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Abstract. This paper deals with a computational aspect of the Bayesian anal-
ysis of statistical models with intractable normalizing constants. In the pres-
ence of intractable normalizing constants in the likelihood function, tradi-
tional MCMC methods cannot be applied. We propose here a general ap-
proach to sample from such posterior distributions that bypasses the compu-
tation of the normalizing constant. Our method can be thought as a Bayesian
version of the MCMC-MLE approach of Geyer and Thompson [J. Roy.
Statist. Soc. Ser. B 54 (1992) 657–699]. We illustrate our approach on ex-
amples from image segmentation and social network modeling. We study as
well the asymptotic behavior of the algorithm and obtain a strong law of large
numbers for empirical averages.

1 Introduction

Statistical inference for models with intractable normalizing constants is a compu-
tationally challenging problem. This is a well-known issue and examples include
the analysis of spatial point processes [Møller and Waagepetersen (2004)], im-
age analysis [Ibanez and Simo (2003)], protein design [Kleinman et al. (2006)]
and many others. Suppose we have a data set x0 ∈ X generated from a statistical
model with density

eE(x,θ)/Z(θ),

depending on a parameter θ ∈ �, where the normalizing constant Z(θ) =∫
X eE(x,θ) dx is not available in a closed form. Adopting a Bayesian perspec-

tive, we then take μ as the prior density of the parameter θ ∈ �. The posterior
distribution of θ given x0 is then given by

π(θ |x0) ∝ 1

Z(θ)
eE(x0,θ)μ(θ), (1.1)

where the proportionality sign means that π(θ |x0) differs from the right-hand side
expression only by a multiplicative constant (in θ ). Since Z(θ) cannot be easily
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evaluated, Monte Carlo simulation from this posterior distribution is particularly
problematic even when using the Markov Chain Monte Carlo (MCMC). Murray
et al. (2006) use the term doubly intractable distribution to refer to posterior distri-
butions of the form (1.1). Indeed, state-of-the-art Monte Carlo sampling methods
do not allow one to deal with such models in a Bayesian framework. For example,
a Metropolis–Hastings algorithm with proposal kernel Q and target distribution π

would have acceptance ratio

min
(

1,
eE(x0,θ

′)

eE(x0,θ)

Z(θ)

Z(θ ′)
μ(θ ′)
μ(θ)

Q(θ ′, θ)

Q(θ, θ ′)

)
,

which cannot be computed as it involves the intractable normalizing constant Z

evaluated both at θ and θ ′.
An early attempt to deal with this type of model in the frequentist framework

is the pseudo-likelihood approximation of Besag (1974) which replaces the likeli-
hood function eE(x0,θ)/Z(θ) by a more tractable pseudo-likelihood function. But
there are cases where this approximation is known to perform poorly [see, e.g.,
Marin et al. (2009)]. Maximum likelihood inference is equally possible: for in-
stance, MCMC-MLE, a maximum likelihood approach using MCMC, was devel-
oped in the 90s [Geyer and Thompson (1992); Geyer (1994)]. Another related
approach to find MLE estimates is Younes’ algorithm [Younes (1988)] based on
stochastic approximation. See also Ibanez and Simo (2003) for an interesting sim-
ulation study comparing the above three frequentist approaches.

Comparatively, little work has been done to develop computationally exact
methods for the Bayesian approach to this problem. Indeed, various approximate
algorithms exist in the literature, often based on path sampling [see, e.g., Gelman
and Meng (1998)]. Recently, Møller et al. (2006) have shown that if exact sampling
from eE(x,θ)/Z(θ) (as a density on the sample space X ) is possible, then a valid
MCMC algorithm converging to (1.1) can be constructed. See also Murray et al.
(2006) for some recent improvements. This approach relies on a clever auxiliary
variable algorithm, but it requires a manageable perfect sampler and intractable
normalizing constants often occur in models for which exact sampling of X is
either impossible or expensive.

In this paper, we develop an adaptive Monte Carlo approach that samples
from (1.1). Our algorithm generates a process {θn, n ≥ 0} (usually not Markov)
such that as n → ∞, the marginal distribution of θn converges to (1.1). In princi-
ple, any method to sample from (1.1) needs to deal with the intractable normalizing
constant Z(θ). In the auxiliary variable method of Møller et al. (2006), computing
the function Z(θ) is replaced by a perfect sampling step from eE(x,θ)/Z(θ) that is
used to obtained an unbiased estimate of Z(θ). As mentioned above, this strategy
works well as long as perfect sampling is feasible and inexpensive, but Marin et al.
(2009) show that this is rarely the case for Potts models. In the present work, we
follow a completely different approach building on the idea of estimating the func-
tion Z on the fly, that is, during the simulation. The starting point of the method
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is importance sampling. Suppose that for some θ(0) ∈ �, we can sample (possibly
via MCMC) from the density eE(x,θ(0))/Z(θ(0)) in X . Based on such a sample, we
can then estimate the ratio Z(θ)/Z(θ(0)) for any θ ∈ �, for instance, via impor-
tance sampling. This idea is the same one behind the MCMC-MLE algorithm of
Geyer and Thompson (1992). However, such estimates are typically poor when θ

is taken too far from θ(0). Instead of a single point θ(0), suppose that we have a set
of particles {θ(i), i = 1, . . . , d} in � and sample from

��(x, i) ∝ eE(x,θ(i))/Z
(
θ(i))

on X × {1, . . . , d}. Then, to the extent that the particles {θ(i), i = 1, . . . , d} cover
� well, a good estimate of Z(θ) (up to a multiplicative constant) can be obtained
for any θ ∈ �. This is the strategy adopted in this work. We propose an algorithm
that generates a process {(Xn, In, θn), n ≥ 0} such that the marginal distribution of
(Xn, In) converges to �� given above and the marginal distribution of θn converges
to (1.1).

