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Abstract. We study sample path deviations of the Wiener process from three
different representations of its bridge: anticipative version, integral repre-
sentation and space–time transform. Although these representations of the
Wiener bridge are equal in law, their sample path behavior is quite different.
Our results nicely demonstrate this fact. We calculate and compare the ex-
pected absolute, quadratic and conditional quadratic path deviations of the
different representations of the Wiener bridge from the original Wiener pro-
cess. It is further shown that the presented qualitative behavior of sample path
deviations is not restricted only to the Wiener process and its bridges. Sample
path deviations of the Ornstein–Uhlenbeck process from its bridge versions
are also considered and we give some quantitative answers also in this case.

1 Introduction

Let (Wt)t≥0 be a standard one-dimensional Wiener process on a filtered probability
space (�, F , (Ft )t≥0,P ), where the filtration (Ft )t≥0 is the usual augmentation
of the natural filtration of the Wiener process W [see, e.g., Karatzas and Shreve
(1991)]. We consider the following versions of the Wiener bridge from a to b over
the time-interval [0, T ], where a, b ∈ R [see, e.g., Karatzas and Shreve (1991,
Section 5.6.B)]:

1. Anticipative version

W av
t = a + (b − a)

t

T
+

(
Wt − t

T
WT

)
, 0 ≤ t ≤ T .

2. Integral representation

W ir
t =

{
a + (b − a)

t

T
+

∫ t

0

T − t

T − s
dWs if 0 ≤ t < T ,

b if t = T .
3. Space–time transform

W st
t =

{
a + (b − a)

t

T
+ T − t

T
W(tT )/(T −t) if 0 ≤ t < T ,

b if t = T .

Key words and phrases. Sample path deviation, Brownian bridge, Ornstein–Uhlenbeck bridge,
anticipative version, integral representation, space–time transform.

Received February 2011; accepted October 2011.

437

http://imstat.org/bjps/
http://dx.doi.org/10.1214/11-BJPS175
http://www.redeabe.org.br/


438 M. Barczy and P. Kern

The attribute anticipative indicates that for the definition of W av
t we use the random

variable WT , where the time point T follows the time point t . In the sequel we will
use the notation (W br

t )t∈[0,T ] if the version of the bridge is not specified. All the
bridge versions above are Gauss processes with the same finite-dimensional dis-
tributions. This can be easily calculated, since the versions all have mean function
E(W br

t ) = a + (b − a) t
T

, 0 ≤ t ≤ T , and covariance function

Cov(W br
s ,W br

t ) = s
T − t

T
, 0 ≤ s ≤ t < T . (1.1)

We note that the finite-dimensional distributions of the above Wiener bridge ver-
sions coincide with the conditional finite-dimensional distributions of the Wiener
process (a +Wt)t∈[0,T ] starting in a and conditioned on {a +WT = b}; see, for ex-
ample, Problem 5.6.13 in Karatzas and Shreve (1991) or Chapter IV.4 in Borodin
and Salminen (2002). Bridges of Gaussian processes have been generally defined
by Gasbarra et al. (2007), while from the Markovian point of view the reader may
consult Fitzsimmons et al. (1992), Barczy and Pap (2005), Chaumont and Uribe
Bravo (2011), and the more recent Bryc and Wesołowski (2009) which deals with
the inhomogeneous case.

It follows from the definitions that all bridge versions have almost sure contin-
uous sample paths. The (left) continuity of the trajectories at t = T is not obvious
in the case of the integral representation and space–time transform. But, since the
three bridge representations above have the same finite-dimensional distributions
and are continuous on [0, T ), (left) continuity at t = T of the integral representa-
tion and the space–time transform follows from the obvious continuity at t = T

of the anticipative representation, similarly to the proof of Proposition 1.10(iv) in
Revuz and Yor (2001, p. 21). [The desired continuity also follows by Karatzas and
Shreve (1991, Corollary 5.6.10 and Problem 2.9.3).]

Hence, the anticipative version W av, the integral representation W ir and the
space–time transform W st induce the same probability measure on (C[0, T ],
B(C[0, T ])), where C[0, T ] is the space of continuous functions from [0, T ] into
R and B(C[0, T ]) denotes the Borel σ -algebra on C[0, T ]. All these underline
and explain the commonly used definition of a Wiener bridge from a to b over
the time-interval [0, T ] [see, e.g., Karatzas and Shreve (1991, Definition 5.6.12)],
namely, it is any almost surely continuous Gauss process having mean function
a + (b − a) t

T
, t ∈ [0, T ], and covariance function given in (1.1).

Furthermore, according to Section 5.6.B in Karatzas and Shreve (1991) or Ex-
ample 8.5 in Chapter IV in Ikeda and Watanabe (1981), the above versions of the
Wiener bridge are solutions to the linear stochastic differential equation (SDE)

dW br
t = b − W br

t

T − t
dt + dWt, 0 ≤ t < T , with W br

0 = a. (1.2)

By Theorem 5.2.1 in Øksendal (2003), strong uniqueness holds for the SDE (1.2),
and (W ir

t )t∈[0,T ) is the unique strong solution of this SDE being adapted to the fil-
tration (Ft )t∈[0,T ), whereas (W av

t )t∈[0,T ) and (W st
t )t∈[0,T ) are only weak solutions
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to the SDE (1.2). The anticipative representation (W av
t )t∈[0,T ) cannot be a strong

solution, since its definition formally requires information about WT , although
W av

t and WT are independent for every t ∈ [0, T ], indeed, Cov(W av
t ,WT ) =

Cov(Wt ,WT ) − t
T

Cov(WT ,WT ) = 0 for all t ∈ [0, T ]. The space–time trans-
form representation (W st

t )t∈[0,T ) is only a weak solution, since it is adapted
only to the filtration (FtT /(T −t))t∈[0,T ) and FtT /(T −t) � Ft , t ∈ (0, T ). We
also note that, even though the three bridge versions have the same law on
(C[0, T ], B(C[0, T ])), their joint laws together with the Wiener process through
which they are constructed are different (see Propositions 2.1 and 2.4). Our aim is
to elucidate the sample path deviations compared to the original Wiener process
(a + Wt)t∈[0,T ] starting in a. A motivation for our study is given at the end of this
section.

By visual inspection inferred from a moderate number of simulated sample
paths, for a typical sample path of the Wiener process the deviations from its antic-
ipative bridge version and its space–time transform are larger than from its integral
representation of the bridge; see Figure 1. Note that in general the deviation from
the space–time transform bridge version is hard to compare with the other devia-
tions, since (W st

t )t∈[T/2,T ) depends on the future part (Wt)t∈[T ,∞) of the Wiener
process, which is not visible in the pictures of Figure 1. Our aim is to give quan-
titative answers to this qualitative behavior observed from simulations and thus to

Figure 1 Two typical sample paths of the Wiener process (rows, thick lines) and its deviations from
the anticipative version (left column), the integral representation (middle column) and the space–time
transform (right column) of the Wiener bridge from 0 to 0 over the time-interval [0,1].
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study the path deviations on [0, T ):

a + Wt − W av
t = (a − b)

t

T
+ t

T
WT ,

a + Wt − W ir
t = (a − b)

t

T
+

∫ t

0

t − s

T − s
dWs, (1.3)

a + Wt − W st
t = (a − b)

t

T
+

(
Wt − T − t

T
W(tT )/(T −t)

)
.

Note that the dependence of the path deviations in (1.3) upon the starting and
endpoint of the bridge (a and b) is only via their difference a − b. Hence, without
loss of generality we can and will assume a = 0 in the sequel.

