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Abstract. In this paper, we propose a new cure rate survival model under
a flexible family of distributions. Our approach enables different underlying
activation mechanisms that lead to the event of interest. The number of com-
peting causes of the event of interest follows a power series distribution. This
model includes the standard mixture cure model and the promotion time cure
model. The model is parametrized in terms of the cured fraction, which is
then linked to covariates. We carried out a simulation study to assess some
properties of our proposal. An illustrative example with a real data set is pro-
vided to illustrate the models.

1 Introduction

Models for survival data with a surviving fraction (also known as cure rate models
or long-term survival models) have deserved a great deal of interest in the litera-
ture under the headings of reliability and survival analysis. Cure rate models cover
the situations in that there are sampling units insusceptible to the occurrence of
the event of interest. The proportion of such units is termed as the cured fraction.
In clinical studies the event of interest may be the death of a patient (which can
occur due to different competing causes) or a tumor recurrence (which can be at-
tributed to metastasis-component tumor cells left active after an initial treatment).
The literature on the subject is by now vast and expanding rapidly. The books by
Maller and Zhou (1996) and Ibrahim et al. (2001), as well as the articles by Chen
et al. (1999), Tsodikov et al. (2003), Cooner et al. (2007), Tournoud and Ecochard
(2007), de Castro et al. (2009), Rodrigues et al. (2009a), Cancho et al. (2011) and
Kim et al. (2011) can be mentioned as few examples.

Two formulations of cure rate models stand out in the literature as being the pre-
vailing approaches. Here we point out a distinguishing feature between them. In
the standard mixture cure model (Boag, 1949; Berkson and Gage, 1952), the num-
ber of causes of the event of interest is a binary random variable on {0,1}, whereas
in the promotion time cure model (Yakovlev and Tsodikov, 1996) this number fol-
lows a Poisson distribution. These models have been successfully applied to many
real word problems. Our aim consists in pursuing some steps toward flexibility.
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Another approach, introduced by Cooner et al. (2006, 2007), forms an arranged
stochastic sequence of latent causes, which induce the occurrence of the event
of interest through underlying activation mechanisms. In this paper, we follow
this setup and the number of competing causes is modeled by an power series
distribution (Johnson et al., 2005). An advantage of our modeling is that the power
series distribution is flexible, because it includes as particular cases the Bernoulli,
geometric and Poisson distributions, amongst others, which can be tested for the
best fitting in a straightforward way.

Since in many applications the cured fraction is of great relevance, in our for-
mulation the models are parametrized in the cured fraction. So, the role of the
covariates has the same interpretation, whichever the distribution of the number of
competing causes.

As we will see in Section 5, the best fitting is not the one achieved with a
Bernoulli or a Poisson distribution for the number of causes of the event of in-
terest. Our example emphasizes the need for flexible models, as allowed by our
proposal.

Our paper is organized as follows. In Section 2, we formulate the power series
cure rate model. Inference methods based on the likelihood occupy the Section 3.
A simulation study with the different models is presented in Section 4. An applica-
tion to a real data set is developed in Section 5. Finally, Section 6 concludes with
some general remarks.

2 Model formulation

For an individual in the population, let M denote the number of causes of the event
of interest for this individual. If M is known, we have the competing risks scenario
(Klein and Moeschberger, 2003). Here we assume that M is unknown and follows
a power series distribution (Johnson et al., 2005) with probability mass function

P(M = m; θ) = amθm

A(θ)
, m = 0,1,2, . . . , θ > 0, (2.1)

where am ≥ 0 and A(θ) = ∑∞
m=0 amθm. In (2.1) θ and A(θ) are called the power

parameter and the series function, respectively. The probability generating function
of M is given by

GM(s) = A(θs)

A(θ)
for |s| < 1. (2.2)