The paper is organized as follows. In Section 2.1, we describe a general adap-
tive Markov Chain Monte Carlo strategy to sample from target distributions of the
form (1.1). A full description of the practical algorithm including practical imple-
mentation details is given in Section 2.2. We illustrate the algorithm with three
examples, namely, the Ising model, a Bayesian image segmentation example and a
Bayesian modeling of a social network. In this latter example, and to the best of our
knowledge, exact sampling from the model is not feasible and Møller et al. (2006)
cannot be applied. Those examples are presented in Section 4. Some theoretical
aspects of the method are discussed in Section 3, while the proofs are postponed
till Section 6. Some concluding remarks are gathered in Section 5.

2 Posterior distributions with intractable normalizing constants

2.1 A general adaptive approach

In this section, we outline a general strategy to sample from (1.1), which provides a
unifying framework for a better understanding of the specific algorithm discussed
in Section 2.2. We assume that � is a compact subset of a finite dimensional Eu-
clidean space equipped with its Borel σ -algebra B(�). Let C(�) denote the set of
all continuous functions ζ :� → R. We equip C(�) with the supremum distance.
Throughout, we assume that the function θ → |E(x0, θ)| is bounded from above
and for ζ ∈ C(�), πζ denotes the density on � defined by

πζ (θ) ∝ exp
(
E(x0, θ) − ζ(θ)

)
. (2.1)

We assume that for any θ ∈ C(�), we can construct a transition kernel Pζ with
invariant distribution πζ such that the maps ζ → Pζh(θ) and ζ → πζ (h) are
measurable maps for any bounded measurable function h :� → R and θ ∈ �.



Bayesian computation for intractable normalizing constants 419

In the above, πζ (h) and Pζh(θ) are defined respectively as
∫

πζ (ϑ)h(ϑ)dϑ and∫
Pζ (θ, dϑ)h(ϑ). For instance, Pζ may be a Metropolis–Hastings kernel with in-

variant distribution equal to πζ . For a signed measure μ, we define its total varia-
tion norm as ‖μ‖TV := sup|f |≤1 |μ(f )|, while, for a transition kernel P , we define
its iterates as P 0(θ,A) = 1A(θ) and P j (θ,A) := ∫

P j−1(θ, dz)P (z,A) (j > 0).
Let {ζn, n ≥ 0} be a C(�)-valued stochastic process (random field) defined on

some probability space (
, F ,Pr) equipped with a filtration {Fn, n ≥ 0}. We as-
sume that {ζn, n ≥ 0} is Fn-adapted. The sequence {ζn, n ≥ 0} is interpreted as a
sequence of estimators for logZ. We will see below how to build such estimators
in practice. At this stage, we make the following theoretical assumptions:

(A1) For any bounded measurable function h :� → R,

πζn(h) −→ πz(h) a.s.

as n → ∞, where z is the function of log-normalizing constants: z(θ) =
logZ(θ).

(A2) Moreover,

sup
θ∈�

‖Pζn(θ, ·) − Pζn−1(θ, ·)‖TV −→ 0, a.s. as n → ∞;
(A3) and there exists ρ ∈ (0,1) such that for all integers n ≥ 0,

sup
k≥0

sup
θ∈�

‖P n
ζk

(θ, ·) − πζk
(·)‖TV ≤ ρn.

When such a sequence of random fields is available, we can construct a Monte
Carlo process {θn, n ≥ 0} on (
, F ,Pr) to sample from π as follows:

Algorithm 2.1. 1. Initialize θ0 ∈ � arbitrarily.
2. Given Fn and θn, generate θn+1 from Pζn(θn, ·).
This algorithm provides a converging approximation to π :

Theorem 2.1. Assume that (A1)–(A3) hold and let {θn, n ≥ 0} be given by Algo-
rithm 2.1. For any bounded measurable function h :� → R,

n−1
n∑

k=1

h(θk) −→ π(h), a.s. as n → ∞.

Remark 2.1. 1. When � is indeed compact, assumptions (A1)–(A3) hold in most
examples where intractable normalizing constants are an issue. But assuming that
� is compact can be restrictive in some cases. This assumption can be relaxed in
principle, but at the expense of greater technicalities that are beyond the scope of
this paper.

2. Algorithm 2.1 gives a generic Monte Carlo approach for sampling from π ,
which can be implemented if we manage to obtain a consistent sequence of esti-
mates of z. We show how to construct such estimates in Section 2.2.
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2.2 Adaptive MCMC for doubly-intractable distributions

Let {θ(i), i = 1, . . . , d}, θ(i) ∈ �, be a set of d particles, and let �� be the proba-
bility density on the product space X × {1, . . . , d} given by

��(x, i) = 1

d
exp

(
E

(
x, θ(i)) − z

(
θ(i))), (x, i) ∈ X × {1, . . . , d}, (2.2)

where z(θ(i)) = logZ(θ(i)). The main motivation for introducing the distribution
�� is that sampling from this distribution allows to sample from the densities x →
exp(E(x, θ(i)) − z(θ(i))), 1 ≤ i ≤ d , all at once. In general, exact sampling from
�� is not possible. Suppose that we can simulate a Markov chain {(Xn, In), n ≥
0} on X × {1, . . . , d} with target distribution ��. Then an estimate of Z can be
easily obtained. Indeed, for each θ ∈ �, let {κi(θ),1 ≤ i ≤ d} be a probability
mass function: κi(θ) ≥ 0,

∑d
i=1 κi(θ) = 1. It is easy to see that, by importance

sampling,

Zn(θ) =
d∑

i=1

κi(θ)

(
1

n + 1

n+1∑
k=1

eE(Xk,θ)−E(Xk,θ
(i))1i (Ik)

)
(2.3)

is a consistent estimate of Z(θ) for any θ ∈ �, and we can apply Algorithm 2.1 by
setting ζn(θ) = logZn(θ).