Simulation studies also show that the above typical behavior is reversed in case
the endpoint WT of the Wiener sample path is close to the prescribed endpoint b of
its bridge, namely, for such a sample path of the Wiener process the deviation from
its anticipative bridge version is smaller than from its integral representation of the
bridge or from its space–time bridge version; see Figure 2. We aim to give quan-
titative answers to this effect and, thus, in Section 2 we will particularly compare
the so-called expected pth order sample path deviations

E
(∫ T

0
|Wt − W br

t |p dt

)
=

∫ T

0
E(|Wt − W br

t |p)dt

for p = 1,2 and in case of p = 2 we will explicitly calculate the conditional ana-
logue

E
(∫ T

0
(Wt − W br

t )2 dt
∣∣∣WT = d

)
=

∫ T

0
E

(
(Wt − W br

t )2|WT = d
)

dt

for prescribed endpoints WT = d , d ∈ R of the original Wiener process. The reason
for not considering a general natural number p is that we just want to demonstrate
the phenomenon that the bridge versions have different sample path behavior. In
the above formulas, integration over the time-interval [0, T ] and taking expecta-
tions can be interchanged. Indeed, since we have continuous sample paths, we

Figure 2 A sample path of the Wiener process with W1 ≈ 0 (thick line) and its deviations from the
anticipative version (left), the integral representation (middle), and the space–time transform (right)
of the Wiener bridge from 0 to 0 over the time-interval [0,1].
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can consider monotone approximations of the integrals by Riemannian sums with
non-negative summands and then apply the monotone convergence theorem for
(conditional) expectations. In what follows expected first and second order sam-
ple path deviations will be called expected absolute and quadratic path deviations,
respectively.

We will further show in Section 3 that the above mentioned qualitative behav-
ior of sample path deviations is not restricted only to the Wiener process and its
bridge versions: sample path deviations of the Ornstein–Uhlenbeck process from
its bridge versions are also considered. Here we give some quantitative answers,
too; see Theorem 3.6.

Our results are to be seen as paradigmatic examples that give rise for future
work concerning more broad questions of how certain pathwise constructions of
Gaussian or Markovian bridges can differ, although they obey the same law. The
reason for concentrating on the Wiener and on the Ornstein–Uhlenbeck process
here is the possibility of giving explicit expressions for some quantities (such as
second moment) related to the path deviations of different bridge versions to the
original process through which they are constructed. In particular, the case of an
Ornstein–Uhlenbeck process shows that explicit expressions for path deviations
can soon become unwieldily. As a future task, one may also address the question
of existence of a bridge version that minimizes the distance to the unconditioned
stochastic process in a certain sense.

To further motivate our study, we point out that similar problems were consid-
ered by DasGupta (1996), Bharath and Dey (2011), and Balabdaoui and Pitman
(2011). Namely, DasGupta (1996, Theorem 1) gave an infinite series representa-
tion of the expectations

E
(∫ δ

0
|W br

t − μt − Wt |dt

)
, δ ∈ (0,1],μ ∈ R,

where (Wt)t∈[0,1] and (W br
t )t∈[0,1] denote respectively a standard Wiener process

and an independent Wiener bridge with a = b = 0 and T = 1. For some special
values of δ and μ the exact values were also calculated. The motivation of Das-
Gupta for calculating the expectations above is to understand whether distinguish-
ing between a Wiener bridge and an independent Wiener process with possible
drift on the basis of observations at discrete times is intrinsically difficult. It turned
out that distinguishing one from the other is not an easy task. DasGupta studied
the likelihood ratio test for testing the null-hypothesis H0 :Xt = W br

t , t ∈ [0,1],
against the alternative hypothesis H1 :Xt = Wt + μt, t ∈ [0,1], for some μ ∈ R,

based on discrete observations from a process (Xt)t∈[0,1]. Recently, the question
of distinguishing a Wiener process from a Wiener bridge was also considered by
Bharath and Dey (2011). Note that in our setup (Wt)t∈[0,1] and (W br

t )t∈[0,1] are not
independent. Hence, our results may be useful to answer the question of distinction
in case the Wiener bridge is constructed by the help of the original Wiener process
and not an independent copy. One can address the same question for Ornstein–
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Uhlenbeck bridges or for more general process bridges. Our calculations in the
Ornstein–Uhlenbeck case can be considered as a first step towards the correspond-
ing calculations of Section 2 in DasGupta (1996). Balabdaoui and Pitman (2011)
gave a representation of the maximal difference between a Wiener bridge and its
(least) concave majorant on the unit interval. As an application, expressions for the
distribution, density function and moments of this difference were derived.

The presented results might also be applied to the study of animal move-
ments. Horne et al. (2007) use a two-dimensional Wiener bridge to model the
unknown movement of an animal between two consecutively observed positions
of the animal. The model is used to investigate questions on the mean occupation
frequency E( 1

T

∫ T
0 1A(Xbr

1,t ,X
br
2,t )dt) in a region A ∈ B(R2), where (Xbr

1,t )t∈[0,T ]
and (Xbr

2,t )t∈[0,T ] are independent Wiener bridges such that (Xbr
1,0,X

br
2,0) and

(Xbr
1,T ,Xbr

2,T ) are the starting and ending positions of the animal at time 0 and
T , respectively. If the region A depends on the original (independent) Wiener pro-
cesses (X1,t )t∈[0,T ], (X2,t )t∈[0,T ], for example, for questions concerning the close-
ness of the animal’s path to the path of a Wiener process, our results show that
the expected occupation frequency heavily depends on the chosen version of the
bridge.

Finally, we remark that the present paper has an arXiv version [Barczy and
Kern (2010b)] containing more technical details. Passages in the present paper,
for which the arXiv version contains significantly more information, are specially
indicated in the sequel.

2 Path deviation of the Wiener process from its bridges

The full information about the considered path deviations is hidden in the joint dis-
tribution of (W br

t ,Wt)t∈[0,T ] which is a two-dimensional centered Gauss process.
A first indicator for different sample path behavior of the bridge versions is the
correlation function �(W br

t ,Wt) of these bridge versions and the original Wiener
process.

Proposition 2.1. For all t ∈ (0, T ), we have

�(W av
t ,Wt) = �(W st

t ,Wt) =
√

T − t

T

and

�(W ir
t ,Wt) =

√
T (T − t)

t
log

T

T − t
.

Proof. By (1.1), we get for every 0 ≤ t ≤ T

Var(W br
t ) = Cov(W br

t ,W br
t ) = t

T − t

T
.
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We easily calculate for every 0 ≤ t < T

Cov(W av
t ,Wt) = Cov(Wt ,Wt) − t

T
Cov(WT ,Wt) = t − t2

T
= t

T − t

T
,

Cov(W ir
t ,Wt) = Cov

(∫ t

0

T − t

T − s
dWs,

∫ t

0
1 dWs

)
=

∫ t

0

T − t

T − s
ds

= (T − t) log
T

T − t
,

and

Cov(W st
t ,Wt) = Cov

(
T − t

T
W(tT )/(T −t),Wt

)
= t

T − t

T
.

Thus, we get for every 0 < t < T ,

�(W av
t ,Wt) = t (T − t)/T√

(t/T )(T − t) · t =
√

T − t

T
= �(W st

t ,Wt) (2.1)

and

�(W ir
t ,Wt) = (T − t) log(T /(T − t))√

(t/T )(T − t) · t =
√

T (T − t)

t
log

T

T − t
,

concluding the proof. �

Remark 2.2. For all T ∈ (0,∞), the function (0, T ) � t 	→ �(W br
t ,Wt) is strictly

decreasing. For the anticipative version and space–time transform, it is an imme-
diate consequence of (2.1). For the integral representation one can show that the
derivative d

dt
�(W ir

t ,Wt) is negative for t ∈ (0, T ) (see also our arXiv preprint [Bar-
czy and Kern (2010b, Remark 2.2)]). Note also that �(W br

t ,Wt) → 1 as t ↓ 0, and
�(W br

t ,Wt) → 0 as t ↑ T . Hence, W br
t and Wt , t ∈ (0, T ), are positively correlated

for all bridge versions. Moreover,
√

T (T − t)

t
log

T

T − t
>

√
T − t

T
, t ∈ (0, T ). (2.2)

Indeed, (2.2) is equivalent to − t
T

> log(1 − t
T
) for all t ∈ (0, T ), which follows

by log(1 − x) ≤ −x for all 0 ≤ x < 1. Hence, the integral representation is more
positively correlated to the original process than the anticipative version and the
space–time transform. �

2.1 Gauss and conditional Gauss distribution of path deviations

Proposition 2.3. For all t ∈ [0, T ) and a = 0, b ∈ R, the path deviation Wt −W br
t

is normally distributed with mean E(Wt − W br
t ) = −b t

T
and with variance

Var(Wt − W av
t ) = Var(Wt − W st

t ) = t2

T
,
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Var(Wt − W ir
t ) = t

(
1 + T − t

T

)
+ 2(T − t) log

T − t

T
=: σ 2(t).

