fourth moment with respect to d , by Theorem 4.5.2 of Chung (2001) we have
E(zij ) = 0 → E(yij,n), E(z2

ij ) = 1 → E(y2
ij,n)∀i = 1,2, . . . , p, j = 1,2, . . . , n,

and E(zikzjk) = 0 → E(yik,nyjk,n)∀k = 1,2, . . . , n, i �= j , as d → ∞. Therefore,
Yn has mean zero and its column vectors have identity matrix. Thus by Proposi-
tion 2.2(ii)

lim
n→∞

∣∣Fn−1	/Cp
(t) − F1p

(t)
∣∣ = 0

for all t in the continuity set of F1p
, namely C(F1p

). Thus

lim
n→∞ lim

d→∞
∣∣Fτ̂/τ (t) − F1p

(t)
∣∣ = 0

for all t ∈ C(F1p
). �

Thus by Proposition 2.1 and Thereore 2.2, we conclude that the p largest sam-
ple eigenvalues of the considered spiked covariance model increase jointly at the
same speed as their population counterpart, generalizing in this way the results of
Section 4.2 of Ahn et al. (2007) and Section 4.5 of Jung and Marron (2009).

3 Subspace consistency of sample eigenvectors

As mentioned in Jung and Marron (2009), in the case when several population
eigenvalues indexed by J are similar, their corresponding sample eigenvectors may
not be distinguishable. Therefore, for j ∈ J the sample eigenvector vj , correspond-
ing to the j -th sample eigenvalue, will not be consistent for its corresponding pop-
ulation eigenvector oj but rather may asymptotically be in EJ = span{oj : j ∈ J },



266 A. Bolivar-Cime and V. Perez-Abreu

the linear span generated by {oj : j ∈ J }. We define

Angle(vj ,EJ ) = arccos
( v�

j [ProjEJ
vj ]

‖vj‖‖ProjEJ
vj‖

)

= arccos
( v�

j (
∑

i∈J (o�
i vj )oi)

‖vj‖‖∑
i∈J (o�

i vj )oi‖
)
,

the second equality being true when the oj ’s are mutually orthogonal.
We say that

• vi is consistent if

Angle(vi, oi)
P−→ 0 as d → ∞.

• vi is strongly inconsistent if

Angle(vi, oi)
P−→ π

2
as d → ∞.

• vi is subspace consistent if

Angle(vi,EJ )
P−→ 0 as d → ∞

for some set of indices J with i ∈ J .

From the results of Jung and Marron (2009), under our spiked covariance model
the first p sample eigenvectors v1, v2, . . . , vp are subspace consistent and the sam-
ple eigenvectors vp+1, vp+2, . . . , vn are strongly inconsistent, when d → ∞ and n

is fixed. We give a similar proof of the subspace consistency of the first p sample
eigenvectors using the results of our Section 2 when d → ∞ and n is fixed. We
recall that the population eigenvectors of the spiked covariance model (1.1) are the
column vectors, o1, o2, . . . , od , of the matrix O .

Theorem 3.1. Under the same assumptions of Theorem 2.2, let v1, v2, . . . , vp be
the sample eigenvectors corresponding to the first p sample eigenvalues τ̂1 ≥ τ̂2 ≥
· · · ≥ τ̂p . Then for i = 1,2, . . . , p,

Angle(vi,EJ )
w−→ 0 as d → ∞, (3.1)

where EJ = span{o1, o2, . . . , op}.
Proof. We follow closely the ideas in Ahn et al. (2007) and Jung and Marron
(2009). Consider the eigenvalue decomposition of the sample covariance matrix
S = V LV �, where L = diag(τ̂1, . . . , τ̂n,0, . . . ,0) is the diagonal matrix of the
sample eigenvalues and V = [v1, v2, . . . , vd ] is the matrix of the sample eigenvec-
tors vj = (v1j , . . . , vdj )

�, j = 1,2, . . . , d . We assume that V is orthogonal, that
is V �V = Id . We have � = O�O�, where � = diag(τ1, . . . , τp, σ, . . . , σ ) is the
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diagonal matrix of eigenvalues of � and O = [o1, . . . , od ] the d × d orthogonal
matrix of its eigenvectors. A standardized version of the sample covariance matrix
S is given by

S̃ = �−1/2O�SO�−1/2 = �−1/2O�V LV �O�−1/2. (3.2)

Thus we have S = n−1XX� = n−1O�1/2ZZ��1/2O� and

S̃ = n−1�−1/2O�O�1/2ZZ��1/2O�O�−1/2 = n−1ZZ�. (3.3)

From (3.2), we have that the j -th diagonal entry of S̃ is given by s̃jj =
λ−1

j

∑n
i=1 τ̂i(v

�
i oj )

2, where λj is the j -th diagonal entry of �, for j = 1,2, . . . , d .