Some distributions of importance belonging to this class are the binomial, Poisson,
negative binomial and logarithmic distributions. For example, if k is a positive
integer, am = (k

m

)
and A(θ) = (1 + θ)k , then (2.1) defines the binomial distribution

with odds equal to θ . A few more examples to be used in the forthcoming sections
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are as follows:

am = 1/(m + 1) and A(θ) = − log(1 − θ)/θ,0 < θ < 1: logarithmic,

am =
(
k + m − 1

k − 1

)
and

(2.3)
A(θ) = (1 − θ)−k,0 < θ < 1: negative binomial,

am = 1/m! and A(θ) = eθ , θ > 0: Poisson,

where k is a positive integer.
Define {Zj }j∈N being a family of i.i.d. positive continuous random variables

independent of a discrete random variable M following a power series distri-
bution, where Zj is the time corresponding to j th cause to produce the event
of interest, with cumulative distribution function F(z) and surviving function
S(z) = 1 − F(z). The observable time to event is defined by the random vari-
able Y = Z(R), where R depends on M , Z(1) ≤ Z(2) ≤ · · · ≤ Z(R) ≤ · · · ≤ Z(M)

are the order statistics and Y = ∞ if M = 0. In many biological processes R can
be interpreted as a resistance factor of the immune system of the individual. If the
event of interest occurs (e.g., cancer relapse), then the random variable Y takes the
value of the Rth order statistics Z(R). In other words, as in Cooner et al. (2007), R

out of M causes are required to produce the event of interest. The resistance factor
can be a fixed constant, a function of M or a random variable specified through a
conditional distribution on M . Thus, each different activation mechanism carries a
different biological concept.

Using the terminology borrowed from Cooner et al. (2007), in this paper we deal
with three specifications for R. First, we assume that given M ≥ 1, the conditional
distribution of R is uniform on {1,2, . . . ,M} (random activation scheme). Under
this setup, the surviving function for the population is given by

Spop(y) = P(Y > y) = P(M = 0) + {1 − P(M = 0)}S(y)
(2.4)

= a0

A(θ)
+

(
1 − a0

A(θ)

)
S(y),

which comes out to be a mixture cure model with cured fraction p0 = P(M =
0) = limy→∞ Spop(y) = a0/A(θ). From (2.4), the density function is

fpop(y) = −S′
pop(y) =

(
1 − a0

A(θ)

)
f (y),

where f (y) = −S′(y) denotes the proper density function of the time to event Z.
Furthermore, the corresponding hazard function is

hpop(y) = (1 − a0/A(θ))f (y)

a0/A(θ) + (1 − a0/A(θ))S(y)
.
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Note that the fpop(y) and hpop(y) are improper functions, since Spop(y) is not a
proper surviving function.

As a second setup, the so-called first activation scheme, we suppose that the
event of interest happens due to any one of the possible causes. Therefore, for
R = 1, the time to event is Y = Z(1) = min{Z1, . . . ,ZM}, implying that (Tsodikov
et al., 2003; Rodrigues et al., 2009b)

Spop(y) = GM(S(y)) = A(θS(y))

A(θ)
, (2.5)

where GM(·) is as in (2.2). The cured fraction is given by p0 = a0/A(θ). The
density function associated to (2.5) is given by

fpop(y) = A′(θS(y))

A(θ)
θf (y),

where A′(θS(y)) = dA(v)/dv|v=θS(y), with hazard function

hpop(y) = A′(θS(y))

A(θS(y))
θf (y).

In our third scenario, also known as the last activation scheme, the event of
interest only takes place after all the M causes have been occurred, so that R =
M and the observed failure time is Y = Z(M) = max{Z1, . . . ,ZM}. According to
Cooner et al. (2007),

Spop(y) = 1 + GM(0) − GM(F(y)).

Hence, from (2.2) we have

Spop(y) = 1 + a0

A(θ)
− A(θF(y))

A(θ)
, (2.6)

so that the cured fraction is p0 = a0/A(θ). The surviving function in (2.6) leads to
the density function

fpop(y) = A′(θF (y))

A(θ)
θf (y), (2.7)

with hazard function

hpop(y) = A′(θF (y))

A(θ) + a0 − A(θF(y))
θf (y).

The (proper) surviving function for the noncured population, denoted by Snc, is
computed by Snc(y) = P(Y > y|M ≥ 1).