Proof. With a = 0, by (1.3), for every 0 ≤ t < T the path deviation Wt − W br
t is

normally distributed with mean E(Wt − W br
t ) = −b t

T
and with variance

Var(Wt − W av
t ) = Var

(
t

T
WT

)
= t2

T
,

Var(Wt − W ir
t ) = Var

(∫ t

0

t − s

T − s
dWs

)
=

∫ t

0

(
1 − T − t

T − s

)2

ds

= t + 2(T − t) log
T − t

T
+ (T − t)2

(
1

T − t
− 1

T

)
= σ 2(t),

and

Var(Wt − W st
t ) = Var

(
Wt − T − t

T
W(tT )/(T −t)

)

= Var
(
−T − t

T

(
W(tT )/(T −t) − Wt

) + t

T
Wt

)

=
(

T − t

T

)2(
tT

T − t
− t

)
+ t3

T 2 = (T − t)t2 + t3

T 2 = t2

T
,

concluding the proof. �

By Proposition 2.3, for every 0 < t < T , the variance of the path deviation of
the integral representation from the original Wiener process is smaller than those
of the anticipative version or the space–time transform, since we have σ 2(t) =
2t − t2

T
+ 2(T − t) log(1 − t

T
) and, thus,

σ 2(t) <
t2

T
, t ∈ (0, T ). (2.3)

Indeed, (2.3) is equivalent to − t
T

> log(1 − t
T
) for all t ∈ (0, T ), which holds,

since log(1 − x) ≤ −x for all 0 ≤ x < 1.
Next we examine the conditional distribution of the path deviation Wt − W br

t

given the endpoint WT .

Proposition 2.4. For all t ∈ [0, T ), a = 0, b ∈ R and d ∈ R, the conditional dis-
tribution of the path deviation Wt − W br

t given WT = d is normal with mean

E(Wt − W av
t |WT = d) = (d − b)

t

T
, (2.4)

E(Wt − W ir
t |WT = d) = (d − b)

t

T
+ d

T − t

T
log

T − t

T
, (2.5)

E(Wt − W st
t |WT = d) = −b

t

T
+ d

T
(2t − T ) · 1[T/2,T )(t), (2.6)
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and with variance

Var(Wt − W av
t |WT = d) = 0, (2.7)

Var(Wt − W ir
t |WT = d) = 2t

T − t

T
+ 2

(T − t)2

T
log

T − t

T
(2.8)

− (T − t)2

T

(
log

T − t

T

)2

,

Var(Wt − W st
t |WT = d) = t2

T
− (2t − T )2

T
· 1[T/2,T )(t). (2.9)

Proof. For all 0 ≤ t < T , the joint distribution (Wt − W br
t ,WT ) of the path devia-

tion and the endpoint is a two-dimensional normal distribution and, by Theorem 2
and Problem 5 in Chapter II, Section 13 of Shiryaev (1996), it is known that the
conditional distribution of Wt − W br

t given WT = d is normal with mean

E(Wt − W br
t ) + d − E(WT )

Var(WT )
Cov(Wt − W br

t ,WT ) (2.10)

and with variance

Var(Wt − W br
t ) − (Cov(Wt − W br

t ,WT ))2

Var(WT )
. (2.11)

Here we have

Cov(Wt − W av
t ,WT ) = Cov

(
t

T
WT ,WT

)
= t, t ∈ [0, T ),

and, thus, (2.10), (2.11) and Proposition 2.3 yield that

E(Wt − W av
t |WT = d) = −b

t

T
+ d

T
t = (d − b)

t

T
,

Var(Wt − W av
t |WT = d) = t2

T
− t2

T
= 0.

We note that the above formulae follow immediately, since in case of WT = d , we
have Wt − W av

t = (d − b) t
T

. Further, we have

Cov(Wt − W ir
t ,WT ) = Cov

(∫ t

0

t − s

T − s
dWs,

∫ T

0
1 dWs

)
=

∫ t

0

t − s

T − s
ds

=
∫ t

0

(
1 − T − t

T − s

)
ds = t + (T − t) log

T − t

T
,

and, thus, (2.10), (2.11) and Proposition 2.3 yield that

E(Wt − W ir
t |WT = d) = −b

t

T
+ d

T

(
t + (T − t) log

T − t

T

)
,
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Var(Wt − W ir
t |WT = d) = σ 2(t) − (t + (T − t) log((T − t)/T ))2

T

= 2t − t2

T
+ 2(T − t) log

T − t

T
− t2

T

− 2(T − t)
t

T
log

T − t

T
− (T − t)2

T

(
log

T − t

T

)2

.

This implies (2.5) and (2.8). Finally, we have

Cov(Wt − W st
t ,WT )

= Cov(Wt ,WT ) − T − t

T
Cov

(
W(tT )/(T −t),WT

)

= t − T − t

T
min

(
tT

T − t
, T

)

=

⎧⎪⎪⎨
⎪⎪⎩

t − T − t

T

tT

T − t
= 0 if 0 ≤ t ≤ T

2
,

t − T − t

T
T = 2t − T if

T

2
≤ t < T ,

and, thus, (2.10), (2.11) and Proposition 2.3 yield (2.6) and (2.9). �

2.2 Expected absolute path deviations

Lemma 2.5. For all t ∈ (0, T ) and a = 0, b ∈ R, we have

E(|Wt − W av
t |) = E(|Wt − W st

t |) > E(|Wt − W ir
t |).

Proof. For a normally distributed random variable Yμ,σ 2 with mean μ ∈ R and
with variance σ 2 > 0 first note that E(|Yμ,σ 2 |) is a strictly increasing function in
σ > 0. Indeed, by standard calculations,

E(|Yμ,σ 2 |) = 2σ�′
(

μ

σ

)
+ μ

(
2�

(
μ

σ

)
− 1

)
, (2.12)

where � denotes the distribution function of a standard normally distributed ran-
dom variable and, by differentiating with respect to σ > 0, we have

∂

∂σ
E(|Yμ,σ 2 |) = 2�′

(
μ

σ

)
> 0.

For more detailed calculations, see our arXiv preprint [Barczy and Kern (2010b,
Lemma 2.5)]. By Section 2.1 together with (2.3), we get for all 0 < t < T ,

E(|Wt − W av
t |) = E(|Wt − W st

t |)
= 2t√

T
�′

(
b√
T

)
+ b

t

T

(
2�

(
b√
T

)
− 1

)
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> 2σ(t)�′
(

bt

T σ(t)

)
+ b

t

T

(
2�

(
bt

T σ(t)

)
− 1

)

= E(|Wt − W ir
t |),

concluding the proof.
We note that one can give another argument for the monotonicity of E(|Yμ,σ 2 |)

in σ > 0. Namely, Tanaka’s formula [see, e.g., Revuz and Yor (2001, Chapter VI,
Theorem 1.2)] yields that E(|μ + Wt |) = |μ| + E(L

μ
t ), t ≥ 0, where Lμ denotes

the local time of the Wiener process at level μ. Now, since the local time L
μ
t is

increasing in t > 0, the same holds true for E(|μ + Wt |) = E(|Yμ,t |). �

Next we compare expected absolute path deviations E(
∫ T

0 |Wt − W br
t |dt). Us-

ing that integration over the time-interval [0, T ] and taking expectation can be
interchanged (as explained in the Introduction), by Lemma 2.5, we also get

E
(∫ T

0
|Wt − W av

t |dt

)
= E

(∫ T

0
|Wt − W st

t |dt

)
> E

(∫ T

0
|Wt − W ir

t |dt

)
.