Therefore λ−1
j τ̂i(v

�
i oj )

2 ≤ s̃jj , for i = 1,2, . . . , n and j = 1,2, . . . , d . Further-

more, from (3.3) we also have s̃jj = n−1ZjZ
�
j = n−1 ∑n

k=1 z2
jk . Thus for i =

1,2, . . . , n

d∑
j=p+1

(
v�
i oj

)2 ≤
d∑

j=p+1

λj

τ̂i

s̃jj = σ

nτ̂i

d∑
j=p+1

n∑
k=1

z2
jk = σ

n

dα

τ̂i

n∑
k=1

d∑
j=p+1

z2
jk

dα
. (3.4)

By Theorem 2.1, we have τ̂i/d
α w→ 	i/n as d → ∞, for i = 1,2, . . . , p. Since

the entries of Z have uniformly bounded fourth moments in d , we have that there
exist K∗

n > 0 such that E(z2
jk) ≤ K∗

n for all j = 1,2, . . . , d , k = 1,2, . . . , n and
d = n + 1, n + 2, . . . . Let ε > 0 and observe that

P

(∣∣∣∣∣
d∑

j=p+1

z2
jk

dα

∣∣∣∣∣ > ε

)
≤ E(

∑d
j=p+1 z2

jk)

dαε
≤ (d − p)K∗

n

dαε
−→ 0 as d → ∞,

that is
∑d

j=p+1 d−αz2
jk

P→ 0 as d → ∞. Hence, it follows from (3.4) that

d∑
j=p+1

(
v�
i oj

)2 w−→ 0 as d → ∞ (3.5)

for i = 1,2, . . . , p. Since V �OO�V = Id we have
∑d

j=1(v
�
i oj )

2 = 1, and thus
(3.5) implies

p∑
j=1

(
v�
i oj

)2 w−→ 1 as d → ∞ (3.6)

for i = 1,2, . . . , p.
Finally, following the arguments in Section 5.2.2 of Jung and Marron (2009),

we have that for i = 1,2, . . . , p,

Angle(vi,EJ ) = arccos

([ p∑
j=1

(
v�
i oj

)2
]1/2)

.
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Then from (3.6) it follows that

Angle(vi,EJ )
w−→ 0 as d → ∞

for i = 1,2, . . . , p. �

Remark 3.1. The result of Theorem 3.1 holds if we consider that the population
covariance matrix is as in Remark 2.1. The proof is similar to that of Theorem 3.1.

4 The Gaussian case and some statistical eigen-inference

In this section, we assume that the data matrix X comes from a sample of multi-
variate Gaussian distribution N(0,�) where the matrix � is a spiked covariance
matrix under the assumption that the p largest eigenvalues have same order of
magnitude in d , with c1 = · · · = cp = c > 0 in (1.2). In this case the matrix Ũ0 of
Theorem 2.1 follows a Wishart random matrix distribution W (n, cIp).

We now use the asymptotic results in Section 2, in particular the joint conver-
gence in distribution of the nonzero sample eigenvalues, to consider some infer-
ence problems for the population eigenvalues and to show that some of the classi-
cal statistics are also useful in the cases when d goes to infinity and n is fixed, and
when d,n go to infinity and d � n.

We first point out three asymptotic results. The first one is a kind of central limit
theorem for the vector of the ratios of the sample and population eigenvalues under
our model and when d and n go to infinity successively.

Theorem 4.1. Under the same assumptions as in Theorem 2.1, suppose c1 =
c2 = · · · = cp = c > 0 in (1.2) and the columns of X are Gaussian. Let τ̂

τ
=

( τ̂1
τ1

, . . . ,
τ̂p

τp
)� and let ϕ = (ϕ1, . . . , ϕp) be the vector of eigenvalues of a standard

p × p Gaussian matrix with density function

fϕ(ϕ1, . . . , ϕp) = πp(p−1)/4

2p/2�p(p/2)
exp

(
−1

2

p∑
i=1

ϕ2
i

) p∏
i<j

(ϕj − ϕi),

(4.1)
ϕp > · · · > ϕ1.

Then we have that

n1/2
(

τ̂

τ
− 1p

)�
w−→ ϕ as d → ∞, n → ∞, (4.2)

where the limits are applied successively.