From the distribution for the noncured population under the first activation
scheme, considering different choices for the distribution of the latent random
variables Zj ’s, some recently proposed lifetime models can be obtained as spe-
cial cases. For example, if the {Zj }j∈N follow the exponential or Weibull distribu-
tion, the exponential power series (Chahkandi and Ganjali, 2009) and the Weibull
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Table 1 Non-cured surviving function (Snc) and density function (fnc) for some models under
different activation devices

Model Activation Snc(y) fnc(y)

Logarithmic First log(1−θS(y))
log(1−θ)

− θf (y)
log(1−θ){1−θS(y)}

Last 1 − log(1−θF (y))
log(1−θ)

− θf (y)
log(1−θ){1−θF (y)}

Random S(y) f (y)

Geometric First S(y)
1−θF (y)

(1 − θ)f (y){1 − θS(y)}−2

Last (1−θ)F (y)
1−θF (y)

(1 − θ)f (y){1 − θF (y)}−2

Random S(y) f (y)

Poisson First e−θF (y)−e−θ

1−e−θ
θf (y)e−θF (y)

1−e−θ

Last 1−e−θS(y)

1−e−θ
θf (y)e−θS(y)

1−e−θ

Random S(y) f (y)

power series (Morais and Barreto-Souza, 2011) distributions, respectively, are ob-
tained. Rodrigues et al. (2011) formulate a flexible density function from a selec-
tion mechanism viewpoint. Within this approach, we find for example the expo-
nential power series distribution as a special case. Also, from the distribution for
the noncured population under the last activation scheme, if the distribution of the
variables Zj ’s is exponential, then we get the complementary exponential power
series distribution proposed by Flores et al. (2013). This family of distributions
includes as particular cases the distributions proposed by Cancho et al. (2011) and
Louzada-Neto et al. (2011).

We present in Table 1 the density and surviving functions for the noncured pop-
ulation under different activation schemes. From Table 1 new families of distribu-
tions can be generated. Under the first activation scheme, if M follows a geometric
distribution and the variables Zj ’s follow an exponential or a Weibull distribution,
we obtain the distributions introduced by Marshall and Olkin (1997) in Sections 3
and 4, respectively.

In many applications of long-term survival models the cured fraction plays a
central role. With this concern in mind, we change the parametrization of the model
in order to put the cured fraction p0 in the expressions. Since p0 = P(M = 0) =
a0/A(θ), we have θ = A−1(a0/p0). In the sequel, we will work with the loga-
rithmic, geometric and Poisson distributions. For these distributions, remembering
(2.3), we obtain a0 = 1 and computing A−1(θ) we get 1 + W(−θe−θ )/θ , 1 − 1/θ

and log(θ), respectively, where W(·) stands for the Lambert W function (Corless
et al., 1996). As we will see more clearly in Section 3, this parametrization is ad-
vantageous. Using p0 as parameter and the expressions (2.4)–(2.7), we arrive at
the improper surviving and density functions presented in Table 2. From these re-
sults, we realize that, whichever the activation scheme, the cured fraction is the
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Table 2 Surviving function (Spop) and density function (fpop) for some models under different
activation devices

Model Activation Spop(y) fpop(y)

Logarithmic First − log(1−W0S(y))
W0S(y)

p0
W0S(y)+{1−W0S(y)} log(1−W0S(y))

{1−W0S(y)}W0S(y)2 p0f (y)

Last 1 + p0 + log(1−W0F(y))
W0F(y)

p0
W0F(y)+{1−W0F(y)} log(1−W0F(y))

{1−W0F(y)}W0F(y)2 p0f (y)

Random p0 + (1 − p0)S(y) (1 − p0)f (y)

Geometric First {1 + (p−1
0 − 1)F (y)}−1 p−1

0 −1

{1+(p−1
0 −1)F (y)}2

f (y)

Last 1 + p0 − {1 + (p−1
0 − 1)S(y)}−1 p−1

0 −1

{1+(p−1
0 −1)S(y)}2

f (y)

Random p0 + (1 − p0)S(y) (1 − p0)f (y)

Poisson First p
F(y)
0 − log(p0)p

F(y)
0 f (y)

Last 1 + p0 − p
S(y)
0 − log(p0)p

S(y)
0 f (y)

Random p0 + (1 − p0)S(y) (1 − p0)f (y)

Remark: W0 = 1 + p0W(−e−1/p0/p0), where W(·) is the Lambert W function (Corless et al.,
1996).

same. The models differ by its surviving, density and hazard functions. More-
over, according to the Theorem 2.1 in Kim et al. (2011), we have that Spop(y)

in (2.4) ≥ Spop(y) in (2.5). In a similar way, it can be shown that Spop(y) in
(2.6) ≥ Spop(y) in (2.4).