Using (2.12) and Proposition 2.4, it might also be possible to calculate and to
compare expected conditional absolute path deviations given WT = d . This task
is more complicated, since now the mean is different for different versions of the
bridge; see Proposition 2.4. Instead we will now consider expected (conditional)
quadratic path deviations which have much nicer forms.

2.3 Expected quadratic path deviations

Theorem 2.6. For all t ∈ [0, T ) and a = 0, b ∈ R, we have

E
(
(Wt − W av

t )2) = E
(
(Wt − W st

t )2) = t2

T
+ b2 t2

T 2 , (2.13)

E
(
(Wt − W ir

t )2) = σ 2(t) + b2 t2

T 2 , (2.14)

where σ 2(t) is defined in Proposition 2.3.
Moreover, the expected quadratic path deviations take the following forms:

E
(∫ T

0
(Wt − W av

t )2 dt

)
= E

(∫ T

0
(Wt − W st

t )2 dt

)
= T

3
(T + b2),

E
(∫ T

0
(Wt − W ir

t )2 dt

)
= T

3

(
T

2
+ b2

)
.

Proof. For a normally distributed random variable Yμ,σ 2 with mean μ and with
variance σ 2 ≥ 0 we clearly have E(Y 2

μ,σ 2) = σ 2 + μ2. Hence, by Proposition 2.3
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we get (2.13) and (2.14). Then we have

E
(∫ T

0
(Wt − W av

t )2 dt

)
= E

(∫ T

0
(Wt − W st

t )2 dt

)

=
∫ T

0

t2

T 2 (T + b2)dt = T

3
(T + b2),

and by change of variables s = (T − t)/T and partial integration we get

E
(∫ T

0
(Wt − W ir

t )2 dt

)
=

∫ T

0

(
σ 2(t) + b2 t2

T 2

)
dt

=
∫ T

0

[
t

(
2 − t

T

)
+ 2(T − t) log

T − t

T
+ b2 t2

T 2

]
dt

= T 2 − 1

3
T 2 + 2T 2

∫ 1

0
s log s ds + 1

3
b2T

= 1

6
T 2 + 1

3
b2T = T

3

(
T

2
+ b2

)
,

concluding the proof. �

Note that by Theorem 2.6 and (2.3) for all t ∈ (0, T )

E
(
(Wt − W av

t )2) = E
(
(Wt − W st

t )2)
> σ 2(t) + b2 t2

T 2

= E
(
(Wt − W ir

t )2)
.

Integrating over [0, T ], the case b = 0 of Theorem 2.6 shows that the expected
quadratic path deviation of the integral representation is half of those of the an-
ticipative version or the space–time transform of the bridge. This is in accordance
with the typical observations from simulation studies as in Figure 1.

2.4 Expected conditional quadratic path deviations

Theorem 2.7. For all t ∈ [0, T ), a = 0, b ∈ R and d ∈ R, we have

E
(
(Wt − W av

t )2|WT = d
) = (d − b)2 t2

T 2 , (2.15)

E
(
(Wt − W ir

t )2|WT = d
) = 2t

T − t

T
+ 2

(T − t)2

T
log

T − t

T

− (T − t)2

T

(
log

T − t

T

)2

(2.16)

+
(
(d − b)

t

T
+ d

T − t

T
log

T − t

T

)2

,
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E
(
(Wt − W st

t )2|WT = d
) = t2

T
− (2t − T )2

T
1[T/2,T )(t)

(2.17)

+
(
b

t

T
− d

(2t − T )

T
1[T/2,T )(t)

)2

.

Moreover, the expected conditional quadratic path deviations take the following
forms:

E
(∫ T

0
(Wt − W av

t )2 dt
∣∣∣WT = d

)
= 1

3
(d − b)2T , (2.18)

E
(∫ T

0
(Wt − W ir

t )2 dt
∣∣∣WT = d

)
= 7

54
(b − d)2T + 11

54
b2T

(2.19)

− 7

54
dbT + 1

27
T 2,

E
(∫ T

0
(Wt − W st

t )2 dt
∣∣∣WT = d

)
= 1

6
(d − b)2T + 1

6
b2T

(2.20)

− 1

12
dbT + 1

6
T 2.

Proof. By (2.4) and (2.7) for 0 < t < T we get (2.15). Using that integration over
the time-interval [0, T ] and taking conditional expectation can be interchanged (as
explained in the Introduction), we get (2.15) yields (2.18). By (2.5) and (2.8) we
have (2.16), hence, by change of variables s = (T − t)/T and partial integration

E
(∫ T

0
(Wt − W ir

t )2 dt
∣∣∣WT = d

)

=
∫ T

0

[
2t

T − t

T
+ (d − b)2 t2

T 2 + 2d(d − b)
t

T

T − t

T
log

T − t

T

+ 2T
(T − t)2

T 2 log
T − t

T
+ (d2 − T )

(T − t)2

T 2

(
log

T − t

T

)2]
dt

= 1

27
T 2 + 7

54
d2T − 7

18
dbT + 1

3
b2T ,

which yields (2.19). Finally, by (2.6) and (2.9) we have (2.17), hence, by change
of variables s = 2t − T we get

E
(∫ T

0
(Wt − W st

t )2 dt
∣∣∣WT = d

)

= 1

3
T 2 + 1

3
b2T −

∫ T

T/2

[
(2t − T )2

T
+ 2dbt (2t − T )

T 2 − d2

T 2 (2t − T )2
]

dt

= 1

6
T 2 + 1

3
b2T − 5

12
dbT + 1

6
d2T ,
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which yields (2.20). �

In what follows we give a complete comparison of the quantities (2.18), (2.19)
and (2.20). Let b̃ = b/

√
T and d̃ = d/

√
T . Using the notation

ebr := E
(∫ T

0
(Wt − W br

t )2 dt
∣∣∣WT = d

)
,

by Theorem 2.7, we have

eav = 1

3
(b̃ − d̃)2T 2,

eir =
(

7

54
(b̃ − d̃)2 + 11

54
b̃2 − 7

54
b̃d̃ + 1

27

)
T 2,

est =
(

1

6
(b̃ − d̃)2 + 1

6
b̃2 − 1

12
b̃d̃ + 1

6

)
T 2.

Hence, we easily calculate

eav > eir ⇐⇒ 11

54
(b̃ − d̃)2 >

11

54
b̃2 − 7

54
b̃d̃ + 1

27

⇐⇒
∣∣∣∣d̃ − 15

22
b̃

∣∣∣∣ >

√
2

11
+

(
15

22

)2

(b̃)2,

eav > est ⇐⇒ 1

6
(b̃ − d̃)2 >

1

6
b̃2 − 1

12
b̃d̃ + 1

6

⇐⇒
∣∣∣∣d̃ − 3

4
b̃

∣∣∣∣ >

√
1 + 9

16
(b̃)2

and

est < eir ⇐⇒ 1

27
(b̃ − d̃)2 <

1

27
b̃2 − 5

108
b̃d̃ − 7

54

⇐⇒
∣∣∣∣d̃ − 3

8
b̃

∣∣∣∣ <

√
9

64
(b̃)2 − 7

2
and (b̃)2 ≥ 224

9
.

The corresponding regions are graphically illustrated in Figure 3.
Finally, we remark that Theorem 2.7 justifies our simulation results in case the

endpoint WT of the Wiener sample path is close to the prescribed endpoint b of
its bridge. Indeed, in case of d = b by Theorem 2.7 it can be easily seen that the
expected conditional quadratic path deviation of the Wiener process from the antic-
ipative version of its bridge is 0 being smaller than from the integral representation
of the bridge or from the space–time bridge version.
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Figure 3 Regions in the (b̃, d̃)-plain for which A: eav < eir < est, B: eir < eav < est,
C: eir < est < eav, and D: eav < est < eir.