Unfortunately, even MCMC-sampling from �� is intractable in general because
the log-normalizing constants z(θ(i)) are rarely available. To deal with this diffi-
culty, we propose an adaptive algorithm that estimate the constants z(θ(i)) adap-
tively during the simulation. For a vector of weights c = (c(1), . . . , c(d)) ∈ R

d , let
�c by the density on X × {1, . . . , d} defined as

�c(x, i) ∝ exp
(
E

(
x, θ(i)) − c(i)

)
.

These distributions �c are the reweighting distributions of the Wang–Landau al-
gorithm of Atchade and Liu (2010). Clearly, when c(i) = z(θ(i)) = logZ(θ(i)),1 ≤
i ≤ d , then �c = ��. Also, notice that the marginal distribution of �c on {1, . . . , d}
is proportional to {Z(θ(i))e−c(i),1 ≤ i ≤ d} and is the uniform distribution on
{1, . . . , d} if and only if c(i) = a + z(θ(i)), for some finite constant a. This sug-
gests the following adaptive strategy for updating the weight cn. At time n, given
(cn,Xn, In), we update cn(i) to cn+1(i) = cn(i) + γ (1{i}(In) − 1

d
), for some dis-

count factor γ > 0. In this update, the weight cn(In) of the visited particle θ(In)

is increased to cn(In) + γ (1 − 1
d
), which makes this particle slightly less likely

to be visited in subsequent iterations. Similarly, nonvisited particles will see their
weights decreased as in cn+1(i) = cn(i) − γ /d , making them more likely to be
visited in subsequent iterations. Therefore, if the weight cn converges, it will be
towards a limit c� for which all particles are visited equally well, which can only
happen if c�(i) = a + z(θ(i)), 1 ≤ i ≤ d , for some finite constant a.

To fully describe the algorithm, we assume that, for each i ∈ {1, . . . , d}, a transi-
tion kernel T

(X )
i on X with invariant distribution eE(x,θ(i))/Z(θ(i)) is available. We
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use the subscript X to emphasize that T
(X )
i is a kernel on X . We will use a slowly

decreasing sequence of (possibly random) positive numbers {γn} that satisfies∑
n

γn = +∞ and
∑
n

γ 2
n < +∞.

Algorithm 2.2. Set (X0, I0, c0, θ0) ∈ X × {1, . . . , d} × R
d × � as the initial state

of the algorithm, with ζ0 as the initial random field estimate of logZ (for example
ζ0 ≡ 0).

At time n, given (Xn, In, cn, θn) and ζn:

1. Generate Xn+1 from T
(X )
In

(Xn, ·).
2. Generate In+1 ∈ {1, . . . , d} from Pr(In+1 = i) ∝ eE(Xn+1,θ

(i))−cn(i).
3. Generate θn+1 from Pζn(θn, ·).
4. Update cn to cn+1 as

cn+1(i) = cn(i) + γn

(
1{i}(In) − 1

d

)
, i = 1, . . . , d; (2.4)

and update ζn to ζn+1 as

ζn+1(θ) = log

(
d∑

i=1

κ(θ, θ(i))ecn+1(i)

[∑n+1
k=1 eE(Xk,θ)−E(Xk,θ

(i))1i (Ik)∑n+1
k=1 1i (Ik)

])
. (2.5)

Before proceeding to the analysis of the convergence properties of this algo-
rithm and discussing its calibration, a few remarks are in order:

Remark 2.2. 1. The last term of (2.5) is not well-defined when all the Ik’s are
different from i. In this case (which necessarily occurs in the first steps of the
algorithm), it can either be replaced with one or with an approximative Rao–
Blackwellized version, namely, replacing both 1i (Ik) terms with the conditional
probability

Pr(Ik = i|Fk−1) = eE(Xk−1,θ
(i))−ck−1(i)∑d

j=1 eE(Xk−1,θ
(j))−ck−1(j)

.

2. It is intuitively clear that the pair {(ζn, θn)} falls within the framework of Sec-
tion 2.1. In particular, we will show below that assumptions (A1)–(A3) are satisfied
and that Theorem 2.1 applies, thus establishing the consistency of Algorithm 2.2.

3. We introduce κ to serve as a smoothing factor so that the particles θ(i) close
to θ contribute more to the estimation of Z(θ). We expect this smoothing step to
reduce the variance of the overall estimate of Z(θ). In the simulations we choose

κ(θ, θ(i)) = e−1/(2h2)‖θ−θ(i)‖2

∑d
j=1 e−1/(2h2)‖θ−θ(j)‖2 .
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The value of the smoothing parameter h is set by trial and error for each example.
More investigation is needed to better understand how to choose h efficiently but,
as a default, it can be chosen as a bandwidth for the Gaussian nonparametric kernel
associated with the sample of θn’s.

4. The implementation of the algorithm requires keeping track of all the sam-
ples Xk that have been generated, due to the update in (2.5). Since X can be a very
high-dimensional space, it is clear that, in practice, this bookkeeping can signifi-
cantly slow down the algorithm. But, in many cases, the function E takes the form
E(x, θ) = ∑K

l=1 Sl(x)θl for some real-valued functions Sl . In such cases, we only
need to keep track of the sufficient statistics {(S1(Xn), . . . , SK(Xn)), n ≥ 0}. All
the examples discussed below fall within this latter category.

Notice also that as n increases, the computational cost of computing ζn in (2.5)
increases. If K and d are large, this can potentially slow down the algorithm as n

increases. For the examples (admittedly low-dimensional) considered below, the
slowing down was minor.

5. The update of (Xn, In, cn) is essentially the Wang–Landau algorithm of
Atchade and Liu (2010), and, as explained in that paper, Algorithm 2.2 is not
Markovian. Nevertheless, the marginal distribution of θn will typically converge to
π as shown in Section 3.