Hereafter, we assume a Weibull distribution for the unobserved time Z with
F(z;γ ) = 1 − exp(−zγ1eγ2) and f (z;γ ) = γ1z

γ1−1 exp(γ2 − zγ1eγ2), for z > 0,
γ1 > 0, γ2 ∈ R and γ = (γ1, γ2)

�. Figure 1 portrays distinct behaviors of the sur-
viving functions in Table 2. These plots illustrate the flexibility afforded by our
proposal.

3 Inference

Let us consider the situation when the failure time Y in Section 2 is not completely
observed and is subject to right censoring. Let Ci denote the censoring time. In
a sample of size n, we then observe Ti = min{Yi,Ci} and δi = I(Yi ≤ Ci), where
δi = 1 if Ti is a failure time and δi = 0 if it is right censored, for i = 1, . . . , n.

Let xi = (xi1, . . . , xip)� denote the vector of covariates for the ith individual.
Completing our model, we propose to relate the cured fraction to the covariates by
the logistic link

log
(

p0i

1 − p0i

)
= x�

i β or p0i = exp(x�
i β)

1 + exp(x�
i β)

, (3.1)
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Figure 1 Surviving functions for the (a) Poisson, (b) geometric and (c) logarithmic models with
p0 = 0.4 and a Weibull distribution (γ1 = 2, γ2 = −4) under different activations (last: dashed,
random: solid and first: dotted).

where β = (β1, . . . , βp)� encapsulates the vector of regression coefficients, so that
for each group of individuals represented by xi , we have a different cured fraction.
With this link function, the models are identifiable in the sense of Li et al. (2001).

We stress that regardless the specific model in Table 2, covariates are associated
to the cured fraction through a unique expression very familiar to practitioners. If
we had adopted the parametrization in θ , for the Poisson and logarithmic distri-
butions the cured fraction is p0 = e−θ and p0 = −θ/ log(1 − θ), respectively, and
θ would be linked to the covariates (e.g., log and logistic links). The connections
between the cured fraction and the covariates would be much more clumsier in
these expressions than in (3.1). Therefore, although the entries for the logarithmic
model in Table 2 seem uneasy, we have a direct interpretation of the coefficients in
(3.1).
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With the expression (3.1), we can write the likelihood of ϑ = (β�,γ �)� under
noninformative censoring as

L(ϑ;D) ∝
n∏

i=1

fpop(ti;ϑ)δi Spop(ti;ϑ)1−δi , (3.2)

where D = (t, δ,x), t = (t1, . . . , tn)
�, x = (x1, . . . ,xn)

� and δ = (δ1, . . . , δn)
�,

whereas fpop(·;ϑ) and Spop(·;ϑ) are the improper density and surviving functions
in Table 2.

From the likelihood function in (3.2), the maximum likelihood estimation of the
parameter ϑ is carried out. Numerical maximization of the log-likelihood function
�(ϑ; t, δ) = log(L(ϑ; t, δ)) is accomplished by using the R language (R Develop-
ment Core Team, 2011). The Lambert W function in Table 2 can be found in the R
package emdbook. The computational program is available from the authors upon
request. Under suitable regularity conditions, it can be shown that the asymptotic
distribution of the maximum likelihood estimator ϑ̂ is multivariate normal with
mean vector ϑ and covariance matrix �(ϑ̂), which can be estimated by

�̂(ϑ̂) =
{
−∂2�(ϑ; t, δ)

∂ϑ ∂ϑ�
}−1

,

evaluated at ϑ = ϑ̂ . The first and second derivatives of the log-likelihood function
are computed numerically.

Different models can be compared by penalizing over-fitting by using the
Akaike information criterion (AIC) and the Schwartz Bayesian criterion (SBC)

given by AIC = −2�(ϑ̂) + 2#(ϑ) and SBC = −2�(ϑ̂) + #(ϑ) log(n), where #(ϑ)

is the number of model parameters. The model with the smallest value of any of
these criteria (among all candidate models) is commonly taken as the preferred
model for describing the given data set.