3 Path deviation of the Ornstein–Uhlenbeck process from its bridges

Let (Ua
t )t≥0 be a one-dimensional Ornstein–Uhlenbeck process starting in a ∈ R,

that is, it is the unique strong solution of the SDE

dUa
t = qUa

t dt + σ dWt with initial condition Ua
0 = a

for some q �= 0 and σ > 0, where (Wt)t≥0 is a standard Wiener process. It is well
known that the Ornstein–Uhlenbeck process has the integral representation

Ua
t = eqt

(
a + σ

∫ t

0
e−qs dWs

)
, t ≥ 0,

which is a Gauss process with mean function E(Ua
t ) = aeqt and covariance func-

tion Cov(Ua
s ,Ua

t ) = σ 2 eqt

q
sinh(qs) for 0 ≤ s ≤ t . We also have Ua

t = aeqt + U0
t ,

t ≥ 0, where (U0
t )t≥0 is a one-dimensional Ornstein–Uhlenbeck process starting

in 0.
We consider the following versions of the Ornstein–Uhlenbeck bridge from a

to b over the time-interval [0, T ], where a, b ∈ R:
1. Anticipative version

U av
t = a

sinh(q(T − t))

sinh(qT )
+ b

sinh(qt)

sinh(qT )
+

(
U0

t − sinh(qt)

sinh(qT )
U0

T

)
, 0 ≤ t ≤ T .

Up to our knowledge this anticipative version of the Ornstein–Uhlenbeck bridge
first appears on page 378 of Donati-Martin (1990) for a = b = 0 and in Lemma 1
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of Papież and Sandison (1990) for special values of q and σ . It is also an easy con-
sequence of Theorem 2 in Delyon and Hu (2006) and of Proposition 4 in Gasbarra
et al. (2007).

2. Integral representation

U ir
t = a

sinh(q(T − t))

sinh(qT )
+ b

sinh(qt)

sinh(qT )
+ σ

∫ t

0

sinh(q(T − t))

sinh(q(T − s))
dWs

for 0 ≤ t < T and U ir
T = b. This integral representation of the Ornstein–Uhlenbeck

bridge is the unique strong solution of the below given SDE (3.2); see, for example,
Barczy and Kern (2010a, Remark 3.9).

3. Space–time transform

U st
t = a

sinh(q(T − t))

sinh(qT )
+ b

sinh(qt)

sinh(qT )
+ σeqt κ(T ) − κ(t)

κ(T )
Wκ(t)κ(T )/(κ(T )−κ(t))

for 0 ≤ t < T and U st
T = b, with the strictly increasing time-change

R � t 	→ κ(t) = e−qt sinh(qt)

q
= 1 − e−2qt

2q
.

This space–time transform of the Ornstein–Uhlenbeck bridge goes back to the
proof of Lemma 1 in Papież and Sandison (1990) and is, roughly speaking, a time-
transformation by κ and a rescaling with the coefficient eqt of the space–time
transform representation (W st

t )t∈[0,T ] of the Wiener bridge from a to b over the
time-interval [0, T ].
Remark 3.1. We note that the previous versions of an Ornstein–Uhlenbeck bridge
are in accordance with the corresponding versions of a usual standard Wiener
bridge introduced in the Introduction. By this we mean that for all T > 0, t ∈ [0, T ]
and σ = 1, Ubr

t converges to W br
t in L2(�, F ,P) as q → 0 (see our arXiv preprint

[Barczy and Kern (2010b, Remark 3.1)]).

In all that follows we will use the notation (Ubr
t )t∈[0,T ] if the version of the

bridge is not specified.
First we present a lemma about a time-transformation which will be useful for

calculating Var(Ua
t − U st

t ) and Cov(U st
s ,U st

t ), 0 ≤ s, t < T .

Lemma 3.2. For the time-transformation κ∗
T (t) := κ(t)κ(T )

κ(T )−κ(t)
, t ∈ [0, T ), with

κ(t) := 1−e−2qt

2q
, t ∈ R, we get κ∗

T is strictly increasing and κ∗
T (t) ≥ t for all

t ∈ [0, T ).

Proof. Since the function [0, T ) � t 	→ tT
T −t

is strictly increasing and R � t 	→
κ(t) = 1−e−2qt

2q
is strictly increasing for every q �= 0, we get that [0, T ) � t 	→

κ(t)κ(T )
κ(T )−κ(t)

=: κ∗
T (t) is strictly increasing. Further, easy calculations show that
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1. κ∗
T (0) = 0 and limt↑T κ∗

T (t) = ∞.
2. κ∗

T is differentiable on [0, T ), namely,

(κ∗
T )′(t) = κ ′(t)κ(T )(κ(T ) − κ(t)) + κ(t)κ(T )κ ′(t)

(κ(T ) − κ(t))2 = κ ′(t)κ2(T )

(κ(T ) − κ(t))2

for t ∈ [0, T ) with κ ′(t) = e−2qt and, hence, (κ∗
T )′(0) = 1.

3. For the second derivative we get

(κ∗
T )′′(t) = κ ′′(t)κ2(T )(κ(T ) − κ(t))2 + 2(κ(T ) − κ(t))(κ ′)2(t)κ2(T )

(κ(T ) − κ(t))4

= κ2(T )(κ ′′(t)(κ(T ) − κ(t)) + 2(κ ′)2(t))

(κ(T ) − κ(t))3 , t ∈ [0, T ).

Since κ ′′(t)(κ(T ) − κ(t)) + 2(κ ′)2(t) = e−4qt + e−2q(T +t) > 0, we have (κ∗
T )′

is strictly increasing.

Altogether this shows that (κ∗
T )′(t) ≥ (κ∗

T )′(0) = 1, t ∈ [0, T ) and, hence, κ∗
T (t) ≥

t for all t ∈ [0, T ). �

Proposition 3.3. Let (Ubr
t )t∈[0,T ] be an Ornstein–Uhlenbeck bridge from a to b

over the time-interval [0, T ], where a, b ∈ R. Then (Ubr
t )t∈[0,T ] is a Gauss process

with mean function

E(Ubr
t ) = a

sinh(q(T − t))

sinh(qT )
+ b

sinh(qt)

sinh(qT )
, 0 ≤ t < T ,

and with covariance function

Cov(Ubr
s ,Ubr

t ) = σ 2

q

sinh(qs) sinh(q(T − t))

sinh(qT )
, 0 ≤ s ≤ t < T . (3.1)

Hence, all the bridge versions above have the same finite-dimensional distribu-
tions.

Proof. For 0 ≤ s ≤ t < T , we have the covariance function

Cov(U av
s ,U av

t ) = Cov
(
U0

s − sinh(qs)

sinh(qT )
U0

T ,U0
t − sinh(qt)

sinh(qT )
U0

T

)

= Cov(U0
s ,U0

t ) − sinh(qt)

sinh(qT )
Cov(U0

s ,U0
T )

− sinh(qs)

sinh(qT )
Cov(U0

t ,U0
T ) + sinh(qs) sinh(qt)

sinh2(qT )
Cov(U0

T ,U0
T )

= σ 2 eqt

q
sinh(qs) − sinh(qt)

sinh(qT )
σ 2 eqT

q
sinh(qs)

= σ 2

q

sinh(qs) sinh(q(T − t))

sinh(qT )
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and

Cov(U ir
s ,U ir

t )

= σ 2 Cov
(∫ s

0

sinh(q(T − s))

sinh(q(T − r))
dWr,

∫ t

0

sinh(q(T − t))

sinh(q(T − r))
dWr

)

= σ 2
∫ s

0

sinh(q(T − s)) sinh(q(T − t))

sinh2(q(T − r))
dr

= σ 2

q
sinh

(
q(T − s)

)
sinh

(
q(T − t)

) ∫ qT

q(T −s)

1

sinh2 v
dv

= σ 2

q
sinh

(
q(T − s)

)
sinh

(
q(T − t)

)(cosh(q(T − s))

sinh(q(T − s))
− cosh(qT )

sinh(qT )

)

= σ 2

q
sinh

(
q(T − s)

)
sinh

(
q(T − t)

) sinh(qT − q(T − s))

sinh(q(T − s)) sinh(qT )

= σ 2

q

sinh(qs) sinh(q(T − t))

sinh(qT )
.