Proof. Without lost of generality, we can assume c = 1. Let L = n−1(	1, . . . ,
	p)�, where 	1 ≥ · · · ≥ 	p > 0 are the eigenvalues of the matrix Z̃pZ̃�

p with distri-

bution W(n, Ip). By Proposition 2.1 we have τ̂ /τ
w→ L as d → ∞ and by Corol-

lary 13.3.2 in Anderson (2003) we have n1/2(L − 1p)� w→ ϕ as n → ∞, where
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the random vector ϕ has density function given by (4.1); see Theorem 13.3.5 in
Anderson (2003). Thus, we have (4.2). �

The next two propositions are consequences of the joint convergence in distribu-
tion of the nonzero sample eigenvalues given in Theorem 2.1, and they are useful
to study some inference problems in the context of data with dimension greater
than the sample size.

Proposition 4.1. Under the assumptions of Theorem 2.1 and considering c1 =
c2 = · · · = cp = c > 0 in (1.2), let T = diag(τ̂1, τ̂2, . . . , τ̂p) be the diagonal
matrix of the p largest sample eigenvalues and 	 = diag(	1, 	2, . . . , 	p), where
	1, 	2, . . . , 	p are the nonzero eigenvalues of a Wishart matrix with distribution
W(n, cIp). Then we have the following when n is fixed:

(i) tr(T )/τi
w→ X 2

np/n as d → ∞, for i = 1,2, . . . , p.

(ii) Ṽ = det(T )/[tr(T )/p]p w→ V = det(	)/[tr(	)/p]p; furthermore Ṽ is asymp-
totically independent of tr(T )/dα as d → ∞.

(iii) det(T )/τ
p
i

w→ (
∏p

j=1 X 2
n−j+1)/np as d → ∞ for i = 1,2, . . . , p, where

X 2
n−j+1 are independent random variables with chi-square distribution with

n − j + 1 degrees of freedom, for j = 1,2, . . . , p.

Proof. Using the continuity of the trace and determinant, from the joint weak con-
vergence of the eigenvalues in Theorem 2.1 and the assumption of same asymptotic
order of magnitude in d we have that for n fixed

tr(T )/τi = [
tr(T )/

(
cdα)][

cdα/τi

] w−→ tr(	)/cn, (4.3)

Ṽ = det(T /dα)

[tr(T /dα)/p]p
w−→ det(	/n)

[tr(	/n)/p]p = V, (4.4)

det(T )/τ
p
i = [

det(T )/
(
cdα)p][

cdα/τi

]p w−→ det(	)/(nc)p, (4.5)

as d → ∞. From Theorem 3.2.20 in Muirhead (1982), we have that tr(	)/cn ∼
X 2

np/n as d → ∞ and det(	)/[tr(	)/p]p is independent of tr(	)/n. Thus, using
(4.3) and (4.4) we have (i) and (ii). It follows from Theorem 3.2.15 in Muirhead
(1982) that det(	)/(nc)p is equal in distribution to (

∏p
j=1 X 2

n−j+1)/np , where

X 2
n−j+1 for j = 1,2, . . . , p, are independent random variables with chi-square dis-

tribution with n − j + 1 degrees of freedom, thus from (4.5) we have (iii). �

Proposition 4.2. Under the assumptions of Theorem 2.1 and considering c1 =
c2 = · · · = cp = c > 0 in (1.2), let T = diag(τ̂1, τ̂2, . . . , τ̂p) be the diagonal matrix
of the p largest sample eigenvalues. Then we have the following:

(i) (np/2)1/2[tr(T )/p − τi]/τi
w→ N(0,1) as d → ∞, n → ∞, where the limits

are applied successively, for i = 1,2, . . . , p.
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(ii) Let Ṽ = det(T )/[tr(T )/p]p and ρ = 1 − (2p2 + p + 2)/(6np), then Ũ =
−nρ ln(Ṽ )

w→ X 2
r as d → ∞, n → ∞, where the limits are applied succes-

sively and X 2
r is a chi-square r.v. with r = (p + 2)(p − 1)/2 degrees of free-

dom.