2.3 Choosing d and the particles {θ(i)}
The Algorithm 2.2 is sensitive to the choice of both d and {θ(i)} and we provide
here some guidelines. The leading factor is that the particles {θ(i)} need to cover
reasonably well the important range of the density π and be such that for any
θ ∈ �, the density eE(x,θ)/Z(θ) in X can be well approximated by at least one of
the densities eE(x,θ(i))/Z(θ(i)) from an importance sampling point of view. [This
is related to the Kullback divergence topology; see, e.g., Cappé et al. (2008)]. One
approach to selecting the θ(i) that works well in practice consists in performing
few iterations of the stochastic approximation recursion related to the maximum
likelihood estimation of the model [Younes (1988)]. Indeed, the normal equation
of the maximum likelihood estimation of θ in the model exp(E(x, θ))/Z(θ) is

∇θE(x0, θ) − Eθ [∇θE(X, θ)] = 0. (2.6)

In the above, ∇θ denotes the partial derivative operator with respect to θ ,
x0 is the observed data set and the expectation Eθ is with respect to X ∼
exp(E(x, θ))/Z(θ). Younes (1988) has proposed a stochastic approximation to
solve this equation which works as follows. Given (Xn, θn), generate Xn+1 ∼
Tθn(Xn, ·), where Tθ is a transition kernel on X with invariant distribution
exp(E(x, θ))/Z(θ), and then set

θn+1 = θn + ρn

(∇θE(x0, θ) − ∇θE(Xn, θ)
)

(2.7)

for a sequence of positive numbers ρn such that
∑

ρn = ∞.
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We thus use this algorithm to set the particles. In choosing {θ(i)}, we start by
generating independently d points from the prior distribution μ. Then we carry
each particle θ(i) towards the important regions of π using the stochastic recur-
sion given in (2.7). We typically use a constant ρn ≡ ρ, with ρ taken around 0.1
depending on the size of �. A value of ρ too small will make all the particles too
close together. We found a few thousand iterations of the stochastic approximation
to be largely sufficient.

The value of d , the number of particles, should then depend on the size
and on the dimension of the compact set �. In particular, the distributions
eE(x,θ(i))/Z(θ(i)) (as densities in X ) should overlap to some extent. Otherwise,
the importance sampling approximation to eE(x,θ)/Z(θ) may be poor. In the simu-
lation examples below, we choose d between 100 and 500. Note also that a restart-
ing provision can be made in cases when the variance of the approximation (2.5)
is found to be too large.

2.4 Choosing the step-size {γn}
It is shown in Atchade and Liu (2010) that the recursion (2.4) can be written as
a stochastic approximation algorithm with step-size {γn}, so that in theory [see,
e.g., Andrieu et al. (2005)], any positive sequence {γn} such that

∑
γn = ∞ and∑

γ 2
n < ∞ can be used. But the convergence of cn to logZ is very sensitive to the

choice of the sequence {γn}. For instance, if the γn’s are overly small, the recursive
equation in (2.4) will make very small steps and thus converge very slowly or not at
all. But if these numbers are overly large, the algorithm will have a large variance.
In both cases, the convergence to the solution will be slow or even problematic.
Overall, it is a well-known issue that choosing the right step-size for a stochastic
approximation algorithm is a difficult problem. Here we follow Atchade and Liu
(2010), which have elaborated on a heuristic approach to this problem originally
proposed by Wang and Landau (2001).

The main idea of this approach is that, typically, the larger γn is, the easier it
is for the algorithm to move around the state space (as in tempering). Therefore,
when starting the algorithm, γ0 is set at a relatively large value. The sequence
γn is kept constant until {In} has visited equally well all the values in {1, . . . , d}.
Let τ1 be the first time where the occupation measure of {1, . . . , d} by {In} is
approximately uniform. Then γτ1+1 is set to a smaller value (e.g., γτ1+1 = γτ1/2)
and the process is iterated until γn become sufficiently small. At which point, we
choose to switch to a deterministic sequence of the form γn = n−1/2−ε . Combining
this idea with Algorithm 2.2, we get the following straightforward implementation,
where γ > ε1 > 0, ε2 > 0 are constants to be calibrated:

Algorithm 2.3. At time 0, set (X0, I0, c0, θ0) as the arbitrary initial state of the
algorithm. Set v = 0 ∈ R

d .
While γ > ε1,
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1. Generate (Xn+1, In+1, cn+1, θn+1) as in Algorithm 2.2.
2. For i = 1, . . . , d: set v(i) = v(i) + 1i (In+1).
3. If maxi |v(i) − 1

d
| ≤ ε2

d
, then set γ = γ /2 and v = 0 ∈ R

d .

Remark 2.3. In the application section below, we use this algorithm with the fol-
lowing specifications: we set the initial γ to 1, ε1 = 0.001, ε2 = 0.2 and the final
deterministic sequence is γn = ε1/n0.7.

3 Convergence analysis

In this section, we characterize the asymptotics of Algorithm 2.2. We use the filtra-
tion Fn = σ {(Xk, Ik, ck, θk), k ≤ n} and recall that � is a compact space equipped
with its Borel σ -algebra B(�). We also assume the following constraints:

(B1) The prior density μ is positive and continuous and there exist m,M ∈ R such
that

m ≤ E(x, θ) ≤ M, x ∈ X , θ ∈ �. (3.1)

(B2) The sequence {γn} is a random sequence adapted to {Fn} that satisfies γn >

0,
∑

γn = ∞ and
∑

γ 2
n < ∞ Pr-a.s.

(B3) There exist ε > 0, an integer n0, and a probability measure ν on X such that
for any i ∈ {1, . . . , d}, x ∈ X , A ∈ B(X ), [T (X )

i ]n0(x,A) ≥ εν(A).