By Lemma 3.2, for 0 ≤ s ≤ t < T we get

Cov(U st
s ,U st

t ) = σ 2eq(s+t) κ(T ) − κ(s)

κ(T )

κ(T ) − κ(t)

κ(T )

× Cov
(
Wκ(s)κ(T )/(κ(T )−κ(s)),Wκ(t)κ(T )/(κ(T )−κ(t))

)
= σ 2eq(s+t) κ(T ) − κ(s)

κ(T )

κ(T ) − κ(t)

κ(T )

κ(s)κ(T )

κ(T ) − κ(s)

= σ 2eqt sinh(qs)

e−qT sinh(qT )

e−2qt − e−2qT

2q

= σ 2

q

sinh(qs) sinh(q(T − t))

sinh(qT )
,

concluding the proof. �

It follows from the definitions that all bridge versions have almost sure continu-
ous sample paths on [0, T ). The (left) continuity of the trajectories at t = T is also
obvious in case of the anticipative version. As explained in the Introduction, this
induces (left) continuity at t = T of the integral representation and of the space–
time transform (one can also refer to Karatzas and Shreve (1991, Problem 2.9.3)
and Barczy and Kern (2010a, Lemma 4.5)). Hence, the anticipative version U av,
the integral representation U ir and the space–time transform U st induce the same
probability measure on (C[0, T ], B(C[0, T ])). This underlines and explains the
definition of an Ornstein–Uhlenbeck bridge from a to b over the time-interval
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[0, T ], by which we mean any almost surely continuous Gauss process having
mean function and covariance function given in Proposition 3.3.

We also note that the finite-dimensional distributions of the Ornstein–Uhlenbeck
bridge versions coincide with the conditional finite-dimensional distributions of
the Ornstein–Uhlenbeck process (Ua

t )t∈[0,T ] (starting in a) and conditioned on
{Ua

T = b}; see, for example, Delyon and Hu (2006, Theorem 2), Gasbarra et
al. (2007, Proposition 4) or Barczy and Kern (2010a, Proposition 3.5).

3.1 Different sample path behavior of Ornstein–Uhlenbeck bridge versions

Let us consider the linear SDE

dUbr
t = q

(
− coth

(
q(T − t)

)
Ubr

t + b

sinh(q(T − t))

)
dt + σ dWt (3.2)

for 0 ≤ t < T with initial condition Ubr
0 = a. Then the integral representation of

the Ornstein–Uhlenbeck bridge is the unique strong solution of this SDE (see, e.g.,
Delyon and Hu (2006, Proposition 3) or Barczy and Kern (2010a, Remark 3.10)),
while the anticipative version and the space–time transform are only weak solu-
tions. We also note that one could present other indicators for different sample path
behavior of the Ornstein–Uhlenbeck bridge versions, for example, by calculating
the covariances Cov(Ubr

t ,Ua
t ) or the correlations ρ(Ubr

t ,Ua
t ) of the coordinates

of the two-dimensional Gauss process (Ubr
t ,Ua

t )t∈[0,T ]. Namely, standard calcula-
tions yield for 0 < t < T

Cov(U av
t ,Ua

t ) = σ 2

q

sinh(q(T − t)) sinh(qt)

sinh(qT )
,

Cov(U ir
t ,Ua

t ) = σ 2

q
e−q(T −t) sinh

(
q(T − t)

)(
qt + log

(
sinh(qT )

sinh(q(T − t))

))
,

Cov(U st
t ,Ua

t ) = σ 2

q
(eqt − 1)

sinh(q(T − t))

sinh(qT )
;

see also our arXiv preprint [Barczy and Kern (2010b, Proposition 3.4)] for details.
This also shows that, even though the three bridge versions have the same law
on (C[0, T ], B(C[0, T ])), their joint laws together with the Ornstein–Uhlenbeck
process Ua are different. Since the above formulas for the covariances are hard
to compare in general, in the sequel we concentrate on a comparison of expected
quadratic path deviations. Our aim is to analyze the sample path deviations of the
Ornstein–Uhlenbeck bridge versions to the original Ornstein–Uhlenbeck process
(Ua

t )t∈[0,T ) (starting in a) by calculating and comparing expected quadratic path
deviations E(

∫ T
0 (Ua

t − Ubr
t )2 dt).

Simulation studies show the same qualitative behavior of typical sample path
deviations of the anticipative version, the integral representation and the space–
time transform of the Ornstein–Uhlenbeck bridge as we have for the Wiener
bridge; see the upper row of Figure 4.
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Figure 4 Two sample paths of the Ornstein–Uhlenbeck process with σ = 1 and q = −1 (upper
row, thick line), respectively q = 2 (lower row, thick line) and their deviations from the anticipative
version (left column), the integral representation (middle column), and the space–time transform
(right column) of the Ornstein–Uhlenbeck bridge from 0 to 0 over the time-interval [0,1].

Note that in general the deviation from the space–time transform bridge version
is hard to compare with the other deviations, since (U st

t )t∈[t∗,T ) depends on the
future part (Ua

t )t∈[T ,∞) of the Ornstein–Uhlenbeck process, which is not visible
in the pictures of Figure 4. Here, t∗ ∈ (0, T ) is defined as follows. Due to the strict
monotonicity of κ∗

T and limt↑T κ∗
T (t) = ∞ there is a unique t∗ ∈ (0, T ) such that

κ∗
T (t∗) = T ; see the analysis of the time-transform κ∗

T in Lemma 3.2.
From simulation studies we also get that the above typical behavior is again

reversed in case the endpoint Ua
T of the Ornstein–Uhlenbeck sample path is close

to the prescribed endpoint b of its bridge, namely, for such a sample path of the
Ornstein–Uhlenbeck process the deviation from its anticipative bridge version is
smaller than from its integral representation of the bridge; see the lower row of
Figure 4.

Our aim is again to give quantitative answers to this qualitative behavior ob-
served from simulation studies by studying the path deviations on [0, T ):

Ua
t − U av

t = (aeqT − b)
sinh(qt)

sinh(qT )
+ sinh(qt)

sinh(qT )
U0

T ,

Ua
t − U ir

t = (aeqT − b)
sinh(qt)

sinh(qT )

+ σ

∫ t

0

(
eq(t−s) − sinh(q(T − t))

sinh(q(T − s))

)
dWs, (3.3)
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Ua
t − U st

t = (aeqT − b)
sinh(qt)

sinh(qT )

+
(
U0

t − σeqt κ(T ) − κ(t)

κ(T )
Wκ(t)κ(T )/(κ(T )−κ(t))

)
.

Note that all path deviations depend only on the transformed difference (aeqT −b)

of starting and endpoint of the bridge. Hence, without loss of generality we can
and will assume that a = 0 in the sequel. For simplicity we will concentrate on
calculating the Gauss distributions of path deviations and to compare the expected
quadratic path deviations only.

3.2 Gauss distribution of path deviations

Proposition 3.4. For all t ∈ [0, T ) and a = 0, b ∈ R, the path deviation U0
t − Ubr

t

is normally distributed with mean

E(U0
t − Ubr

t ) = −b
sinh(qt)

sinh(qT )
,

and with variance

Var(U0
t − U av

t ) = σ 2 eqT

q

sinh2(qt)

sinh(qT )
, (3.4)

Var(U0
t − U ir

t ) = σ 2

q

(
sinh(qt)

(
eqt + sinh(q(T − t))

sinh(qT )

)

− 2e−q(T −t) sinh
(
q(T − t)

)
(3.5)

×
(
qt + log

sinh(qT )

sinh(q(T − t))

))
,

Var(U0
t − U st

t ) = σ 2

q

(
sinh(qt)

(
eqt + sinh(q(T − t))

sinh(qT )

)
(3.6)

+ 2(1 − eqt )
sinh(q(T − t))

sinh(qT )

)
.