Proof. It follows from Proposition 4.1(i) that(
np

2

)1/2(
tr(T )/p − τi

τi

)
= n tr(T )/τi − np

(2np)1/2
w−→ X 2

np − np

(2np)1/2 (4.6)

as d → ∞, where X 2
np is a chi-square r.v. with np degrees of freedom. Since X 2

np is

equal in distribution to
∑n

j=1 X 2
p,j , where X 2

p,j for j = 1,2, . . . , n are independent
r.v.’s with chi-square distribution with p degrees of freedom, we have by the CLT
that

X 2
np − np

(2np)1/2
w−→ N(0,1) (4.7)

as n → ∞. Thus, from (4.6) and (4.7) we have (i). From Proposition 4.1(ii) and
Theorem 8.3.7 in Muirhead (1982), we obtain (ii). �

4.1 Hypothesis test for the p largest population eigenvalues

Let Md be the maximum of the d −p smaller population eigenvalues and suppose
that we have evidence that the sequence {Md}d∈N is bounded by a constant number
M , that is 0 < Md ≤ M for all d > n and d ∈ N. Consider the null hypothesis

H0 : τi/d
α → c for all i = 1,2, . . . , p, (4.8)

where α > 1 and c > 0 are unspecified numbers. Under H0 we have a population
covariance matrix as in Remark 2.1, therefore all the results of Section 2 are valid
in this case.

In order to test the null hypothesis H0 that the first p largest population eigenval-
ues have the same asymptotic order of magnitude and c1 = c2 = · · · = cp = c > 0,
we can use the classical ellipticity statistic Ṽ = det(T )/[tr(T )/p]p , see Muirhead
(1982, p. 336), where T = diag(τ̂1, τ̂2, . . . , τ̂p) is the diagonal matrix of the p

largest sample eigenvalues. The null hypothesis (4.8) can be tested in the follow-
ing two situations:

• When d → ∞ and n is fixed. By Proposition 4.1(ii) Ṽ
w→ V = det(	)/[tr(	)/p]p

as d → ∞, where 	 = diag(	1, 	2, . . . , 	p) and 	1, 	2, . . . , 	p are the eigenval-
ues of a Wishart matrix with distribution W(n, cIp). Therefore, if Ṽ0 is the
observed value of Ṽ , a test of asymptotic significance level β is to reject H0
if Ṽ0 ≤ kβ , where kβ is the lower 100β% point of the distribution of V . We
expect that this rejection region works very well, because if A is a p × p

random matrix with distribution W (n,�) and if η0 is the observed value of
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η = det(A)/(tr(A)/p)p , then the test that rejects H1 :� = cIp if η0 ≤ kβ is un-
biased, see Muirhead (1982, p. 336). Explicit expressions for the density func-
tion of V are given in Consul (1967) and Consul (1969), and tables of percent-
age points of V for some values of p and various values of n can be found in
Nagarsenker and Pillai (1973).

• When d,n → ∞ and d � n. By Proposition 4.2(ii), the statistic R̃ = −nρ ×
ln(Ṽ )

w→ X 2
r , where X 2

r is a chi-square r.v. with r = (p+2)(p−1)/2 degrees of
freedom. Thus, if R̃0 is the observed value of R̃, a test of asymptotic significance
level β is to reject H0 if R̃0 > uβ , where uβ is the upper 100β% point of the
chi-square distribution with r degrees of freedom.

4.2 Confidence intervals for the p largest population eigenvalues

Under the hypothesis H0 given in (4.8) we have, by Proposition 2.1 and Theo-
rem 2.2, that the p largest sample eigenvalues increases at the same speed as their
population counterpart, however this does not guarantee that these sample eigen-
values are good approximation for their population counterpart. We may be inter-
ested in a confidence interval for the population eigenvalue τi , for i = 1,2, . . . , p.
Again, we have two situations in which we may address this problem:

• When d → ∞ and n is fixed. From Proposition 4.1(i), for 0 < β < 1 and d is
large enough

P

(
kβ/2

n
≤ tr(T )

τi

≤ uβ/2

n

)
≈ 1 − β,

where kβ/2 and uβ/2 are the lower and upper 100(β/2)% point of the chi-square
distribution with np degrees of freedom, respectively. Therefore, a confidence
interval with asymptotic confidence level 1 − β for τi is[

n tr(T )

uβ/2
,
n tr(T )

kβ/2

]
. (4.9)

• When d,n → ∞ and d � n. From Proposition 4.2(i), for 0 < β < 1 and d,n

sufficiently large with d � n we have

P

(
−zβ/2 ≤

(
np

2

)1/2(
tr(T )/p − τi

τi

)
≤ zβ/2

)
≈ 1 − β,

where zβ/2 is the upper 100(β/2)% point of the standard normal distribution.
Thus, a confidence interval with asymptotic confidence level 1 − β for τi is[

tr(T )/p

1 + zβ/2[2/(np)]1/2 ,
tr(T )/p

1 − zβ/2[2/(np)]1/2

]
. (4.10)
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5 Simulations

In this section, we present some simulation results to show the performance of
the hypothesis tests and the confidence intervals proposed in Section 4. For the
simulation study, we consider d-multivariate Gaussian data with mean zero and
covariance matrix