Remark 3.1. In many applications, and this is the case for the examples discussed
below, X is a finite set (that is typically very large) and � is a compact set. In these
cases, (B1) and (B3) are easily checked. [Note that the minorization condition
(B3) amounts to uniform ergodicity of the kernel T

(X )
i .] These assumptions can be

further relaxed, but the analysis of the algorithm would then require more elaborate
techniques that are beyond the scope of this paper.

Proposition 3.1. Assume (B1)–(B3). Then for any i ∈ {1, . . . , d},

ecn(i)

(
d∑

k=1

ecn(k)

)−1
a.s.−→ CZ

(
θ(i))

as n → ∞ for some finite constant C that does not depend on i. Moreover, for any
bounded measurable function f : X × {1, . . . , d} → R,

n−1
n∑

k=1

f (Xk, Ik)
a.s.−→ ��(f )

as n → ∞.

Under a few additional assumptions on the kernel Pζ , the conditions of Theo-
rem 2.1 are met.
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Theorem 3.1. Consider Algorithm 2.2 and assume (B1)–(B3) hold. Take Pζ as
a random walk Metropolis kernel with invariant distribution πζ and a symmetric
proposal kernel q such that there exist ε′ > 0 and an integer n′

0 ≥ 1 such that

qn′
0(θ, θ ′) ≥ ε′ uniformly over �. Let h :� → R be a measurable bounded func-

tion. Then

n−1
n∑

k=1

h(θk)
a.s.−→ πz(h)

as n → ∞.

Proof. See Section 6.2. �

Remark 3.2. The uniform minorization assumption on q is only imposed here as
a practical way of checking (A3). It holds on all the examples considered below
due to the compactness of �. If Pζ is not a random walk Metropolis kernel, that
assumption should be adapted accordingly to obtain (A3).

4 Examples

4.1 Ising model

We first test our algorithm on the Ising model on a rectangular lattice. The energy
function E is

E(x) =
m∑

i=1

n−1∑
j=1

xij xi,j+1 +
m−1∑
i=1

n∑
j=1

xij xi+1,j , (4.1)

and xi,j ∈ {1,−1}. In our implementation, m = n = 64 and we can generate the
data x0 from eθE(x)/Z(θ) with θ = 0.4 by perfect sampling through the Propp–
Wilson algorithm [see, e.g., Møller et al. (2006)]. The prior used in this example
is μ(θ) = 1(0,3)(θ) and d = 100 points {θ(i)} are generated using the stochastic
approximation described in Section 2.3. As described in Section 2.4, we use the flat
histogram approach in selecting {γn} with an initial value γ0 = 1, until γn becomes
smaller than 0.001. Then we start feeding the adaptive chain {θn} which is run for
10,000 iterations. In updating θn, we use a random Walk Metropolis sampler with
proposal distribution U (θn − b, θn + b) (with reflexion at the boundaries) for some
b > 0. We adaptively update b so as to reach an acceptance rate of 30% [see, e.g.,
Atchade (2006)]. We also discard the first 1999 simulations as a burn-in period.
The results are plotted on Figure 1a. As far as we can judge from plots (b) and
(c), the sampler appears to have converged to the posterior distribution π in that
the sequence is quite stable. The mixing rate of the algorithm as inferred from the
autocorrelation graph in (d) seems fairly good. In addition, the algorithm yields an
estimate of the partition function logZ(θ) shown in (a) that can be reused in other
sampling problems.
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Figure 1a Output for the Ising model θ = 0.40, m = n = 64. (a) estimation of logZ(θ) up to an
additive constant; (b)–(d) trace plot, histogram and autocorrelation function of the adaptive sampler
{θn}.

4.2 Comparison with the auxiliary variable method

We use the Ising model described above to compare the adaptive strategy of this
paper with the auxiliary variable method (AVM) of Møller et al. (2006). We fol-
low the description of the AVM method given in Murray et al. (2006). For the
comparison we use m = n = 20. For the adaptive strategy, we use exactly the same
sampler described above. For the AVM, the proposal kernel is a Random Walk pro-
posal from U (x − b, x + b) with b = 0.05. We have run both samplers for 10,000
iterations and reached the following conclusions:

1. One limitation of the AVM that we have found is that the running time of the
algorithm depends heavily on b and the true value of the parameter. For larger
values of b, large values of θ are more likely to be proposed and for those val-
ues, the time to coalescence in the Propp–Wilson perfect simulation algorithm
can be significantly large.

2. Both samplers generate Markov chains with similar characteristics as assessed
through a trace plot and an autocorrelation function. See Figure 1b.
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Figure 1b Comparison with the AVM. Trace plot and autocorrelation function. (a)–(c) the adaptive
sampler; (b)–(d) the AVM algorithm. Based on 10,000 iterations.

3. The biggest difference between the two samplers is in terms of computing
time. For this (relatively small) example the AVM took about 16 hours to run,
whereas our adaptive MCMC took about 12 minutes, both on an IBM T60 Lap-
top.