Proof. With a = 0, by (3.3), for every 0 ≤ t < T the path deviation U0
t − Ubr

t is
normally distributed with mean E(U0

t − Ubr
t ) = −b

sinh(qt)
sinh(qT )

and with variance

Var(U0
t − U av

t ) = sinh2(qt)

sinh2(qT )
Var(U0

T )

= σ 2 eqT

q

sinh2(qt)

sinh(qT )
,



458 M. Barczy and P. Kern

and

Var(U0
t − U ir

t )

= σ 2
∫ t

0

(
eq(t−s) − sinh(q(T − t))

sinh(q(T − s))

)2

ds

= σ 2
∫ t

0

[
e2q(t−s) − 2eq(t−s) sinh(q(T − t))

sinh(q(T − s))
+ sinh2(q(T − t))

sinh2(q(T − s))

]
ds

= σ 2
(

1

2q
(e2qt − 1) − 2

∫ t

0

eq(T −s) − e−q(T −2t+s)

eq(T −s) − e−q(T −s)
ds

+ sinh2(
q(T − t)

) ∫ t

0

1

sinh2(q(T − s))
ds

)

= σ 2
(

1

2q
(e2qt − 1) − 2(1 − e−2q(T −t))

q

∫ eqT

eq(T −t)

v

v2 − 1
dv

+ sinh2(
q(T − t)

) 1

q

(
cosh(q(T − t))

sinh(q(T − t))
− cosh(qT )

sinh(qT )

))

= σ 2
(

1

2q
(e2qt − 1) − (1 − e−2q(T −t))

q
log

e2qT − 1

e2q(T −t) − 1

+ sinh2(
q(T − t)

) 1

q

sinh(qt)

sinh(q(T − t)) sinh(qT )

)
,

which yields (3.5). Using Lemma 3.2, we get

Var(U0
t − U st

t ) = Var
(
U0

t − σeqt κ(T ) − κ(t)

κ(T )
Wκ(t)κ(T )/(κ(T )−κ(t))

)

= Var(U0
t ) + σ 2e2qt

(
κ(T ) − κ(t)

κ(T )

)2

Var
(
Wκ(t)κ(T )/(κ(T )−κ(t))

)

− 2σeqt κ(T ) − κ(t)

κ(T )
Cov

(
U0

t ,Wκ(t)κ(T )/(κ(T )−κ(t))

)

= σ 2 eqt

q
sinh(qt) + σ 2e2qtκ(t)

κ(T ) − κ(t)

κ(T )

− 2σ 2eqt κ(T ) − κ(t)

κ(T )

∫ min{t,κ∗
T (t)}

0
eq(t−s) ds

= σ 2 eqt

q

(
sinh(qt) + eqt 1 − e−2qt

2

e−2qt − e−2qT

1 − e−2qT

− 2
e−2qt − e−2qT

1 − e−2qT
(eqt − 1)

)
,
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which yields (3.6). �

Note that in the proof of Proposition 3.5 below we will give different represen-
tations of the variances Var(U0

t − Ubr
t ) calculated in Proposition 3.4.

3.3 Expected quadratic path deviations

Proposition 3.5. For all t ∈ (0, T ) and a = 0, b ∈ R, we have

E
(
(U0

t − U ir
t )2)

<

{
E

(
(U0

t − U st
t )2)

< E
(
(U0

t − U av
t )2)

, if q > 0,
E

(
(U0

t − U av
t )2)

< E
(
(U0

t − U st
t )2)

, if q < 0.
(3.7)

Proof. First note that E((U0
t −Ubr

t )2) = Var(U0
t −Ubr

t ), t ∈ [0, T ), since the mean
function of path deviations is the same for all bridge versions (see Proposition 3.4).
Next we give different representations of Var(U0

t −U ir
t ) and Var(U0

t −U st
t ) calcu-

lated in Proposition 3.4 that are more suitable for comparison. By Proposition 3.4,
we have

Var(U0
t − U ir

t )

= σ 2

q

[
2 sinh

(
q(T − t)

)( sinh(qt)

sinh(qT )
− e−q(T −t)

(
qt + log

sinh(qT )

sinh(q(T − t))

))

+ sinh(qt)

(
eqt − sinh(q(T − t))

sinh(qT )

)]

= 2
σ 2

q
sinh

(
q(T − t)

)( sinh(qt)

sinh(qT )
− e−q(T −t)

(
qt + log

sinh(qT )

sinh(q(T − t))

))

+ eqT σ 2

q

sinh2(qt)

sinh(qT )
,

and

Var(U0
t − U st

t ) = σ 2

q

(
sinh(qt)

(
eqt − sinh(q(T − t))

sinh(qT )

)

+ 2
sinh(q(T − t))

sinh(qT )

(
sinh(qt) + 1 − eqt ))

= eqT σ 2

q

sinh2(qt)

sinh(qT )
+ 2

σ 2

q

sinh(q(T − t))(1 − cosh(qt))

sinh(qT )
.

The advantage of this new representation is that now the variances include the term

eqT σ 2

q
sinh2(qt)
sinh(qT )

for all versions of path deviations.
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For the comparison E(U0
t − U st

t )2 with E(U0
t − U av

t )2 we consider the contin-
uous function hq on [0, T ] defined by

hq(t) := 2
σ 2

q

sinh(q(T − t))(1 − cosh(qt))

sinh(qT )
, t ∈ [0, T ].

Clearly, hq(t) = 0 if and only if t ∈ {0, T } and, further, for all 0 < t < T we have
hq(t) < 0 if q > 0 and hq(t) > 0 if q < 0. Thus, we get

E
(
(U0

t − U st
t )2){

< E
(
(U0

t − U av
t )2)

, if q > 0,
> E

(
(U0

t − U av
t )2)

, if q < 0.
(3.8)

For the other comparisons, we show that

sinh(qt)

sinh(qT )
− e−q(T −t)

(
qt + log

sinh(qT )

sinh(q(T − t))

)
<

⎧⎨
⎩

0 if q < 0,
1 − cosh(qt)

sinh(qT )
if q > 0.

Using that ∣∣∣∣sinh(q(T − t))

sinh(qT )
− 1

∣∣∣∣ < 1, t ∈ (0, T ),

by log(1 + x) ≤ x, |x| < 1, we have for all 0 < t < T ,

sinh(qt)

sinh(qT )
− e−q(T −t)

(
qt + log

sinh(qT )

sinh(q(T − t))

)

= sinh(qt)

sinh(qT )
+ e−q(T −t)

(
log

sinh(q(T − t))

sinh(qT )
− qt

)

≤ sinh(qt)

sinh(qT )
+ e−q(T −t) sinh(q(T − t)) − (1 + qt) sinh(qT )

sinh(qT )

= 1

2 sinh(qT )

(
eqt − e−qt + 1 − e−2q(T −t) − (1 + qt)(eqt − e−2qT +qt )

)

=: 1

2 sinh(qT )
gq(t).