4 Simulation study

To evaluate the performance of the estimators of the cured fraction under different
models and activation schemes, we carried out a simulation study. In this study, we
considered the logarithmic cure rate model under both the first and the last activa-
tion schemes as given in Table 2 with the Weibull distribution for the event times
(Z) with parameter γ1 = 2 and γ2 = −3.2. For each individual i, i = 1, . . . , n,
the number of causes of the event of interest for this individual (Mi) is generated
from the logarithmic distribution with parameter θi equal to p0iW(−e−1/p0i /p0i ),
where W(·) is the Lambert W function (Corless et al., 1996). In our simulations,
we have one binary covariate x with values drawn from a Bernoulli distribution
with parameter 0.5. In this way, p0i = exp(β1 + β2xi)/{1 + exp(β1 + β2xi)}. We
took β1 = −0.5 and β2 = 0.7, so that the cured fraction for the two levels of x are
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p
(0)
0 = 0.378 and p

(1)
0 = 0.550, respectively. The censoring times were sampled

from the uniform distribution on the interval (0, τ ), where τ was set in order to
control the proportion of censored observations. In this study, the proportion of
censored observations was on average approximately equal to 57%.

We chose three sample sizes, n = 200, 400 and 800. For each configuration,
we conducted 1000 simulations and then calculated the average of the maximum
likelihood estimatives (MLEs) of the cured fraction (p

(0)
0 and p

(1)
0 ), as well as the

standard deviation (SD) of the MLEs and the square root of the mean squared error
(RMSE) of the MLEs.

The simulation results are shown in Tables 3 and 4. We can observe that the
averages of the maximum likelihood estimates of the cured fraction are close to
the true values when the fitted model and the activation scheme are the correct
ones. When the model or the activation scheme is incorrect, the estimators of the
cured fraction are more biased. However, the bias is more sensitive to the activation
scheme than to the distribution of the number of causes. Similar results were ob-

Table 3 Maximum likelihood estimates average (AMLE), standard deviation (SD) and square root

of the mean squared error (RMSE) of the cured fractions p
(0)
0 (left, true value = 0.378) and p

(1)
0

(right, true value = 0.550) for simulated data from the logarithmic cure rate model under the first
activation scheme

Fitted model Activation n AMLE SD RMSE

Logarithmic First 200 0.380 0.550 0.0489 0.0560 0.0489 0.0560
400 0.377 0.549 0.0346 0.0400 0.0346 0.0400
800 0.377 0.549 0.0237 0.0287 0.0237 0.0287

Last 200 0.451 0.514 0.0452 0.0715 0.0865 0.0798
400 0.448 0.515 0.0299 0.0502 0.0770 0.0609
800 0.447 0.511 0.0205 0.0368 0.0720 0.0536

Geometric First 200 0.368 0.559 0.0550 0.0561 0.0558 0.0568
400 0.364 0.559 0.0386 0.0398 0.0410 0.0408
800 0.366 0.559 0.0262 0.0287 0.0286 0.0303

Last 200 0.425 0.534 0.0512 0.0671 0.0696 0.0689
400 0.421 0.535 0.0341 0.0471 0.0549 0.0495
800 0.420 0.532 0.0234 0.0349 0.0484 0.0392

Poisson First 200 0.366 0.564 0.0591 0.0571 0.0601 0.0589
400 0.361 0.564 0.0409 0.0403 0.0442 0.0428
800 0.364 0.565 0.0276 0.0294 0.0309 0.0329

Last 200 0.397 0.552 0.0569 0.0633 0.0601 0.0633
400 0.392 0.552 0.0382 0.0443 0.0408 0.0443
800 0.393 0.551 0.0260 0.0327 0.0303 0.0327

Mixture cure 200 0.374 0.563 0.0606 0.0594 0.0606 0.0608
400 0.369 0.563 0.0413 0.0417 0.0422 0.0437
800 0.372 0.563 0.0279 0.0306 0.0285 0.0333
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Table 4 Maximum likelihood estimates average (AMLE), standard deviation (SD) and square root

of the mean squared error (RMSE) of the cured fractions p
(0)
0 (left, true value = 0.378) and p