4.3 An application to image segmentation

We use the above Ising model to illustrate an application of the methodology in im-
age analysis [Ibanez and Simo (2003); Hurn et al. (2003)]. We represent the image
by a vector x = {xi, i ∈ S}, where S is a m × n lattice and xi ∈ {1, . . . ,K}. Each
i ∈ S represents a pixel, and xi is thus the color of the pixel i, with K the number
of colors. Here we assume that K = 2 and xi ∈ {−1,1} is either black or white. In
addition, we do not observe x directly but through a noisy approximation y. We
assume here that

yi |x,σ 2 ind∼ N (xi, σ
2), (4.2)

for some unknown parameter σ 2. Even though (4.2) is a continuous model, it has
been shown to provide a relatively good framework for image segmentation prob-
lems with multiple additive sources of noise [Ibanez and Simo (2003)].
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As a standard assumption [see, e.g., Marin and Robert (2007)], we impose that
the true image x is generated from an Ising model with interaction parameter θ .
As in the previous section, θ follows a uniform prior distribution on (0,3) and we
assume in addition that σ 2 has an improper prior distribution that is proportional
to 1/σ 21(0,∞)(σ

2). The posterior distribution (θ, σ 2, x) is then given by

π(θ, σ 2, x|y) ∝
(

1

σ 2

)|S|/2+1 eθE(x)

Z(θ)
e−1/(2σ 2)

∑
s∈S (y(s)−x(s))2

1(0,3)(θ)1(0,∞)(σ
2),

where E is defined in (4.1).
We sample from this posterior distribution using the adaptive chain {(yn, in, cn,

θn, σ
2
n , xn)}. The chain {(yn, in, cn)} is updated following Steps 1–3 of Algo-

rithm 2.2 and it provides the adaptive estimate of Z(θ) given by (2.5) (with
{yn, in} replacing {Xn, In}). This sequence of estimates leads in its turn to update
(θn, σ

2
n , xn) using a Metropolis-within-Gibbs scheme. More specifically, given

(σ 2
n , xn), we generate θn+1 based on a random walk Metropolis step with pro-

posal U (θn − b, θn + b) (with reflexion at the boundaries) and target proportional
to eθE(xn)−ζn(θ). Given θn+1, xn, we generate σ 2

n+1 by sampling from the inverse
Gamma distribution with parameters (|S|/2,

∑
s∈S (y(s)−x(s))2)/2. At last, given

(θn+1, σn+1), we sample each xn+1(s) from its full conditional distribution given
{x(u),u = s} and y(s). This conditional distribution is given by

p
(
x(s) = a|x(u),u = s

) ∝ exp
(
θa

∑
u∼s

x(u)− 1

2σ 2 (y(s)−a)2
)
, a ∈ {−1,1},

where u ∼ s in the summation means that the pixels u and s are neighbors.
To test our algorithm on this model, we have generated a simulated data set y

with x generated from eθE(x)/Z(θ) by perfect sampling. We use m = n = 64, θ =
0.40 and σ = 0.5. For the implementation details of the algorithm, we have made
exactly the same calibration choices as in Example 4.1 above. In particular, we
choose d = 100 and generate {θ(i)} using the stochastic approximation described
in Section 2.3. The results are given in Figure 2. Once again, the sample path
obtained for {θn} clearly suggests that the distribution of θn has converged to π

with a good mixing rate, as also inferred from the autocorrelation plots.

4.4 Social network modeling

We now give an application of the method to a Bayesian analysis of social net-
works. Statistical modeling of social networks is a growing subject in the social
sciences [see, e.g., Robins et al. (2007) and the references therein for more de-
tails]. The setup is the following: given n actors I = {1, . . . , n}, for each pair
(i, j) ∈ I × I , we define yij = 1 if actor i has ties with actor j and yij = 0 other-
wise. In the example below, we only consider the case of a symmetric relationship
where yij = yji for all i, j . One of the most popular models for social networks
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Figure 2 Output for the image segmentation model. (a)–(c) plots for {θn}; (d)–(f) plots for {σ 2
n }.

is the class of exponential random graph models. In these models, we assume that
{yij } is a sample generated from the parameterized distribution

p(y|θ1, . . . , θK) ∝ exp

(
K∑

i=1

θiSi(y)

)
,

where Si(y) is a statistic used to capture some aspects of the network. For this
example, and following Robins et al. (2007), we consider a 4-dimensional model
with statistics

S1(y) = ∑
i<j

yij , the total number of ties,

S2(y) = ∑
i<j<k

yikyjk, the number of two-stars,

S3(y) = ∑
i<j<k<l

yilyjlykl, the number of three-stars,
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S4(y) = ∑
i<j<k

yikyjkyij , the number of transitive ties.

We assume a uniform prior distribution on D = (−50,50)4 for θ = (θ1, θ2, θ3, θ4)

and the corresponding posterior distribution is

π(θ |y) ∝ 1

Z(θ)
exp

( 4∑
k=1

θkSk(y)

)
1D(θ). (4.3)

In this specific example, we study the Medici business network data set taken
from Robins et al. (2007) which describes the business ties between 16 Florentine
families. Numbering arbitrarily those families from 1 to 16, we plot the observed
social network in Figure 3. The data set contains relatively few ties between fami-
lies and even fewer transitive ties.

We use Algorithm 2.2 to sample from (4.3). For this example, we generate 400
particles {θ(l)} using the stochastic approximation described in Section 2.3. We
use the same parameterization as in the previous examples to update (Xn, In, cn).
For the adaptive chain {θn} we use a slightly different strategy, though. It turns out
that some of the components of the target distribution π are strongly correlated.
Therefore, we sample from π in one block, using a random walk Metropolis algo-
rithm with a Gaussian kernel N(0, σ 2�) (restricted to D) for σ > 0 and a positive
definite matrix �. We adaptively set σ so as to reach the optimal acceptance rate
of 30%. Ideally, we would like to choose � equal to �π the variance–covariance
matrix of π which, of course, is not available. Instead, we adaptively estimate �π

during the simulation as in Atchade (2006). As before, we run (Xn, In, cn) until
γn < 0.001. Then we start {θn} and run the full chain (Xn, In, cn, θn) for a total
of 25,000 iterations. Figure 4 presents the output for parameter θ4. In Table 1, we
summarize those graphs by providing the sample posterior mean together with the
2.5% and 97.5% quantiles of the marginal posterior distributions. Overall, these
results are consistent with the maximum likelihood estimates obtained by Robins

Figure 3 Business Relationships between 16 Florentine families.
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Figure 4 The adaptive MCMC output from (4.3) for {θ4}. Based on 25,000 iterations.