� = diag(τ1, . . . , τp,1, . . . ,1),

where τi = dα for i = 1,2, . . . , p, and p = 2,4. We take α = 1.5,3, and sample
sizes n = 25,50,100 for each value of α. This is because we want to assess the
performance of the methodologies varying the order of magnitude of the largest
eigenvalues and increasing the sample size. We take d = 200 and d = 1000 for
each pair (α,n) to consider the case when d > n and d � n, respectively.

For each setting, M = 10,000 replications of the data have been obtained, and
for each replication the two hypothesis tests of Section 4.1 have been performed
with significance level 5% and taking the corresponding value of p. In Table 1 are
shown the empirical probabilities of the Type I error (� = P(reject H0|H0 is true))
of the two tests, given by

�̂1 = #{Ṽ0 ≤ kβ}
M

for the hypothesis test based on the statistic Ṽ , where kβ is the lower 100β% point
of the distribution of V ; and

�̂2 = #{R̃0 > uβ}
M

Table 1 Empirical probabilities of Type I error of proposed hypothesis tests

p = 2 p = 4

α n d �̂1 �̂2 �̂1 �̂2

1.5 25 200 0.0469 0.0491 0.0495
1000 0.0506 0.0488 0.0492

50 200 0.0494 0.0481 0.0483
1000 0.0508 0.0459 0.0461

100 200 0.0451 0.0470 0.0471
1000 0.0519 0.0487 0.0487

3 25 200 0.0482 0.0502 0.0510
1000 0.0466 0.0518 0.0526

50 200 0.0513 0.0491 0.0492
1000 0.0494 0.0488 0.0489

100 200 0.0460 0.0485 0.0486
1000 0.0492 0.0542 0.0543
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for the hypothesis test based on the statistic R̃, where uβ is the upper 100β% point
of the chi-square distribution with r = (p + 2)(p − 1)/2 degrees of freedom. The
values of kβ were calculated using the expressions of the distribution function of
V given in Consul (1967).

For the case p = 2 the values of �̂1 and �̂2 were exactly the same, this is because
for this value of p the chi-square distribution X 2

r is a very good approximation to
the distribution of R̃, and therefore the two tests are equivalent. For the case p = 4,
we observe that �̂1 is slightly smaller than �̂2, and they tend to be similar as n

increases. All the empirical probabilities of Type I error are close and around 5%
as expected, thus we conclude that the two proposed tests perform very well and
they can be used to test the null hypothesis (4.8) for HDLSS data.

These simulation results also show the usefulness of the asymptotic setting
d,n → ∞ and d � n in the HDLSS context, since the results for this asymp-
totic setting are very similar to that of d → ∞ and n is fixed, and the hypothesis
test based on R̃ is the easiest to perform.

Similarly, for M = 10,000 replications of the data the confidence intervals (4.9)
and (4.10) have been calculated with confidence level 95% and taking the corre-
sponding value of p. In Table 2 is shown the empirical coverage of the two classes
of intervals for each setting. C1 and C2 denote the empirical coverage of the con-
fidence intervals (4.9) and (4.10), respectively.

We observe that C1 is always smaller than C2. This is because the intervals
(4.10) are slightly wider than the intervals (4.9) and cover larger values. We also
see that all the empirical coverages are near to 95%. Therefore, we conclude that
these proposed intervals have good performance as confidence intervals for the p

Table 2 Empirical coverages of proposed confidence intervals

p = 2 p = 4

α n d C1 C2 C1 C2

1.5 25 200 0.9507 0.9509 0.9513 0.9514
1000 0.9486 0.9508 0.9510 0.9527

50 200 0.9504 0.9545 0.9484 0.9492
1000 0.9533 0.9548 0.9515 0.9518

100 200 0.9502 0.9506 0.9491 0.9493
1000 0.9534 0.9544 0.9516 0.9522

3 25 200 0.9509 0.9541 0.9516 0.9517
1000 0.9478 0.9520 0.9512 0.9523

50 200 0.9507 0.9540 0.9474 0.9478
1000 0.9512 0.9516 0.9512 0.9513

100 200 0.9524 0.9525 0.9511 0.9514
1000 0.9468 0.9488 0.9475 0.9470
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largest eigenvalues under the null hypothesis (4.8), in both asymptotic settings of
the HDLSS context.
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