(1)
0

(right, true value = 0.550) for simulated data from the logarithmic cure rate model under the last
activation scheme

Fitted model Activation n AMLE SD RMSE

Logarithmic First 200 0.433 0.460 0.0680 0.0815 0.0876 0.1214
400 0.437 0.465 0.0425 0.0550 0.0732 0.1007
800 0.443 0.473 0.0305 0.0393 0.0718 0.0862

Last 200 0.379 0.547 0.0692 0.0710 0.0692 0.0711
400 0.377 0.550 0.0453 0.0498 0.0453 0.0498
800 0.378 0.551 0.0330 0.0348 0.0330 0.0348

Geometric First 200 0.410 0.465 0.0859 0.0938 0.0919 0.1265
400 0.418 0.476 0.0483 0.0562 0.0632 0.0929
800 0.424 0.483 0.0342 0.0397 0.0573 0.0774

Last 200 0.367 0.545 0.0788 0.0713 0.0794 0.0715
400 0.367 0.548 0.0521 0.0502 0.0532 0.0502
800 0.367 0.550 0.0382 0.0352 0.0396 0.0352

Poisson First 200 0.403 0.493 0.0767 0.0790 0.0808 0.0975
400 0.406 0.498 0.0483 0.0528 0.0559 0.0737
800 0.409 0.504 0.0353 0.0379 0.0470 0.0598

Last 200 0.368 0.535 0.0882 0.0708 0.0887 0.0723
400 0.367 0.548 0.0521 0.0497 0.0532 0.0497
800 0.371 0.541 0.0404 0.0355 0.0410 0.0367

Mixture cure 200 0.389 0.518 0.0780 0.0729 0.0788 0.0797
400 0.389 0.521 0.0509 0.0508 0.0522 0.0583
800 0.390 0.525 0.0377 0.0366 0.0398 0.0444

served when the number of causes was generated from the Bernoulli and Poisson
distributions. For the sake of space, we omit here the tables presented in a supple-
mental file (Cancho et al., 2012). Furthermore, in most of the situations in these
tables, when the fitted model and the activation scheme are the correct ones, there
is also a gain in terms of the RMSEs. Once again, an incorrect activation scheme
has greater impact than an incorrect distribution. As expected, the SDs and RMSEs
decrease as the sample size increases.

5 Application

In this section, we work out an example employing the models presented in Sec-
tion 2. The data set includes 205 patients observed after operation for removal of
malignant melanoma in the period 1962–1977. The patients were followed until
1977. These data are available in the timereg package in R (Scheike, 2009). The
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observed time (T ) ranges from 10 to 5565 days (from 0.0274 to 15.25 years) and
refers to the time until the patient’s death or the censoring time. Patients dead from
other causes, as well as patients still alive at the end of the study are censored ob-
servations (72%). We take ulceration status (absent, n = 115; present, n = 90) and
tumor thickness (in mm, mean = 2.92 and standard deviation = 2.96) as covariates
with coefficients βulc and βthick, respectively, whereas β1 denotes the intercept. The
Kaplan–Meier estimate of the surviving function given in Figure 2 levels off above
0.6. The presence of a plateau indicates that models that ignore the possibility of
cure will not be suitable for these data.

Once the distribution of the number of possible causes and the activation scheme
are unknown, statistical model fitting could give some guidelines on what they
could be. First, we fitted the models described in Table 2. In Table 5, we applied
the selection criteria on the candidate models. According to the AIC and SBC

Figure 2 Kaplan–Meier estimate of the surviving function.