Table 1 Summary of the posterior distribution of the param-
eters. Posterior means, 2.5% and 97.5% posterior quantiles

Parameters Post. mean Post. quantiles

θ1 −2.05 (−3.27,−0.77)

θ2 0.96 (−0.40,2.45)

θ3 −1.10 (−2.78,0.08)

θ4 0.11 (−1.41,1.12)

et al. (2007) using MCMC-MLE. The main difference appears in θ4 which we find
here to be not significant. As a by-product, the sampler gives an estimate of the
covariance matrix of the posterior distribution π :

�π =

⎡
⎢⎢⎣

1.62 −0.38 0.31 −0.06
−0.38 1.90 −0.51 −0.01
0.31 −0.51 1.83 −0.05

−0.06 −0.01 −0.05 1.55

⎤
⎥⎥⎦ .

5 Conclusion

Sampling from posterior distributions with intractable normalizing constants is a
difficult computational problem. In this work, we attempt to address the problem in
a certain generality, using adaptive Monte Carlo methods. The main advantage of
the proposed method is that it does not require perfect sampling as in Møller et al.
(2006). Even in cases where perfect sampling is possible, the proposed method
can lead to computational gains over the exact sampling-based approach of Møller
et al. (2006), as shown in Example 4.2.

An important question is knowing how well the proposed algorithm scales with
dimensionality, more specifically, how d , the number of particles scales with the
dimensionality of the parameter space � and the size of X . Although we did not in-
vestigate this issue, it is likely that the method will suffer from the curse of dimen-
sionality. The main limiting factor is the idea of estimating ratio of normalizing
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constants by importance sampling. Of course, how far the method can be pushed
depends on the specific class of distributions under consideration. However, adap-
tations and improvements on the method can be imagined that can be automati-
cally inserted in the proposed framework, for instance, using annealing/tempering
schemes, or replacing importance sampling by alternative techniques such as path
sampling.

6 Proof

6.1 Proof of Theorem 2.1

Proof. Throughout the proof, C will denote a finite constant but whose actual
value can change from one equation to the next. Also, and without any loss of
generality, we will assume that θk is Fk-measurable. For ζ ∈ C+(�), define P̄ζ =
Pζ − πζ . Fix h :� → R a bounded measurable function. For θ ∈ � and k ≥ 0,
define gζk

(θ) = ∑∞
j=0 P̄ζk

h(θ). By (A3), gζk
(θ) is well defined and |gζk

(θ)| ≤ (1−
ρ)−1|h|∞, Pr-a.s. Moreover, gζk

satisfies the equation

h(θ) − πζk
(h) = gζk

(θ) − Pζk
gζk

(θ). (6.1)

For any n, k ≥ 0, we have P̄ n
ζk

− P̄ n
ζk−1

= ∑n
j=1 P̄

n−j
ζk

(P̄ζk
− P̄ζk−1)P̄

j−1
ζk−1

, Pr-

a.s. We deduce from this and (A2) that |P̄ n
ζk

− P̄ n
ζk−1

| ≤ |h|∞ supθ∈� ‖P̄ζk
(θ, ·) −

P̄ζk−1(θ, ·)‖TVnρn−1 which implies that

|gζk
(θ) − gζk−1(θ)| ≤ |h|∞

(1 − ρ)2 sup
θ∈�

‖P̄ζk
(θ, ·) − P̄ζk−1(θ, ·)‖TV, Pr -a.s. (6.2)

By the triangular inequality,

‖P̄ζk
(θ, ·) − P̄ζk−1(θ, ·)‖TV ≤ ‖Pζk

(θ, ·) − Pζk−1(θ, ·)‖TV
(6.3)

+ ‖πζk
(·) − πζk−1(·)‖TV, Pr -a.s.

Now, for any measurable function f :� → R such that |f | ≤ 1 and for any n ≥ 0,

πζk
(f ) − πζk−1(f )

= πζk

[
P n

ζk

(
f − πζk−1(f )

)]
= πζk

[
P n

ζk−1

(
f − πζk−1(f )

) + P n
ζk

(
f − πζk−1(f )

) − P n
ζk−1

(
f − πζk−1(f )

)]

= πζk

[
P n

ζk−1

(
f − πζk−1(f )

) +
n∑

j=1

P
n−j
ζk

(Pζk
− Pζk−1)P

j−1
ζk−1

(
f − πζk−1(f )

)]
.
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Using (A2)–(A3) and letting n → ∞, it follows that

‖πζk
− πζk−1‖TV ≤ 2(1 − ρ)−1 sup

θ∈�

‖Pζk
(θ, ·) − Pζk−1(θ, ·)‖TV

(6.4)
→ 0, Pr -a.s. as k → ∞.

Using this and (6.3) in (6.2), we can therefore conclude that

sup
θ∈�

|gζk
(θ) − gθk−1(θ)| → 0, Pr -a.s. as k → ∞. (6.5)

Define Sn(h) = ∑n
k=1 h(θk) − πζk−1(h). Using (6.1), we can rewrite Sn(h) as

Sn(h) =
n∑

k=1

h(θk) − πζk−1(h) =
n∑

k=1

gζk−1(θk) − Pζk−1gζk−1(θk)

=
n∑

k=1

gζk−1(θk) − Pζk−1gζk−1(θk−1) + (
Pζ0gζ0(θ0) − Pζngζn(θn)

)

+
(

n∑
k=1

(
gζk

(θk) − gζk−1(θk)
)) +

(
n∑

k=1

(
πζk

(h) − πζk−1(h)
))

.