For q < 0 it is enough to show that gq(t) > 0 for all 0 < t < T . Now

gq(t) = (
e−2qT +qt − e−2q(T −t)) + (1 − e−qt ) − qt (eqt − e−2qT +qt )

= e−2q(T −t)(e−qt − 1) + (1 − e−qt ) − qteqt (1 − e−2qT )

= (
e−2q(T −t) − 1

)
(e−qt − 1) + qteqt (e−2qT − 1)

≤ (e−2qT − 1)(e−qt − 1) + qteqt (e−2qT − 1)

= (e−2qT − 1)(e−qt − 1 + qt) + qt (eqt − 1)(e−2qT − 1),
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which is obviously positive for q < 0 and 0 < t < T . For q > 0 we have to show
that gq(t) < 2 − eqt − e−qt for all 0 < t < T . Now

2 − eqt − e−qt − gq(t)

= 1 − eqt + e−2q(T −t) − e−2qT +qt + qteqt (1 − e−2qT )

=: g̃q(t)

for which g̃q(0) = 0 holds and we have

g̃′
q(t) = −qeqt + 2qe−2q(T −t) − qe−2qT +qt

+ qeqt (1 − e−2qT ) + q2teqt (1 − e−2qT )

= 2qe−2qT +qt (eqt − 1) + q2teqt (1 − e−2qT ) > 0

for q > 0 and 0 < t < T , which completes the proof. Hence, by (3.4) and (3.8), we
get (3.7). �

Moreover, by (3.7), the expected quadratic path deviations satisfy the following
inequalities: if q > 0, then∫ T

0
E

(
(U0

t − U ir
t )2)

dt <

∫ T

0
E

(
(U0

t − U st
t )2)

dt <

∫ T

0
E

(
(U0

t − U av
t )2)

dt,

and if q < 0, then∫ T

0
E

(
(U0

t − U ir
t )2)

dt <

∫ T

0
E

(
(U0

t − U av
t )2)

dt <

∫ T

0
E

(
(U0

t − U st
t )2)

dt.

In the next theorem we get more explicit representations of the expected
quadratic path deviations.

Theorem 3.6. For a = 0 and b ∈ R, we have

E
(∫ T

0
(U0

t − U av
t )2 dt

)
= b2

4q
· sinh(2qT ) − 2qT

sinh2(qT )
+ σ 2eqT

4q2 · sinh(2qT ) − 2qT

sinh(qT )
,

E
(∫ T

0
(U0

t − U ir
t )2 dt

)
= b2

4q
· sinh(2qT ) − 2qT

sinh2(qT )
+ σ 2eqT

4q2 · sinh(2qT ) − 2qT

sinh(qT )

− σ 2

q2 + T σ 2 cosh(qT )

q sinh(qT )
− σ 2T 2

2
+ σ 2T

2q
− σ 2

4q2

+ σ 2

4q2 e−2qT − σ 2

q2

∫ qT

0
(1 − e−2x) log

sinh(qT )

sinh(x)
dx,

E
(∫ T

0
(U0

t − U st
t )2 dt

)
= σ 2eqT

4q2 · sinh(2qT ) − 2qT

sinh(qT )
+ 2σ 2

q2 · cosh(qT ) − 1

sinh(qT )
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− σ 2

q

(
sinh(2qT )

2q
+ T

)

+ σ 2 cosh(qT )

2q2 sinh(qT )

(
cosh(2qT ) − 1

)
.

Proof. For the anticipative version, by Proposition 3.4, we get

E
(∫ T

0
(U0

t − U av
t )2 dt

)

=
∫ T

0
E(U0

t − U av
t )2dt

=
∫ T

0
eqT σ 2

q

sinh2(qt)

sinh(qT )
dt +

∫ T

0
b2 sinh2(qt)

sinh2(qT )
dt

= eqT σ 2

q sinh(qT )

∫ T

0
sinh2(qt)dt + b2

sinh2(qT )

∫ T

0
sinh2(qt)dt

= eqT σ 2

2q sinh(qT )

(
sinh(2qT )

2q
− T

)
+ b2

2 sinh2(qT )

(
sinh(2qT )

2q
− T

)
.

For the integral representation, by Proposition 3.4 and the previous calculations
for the anticipative version, we get

E
(∫ T

0
(U0

t − U ir
t )2 dt

)

= b2

4q

sinh(2qT ) − 2qT

sinh2(qT )
+ σ 2eqT

4q2

sinh(2qT ) − 2qT

sinh(qT )

− 2σ 2

q

∫ T

0
sinh

(
q(T − t)

)
e−q(T −t)

(
qt + log

sinh(qT )

sinh(q(T − t))

)
dt

+ 2σ 2

q sinh(qT )

∫ T

0
sinh

(
q(T − t)

)
sinh(qt)dt.

Here ∫
sinh

(
q(T − t)

)
sinh(qt)dt

=
∫ (

sinh(qT ) cosh(qt) − cosh(qT ) sinh(qt)
)

sinh(qt)dt

= sinh(qT )

∫
cosh(qt) sinh(qt)dt − cosh(qT )

∫
sinh2(qt)dt

= sinh(qT )

2

∫
sinh(2qt)dt − cosh(qT )

2

(
sinh(2qt)

2q
− t

)
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= sinh(qT ) cosh(2qt)

4q
− cosh(qT ) sinh(2qt)

4q
+ t cosh(qT )

2

= sinh(q(T − 2t))

4q
+ t cosh(qT )

2
,

and, hence,

2σ 2

q sinh(qT )

∫ T

0
sinh

(
q(T − t)

)
sinh(qt)dt

= 2σ 2

q sinh(qT )

(
−sinh(qT )

4q
+ T cosh(qT )

2
− sinh(qT )

4q

)

= −σ 2

q2 + T σ 2 cosh(qT )

q sinh(qT )
.

We also have, by partial integration,

∫
sinh

(
q(T − t)

)
e−q(T −t)qt dt

=
∫ 1 − e−2q(T −t)

2
qt dt

= q

2

(
t2

2
−

∫
te−2q(T −t) dt

)

= qt2

4
− q

2

(
te−2q(T −t)

2q
−

∫ e−2q(T −t)

2q
dt

)

= qt2

4
− te−2q(T −t)

4
+ e−2q(T −t)

8q
,

and, hence,

−2σ 2

q

∫ T

0
sinh

(
q(T − t)

)
e−q(T −t)qt dt = −2σ 2

q

(
qT 2

4
− T

4
+ 1

8q
− 1

8q
e−2qT

)
.

Moreover, by the change of variables q(T − t) = x, we get

−2σ 2

q

∫ T

0
sinh

(
q(T − t)

)
e−q(T −t) log

sinh(qT )

sinh(q(T − t))
dt

= −2σ 2

q

∫ qT

0

1 − e−2x

2
log

sinh(qT )

sinh(x)
dx,
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and then we get the formula for E(
∫ T

0 (U0
t − U ir

t )2 dt). We note that we are unable

to solve the integral
∫ qT

0 (1 − e−2x) log sinh(qT )
sinh(x)

dx.

Finally, for the space–time transform, by Proposition 3.4 and the previous cal-
culations for the anticipative version, we get

E
(∫ T

0
(U0

t − U st
t )2 dt

)
=

∫ T

0
E(U0

t − U st
t )2 dt

= σ 2eqT

4q2 · sinh(2qT ) − 2qT

sinh(qT )

+ 2σ 2

q sinh(qT )

∫ T

0
sinh

(
q(T − t)

)(
1 − cosh(qt)

)
dt

= 2σ 2

q sinh(qT )

(
−1

q

(
1 − cosh(qT )

)

−
∫ T

0
sinh

(
q(T − t)

)
cosh(qt)dt

)

+ σ 2eqT

4q2 · sinh(2qT ) − 2qT

sinh(qT )
.

Here
∫ T

0
sinh

(
q(T − t)

)
cosh(qt)dt

= sinh(qT )

∫ T

0
cosh2(qt)dt − cosh(qT )

∫ T

0
sinh(qt) cosh(qt)dt

= sinh(qT )

2

(
sinh(2qT )

2q
+ T

)
− cosh(qT )

4q

(
cosh(2qT ) − 1

)
,

and, hence, we get the formula for E(
∫ T

0 (U0
t − U st

t )2 dt). �

We note that the formulas E(
∫ T

0 (U0
t − Ubr

t )2 dt) are harder to compare than the
variances in Proposition 3.4 are. It might also be possible to calculate the Gauss
conditional distribution of path deviations given U0

T = d using Theorem 2 and
Problem 5 in Chapter II, Section 13 of Shiryaev (1996), and to calculate cor-
responding formulas for conditional quadratic path deviations. But even if these
formulas are present, in general it will not be easy to compare the conditional
quadratic path deviations, since they will depend on the four parameters q, b, d, T

and possibly also on σ . We renounce to give these explicit and likewise very long
calculations.
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