Table 5 AIC and SBC for the fitted models

Activation scheme

First Last Random

Model AIC SBC AIC SBC AIC SBC

Poisson 425.1 441.7 438.5 454.7 431.1 447.7
Geometric 420.8 437.4 492.7 509.3 431.1 447.7
Logarithmic 416.1 433.1 447.2 463.8 431.1 447.7
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Figure 3 QQ plot of the normalized randomized quantile residuals with identity line for the Log-1st
model.

criteria, the logarithmic cure rate model under the first activation scheme (Log-
1st, say) stands out as the best one followed by the geometric model under the first
activation scheme (Geo-1st, say). We also tried different negative binomial models
in (2.3) by taking k = 2,3, . . . ,10, but none of these models yielded a better fit than
the geometric model (k = 1). The QQ plot of the normalized randomized quantile
residuals (Dunn and Smyth, 1996; Rigby and Stasinopoulos, 2005) in Figure 3
suggests that the Log-1st model yields an acceptable fit. Each point in Figure 3
corresponds to the median of five sets of ordered residuals. Taking into account
the criteria in Table 5 and the QQ plot in Figure 3, we select the Log-1st model as
our working model.

Maximum likelihood estimates (MLE) of the coefficients are in Table 4. The
estimate of the shape parameter (γ1) furnishes an evidence against the exponen-
tial distribution (γ1 = 1) for the unobserved failure times. The covariates have a
significant effect on the reduction of the cured fraction. Comparing patients with
ulceration absent and present, the odds ratio of the cured fraction is estimated as
e1.482 = 4.4. This estimate is easily computed from Table 6 due to the parametriza-
tion in the cured fraction.

Figure 4 displays the surviving function stratified by ulceration status for pa-
tients with tumor thickness equal to 0.64, 1.94 and 6.63 mm, which correspond to
the 10, 50 and 90 percentiles. These plots highlight the combined impact of the co-
variates on the cured fraction. Finally, Table 7 brings the MLE of the cured fraction
for the plots in Figure 4, as well as the estimates from the Geo-1st model, which is
the second best model according to the criteria in Table 5. Approximate 95% con-
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Table 6 Maximum likelihood estimates of the parameters for the Log-1st
model

Parameter Estimate (est) Standard error (se) |est|/se

γ1 2.211 0.2724 –
γ2 −4.187 0.5153 8.13
β1 1.677 0.3564 4.71
βulc −1.482 0.3278 4.52
βthick −0.141 0.0356 3.97

Figure 4 Surviving function under the Log-1st model stratified by ulceration status (upper: absent,
lower: present) for patients with tumor thickness equal to (a) 0.64, (b) 1.94 and (c) 6.63 mm.

fidence intervals were obtained after an application of the delta method. There are
some differences in the estimates from these models, but for each selected value
of tumor thickness the intervals do not overlap.
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Table 7 Maximum likelihood estimates of the cured fraction stratified by ulceration status and
selected tumor thickness under the Log-1st (above) and Geo-1st (below) models

Tumor 95% confidence
thickness Ulceration Estimate Standard error interval

0.64 Absent 0.830 0.0489 (0.734, 0.926)
0.845 0.0442 (0.759, 0.932)

Present 0.526 0.0794 (0.371, 0.682)
0.554 0.0844 (0.389, 0.720)

1.94 Absent 0.803 0.0527 (0.700, 0.906)
0.813 0.0496 (0.716, 0.910)

Present 0.481 0.0726 (0.338, 0.623)
0.496 0.0779 (0.344, 0.649)

6.63 Absent 0.677 0.0725 (0.535, 0.819)
0.652 0.0890 (0.478, 0.827)

Present 0.306 0.0552 (0.218, 0.428)
0.299 0.0686 (0.165, 0.433)

6 Conclusions

In this paper, we proposed the power series cure rate model under different acti-
vations as a flexible model for modeling survival data with a cured fraction. The
model is flexible and includes as particular cases the geometric, Poisson and log-
arithmic distributions. Moreover, under the random activation scheme the mixture
cure model is recovered. The models can be tested for the best fitting in a straight-
forwardly way. In the application to a melanoma data set, we discovered that the
logarithmic cure rate model under the first activation scheme delivers the best fit.
We observed that the surviving probability decreases more rapidly for patients
with thicker tumors, and that the cured fraction is lower for patients with ulcera-
tion. The interpretation of the role of covariates is easy due to the parametrization
in the cured fraction.

Our formulation in Section 2 is based on the Weibull distribution for the unob-
served time. In the same lines of the works by Kuk and Chen (1992) and Sy and
Taylor (2000), for example, we might envision an extension of the present paper
to a semiparametric setting.
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