The term
∑n

k=1 gζk−1(θk) − Pζk−1gζk−1(θk−1) is a {Fn}-martingale with bounded
increment. From martingale limit theory, we conclude that n−1 ∑n

k=1 gζk−1(θk) −
Pζk−1gζk−1(θk−1) converges to zero, Pr-a.s. as n → ∞. Again, since gζk

are uni-
formly bounded, n−1(Pζ0gζ0(θ0) − Pζngζn(θn)) converges to zero as n goes to in-
finity. We conclude from (6.4) and (6.5) that the last two terms also converge to
zero. In conclusion, n−1Sn(h) converges a.s. to zero.

Now, since n−1 ∑n
k=1 h(θk) = n−1Sn(h) + n−1 ∑n

k=1 πζk
(h), and since by

(A1), n−1 ∑n
k=1 πζk

(h) → πZ(h) Pr-almost surely, we conclude that the limit of
n−1 ∑n

k=1 h(θk) as n goes to infinity is also πZ(h), Pr-a.s, which concludes the
proof. �

6.2 Proof of Theorem 3.1

Proof. We will show that (A1)–(A3) hold and then apply Proposition 2.1. Define
ζ̃n(θ) = ζn(θ)(

∑d
i=1 ecn(i))−1. Using Proposition 3.1, we see that

ζ̃n(θ) =
d∑

i=1

κ(θ, θ(i))
ecn(i)∑d
l=1 ecn(l)

∑n
k=1 eE(Xk,θ)−E(Xk,θ

(i))1i (Ik)∑n
k=1 1i (Ik)

→
n∑

i=1

κ(θ, θ(i))CZ
(
θ(i))Z(θ)Z

(
θ(i)

)−1

d−1

= C

d
Z(θ),
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with probability one as n → ∞. Furthermore, using (B1), we deduce easily that

inf
θ,θ ′∈�

κ(θ, θ ′)d−1em−M ≤ sup
θ∈�

ζ̃n(θ) ≤ sup
θ,θ ′∈�

κ(θ, θ ′)eM−m. (6.6)

It follows that for any bounded measurable function h :� → R,

πζn(h) = πζ̃n
(h) =

∫
� eE(x0,θ)ζ̃−1

n (θ)h(θ) dθ∫
� eE(x0,θ)ζ̃−1

n (θ) dθ
→ πZ(h),

as n → ∞, by the Lebesgue dominated convergence theorem. (A1) is proved.
Let f :� → R be a measurable function such that |f | ≤ 1. For any n ≥ 1,

θ ∈ �, we have

|Pζ̃n
f (θ) − Pζ̃n−1

f (θ)|

=
∣∣∣∣
∫ [

min
(

1,
ζ̃n(θ)eE(x0,θ

′)μ(θ ′)
ζ̃n(θ ′)eE(x0,θ)μ(θ)

)
− min

(
1,

ζ̃n−1(θ)eE(x0,θ
′)μ(θ ′)

ζ̃n−1(θ ′)eE(x0,θ)μ(θ)

)]

× f (θ ′)q(θ, θ ′) dθ ′
∣∣∣∣

≤
∫ ∣∣∣∣ ζ̃n(θ)

ζ̃n(θ ′)
− ζ̃n−1(θ)

ζ̃n−1(θ ′)

∣∣∣∣e
E(x0,θ

′)μ(θ ′)
eE(x0,θ)μ(θ)

q(θ, θ ′) dθ ′

≤ C sup
θ,θ ′∈�

|ζ̃n(θ) − ζ̃n−1(θ)|

for some finite constant C. For the first inequality we use |f | ≤ 1 and the fact
that for any a, x, y ≥ 0, |min(1, ax) − min(1, ay)| ≤ a|x − y|, whereas in the last
inequality, we use (B1) and (6.6).

We now bound the term supθ,θ ′∈� |ζ̃n(θ) − ζ̃n−1(θ)|. Let wn(i) = ecn(i) ×
(
∑d

l=1 ecn(l))−1, vn(i) = ∑n
k=1 eE(Xk,θ)−E(Xk,θ

(i))1i (Ik)(
∑n

k=1 1i (Ik))
−1, so that

ζ̃n(θ) = ∑d
i=1 κ(θ, θ(i))wn(i)vn(i). We have

|ζ̃n(θ) − ζ̃n−1(θ)| ≤
∣∣∣∣∣

d∑
i=1

κ
(
θ, θ(i))(wn(i) − wn−1(i)

)
vn(i)

∣∣∣∣∣
+

∣∣∣∣∣
d∑

i=1

κ
(
θ, θ(i))wn−1(i)

(
vn(i) − vn−1(i)

)∣∣∣∣∣.
The term wn(i) satisfies |wn(i) − wn−1(i)| ≤ 2eγ0γn, whereas the term vn(i) sat-
isfies |vn(i) − vn−1(i)| ≤ eM−m(

∑n
l=1 1i (Il))

−1. It follows that

sup
θ,θ ′∈�

|ζ̃n(θ) − ζ̃n−1(θ)| ≤ C

(
γn + 1∑n

l=1 1i (Il)

)
.

(A2) follows.
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For n ≥ 1, θ ∈ � and A ∈ B(�),

Pζn(θ,A) ≥
∫
A

min
(

1,
ζn(θ)eE(x0,θ

′)μ(θ ′)
ζn(θ ′)eE(x0,θ)μ(θ)

)
q(θ, θ ′) dθ ′

≥
[

inf
θ,θ ′∈�

ζn(θ)eE(x0,θ
′)μ(θ ′)

ζn(θ ′)eE(x0,θ)μ(θ)

]
q(θ,A) ≥ δq(θ,A)

for some δ > 0, using (B1) and (6.6). The constant δ does not depend on n or θ .
Therefore, if qn0(θ, θ ′) ≥ ε, then for any n ≥ 1, θ ∈ �, ‖P j

ζ̃n
(θ, ·) − πζ̃n

(·)‖TV ≤
(1 − δ)j/n0 , which implies (A3). �
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