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Errors-In-Variables regression and the problem of moments

Ali Al-Sharadqah, Nikolai Chernov and Qizhuo Huang
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Abstract. In regression problems where covariates are subject to errors (al-
beit small) it often happens that maximum likelihood estimators (MLE) of
relevant parameters have infinite moments. We study here circular and ellip-
tic regression, that is, the problem of fitting circles and ellipses to observed
points whose both coordinates are measured with errors. We prove that sev-
eral popular circle fits due to Pratt, Taubin, and others return estimates of the
center and radius that have infinite moments. We also argue that estimators of
the ellipse parameters (center and semiaxes) should have infinite moments,
too.

1 Introduction

In classical regression, where independent variables are error-free, maximum like-
lihood estimators (MLE) are consistent and have asymptotically minimal variance.
In the linear model y = α + βx, the MLE α̂ and β̂ are unbiased and have minimal
variance for every sample size.

But in modern applications (such as pattern recognition and computer vision)
both variables x and y are subject to errors, which brings us to the Errors-In-
Variables (EIV) regression analysis. More precisely, we study the problem of fit-
ting a curve P(x, y;�) = 0, where � represents a vector of unknown parameters,
to observed points (x1, y1), . . . , (xn, yn) that are a random perturbation of some
true points (x̃i , ỹi):

xi = x̃i + δi, yi = ỹi + εi, i = 1, . . . , n. (1.1)

Here (δi, εi) are independent random vectors, usually having normal distribution
with zero mean. The true points (x̃i , ỹi), 1 ≤ i ≤ n, are supposed to lie on the
(unknown) true curve, that is, P(x̃i, ỹi; �̃) = 0 for all i = 1, . . . , n; here �̃ denotes
the true (but unknown) value of �. The true points are either fixed (then their
positions are treated as additional parameters) or selected randomly from a certain
probability distribution on the true curve. In the former case one gets a functional
model and in the latter case a structural model.

If εi and δi are i.i.d. normal random variables N(0, σ 2), then the maximum
likelihood estimate (MLE) in the functional model is obtained by minimizing the
squares of the geometric (i.e., orthogonal) distances from the observed points to
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the fitting curve; see Chan (1976) and Chernov (2010). This procedure is called
geometric fit or orthogonal distance regression (ODR).

The minimization of geometric distances (i.e., ODR) has been used since the
1870s [see Adcock (1877)], and lately has become standard in nearly all appli-
cations. It is commonly regarded as the best (most accurate and reliable) fitting
method.1 The fact that it produces the MLE gives yet another justification of its
high quality. However, in statistical terms, the corresponding parameter estimators
often have bizarre features—inconsistency and infinite moments.

Linear regression

In the linear model y = α + βx, minimization of geometric distances gives

(α̂0, β̂0) = argmin
1

1 + β2

∑
(yi − α − βxi)

2. (1.2)

These estimators are consistent but have infinite absolute moments:

E(|α̂0|) = E(|β̂0|) = ∞. (1.3)

Anderson (1976) proved this fact assuming that δi and εi are i.i.d. normal random
variables, and Chernov (2011) showed that it holds whenever each (δi, εi) just has
a continuous distribution with a strictly positive density [but the vectors (δi, εi)

must be independent].
On the other hand, one can use classical estimates minimizing vertical distances

(α̂1, β̂1) = argmin
∑

(yi − α − βxi)
2. (1.4)

They happen to have finite moments; see Anderson (1976). But they are inconsis-
tent and are known to be heavily biased toward smaller values of β; see Anderson
(1976) and Chernov (2010). In other words, paradoxically, the better estimators
(1.2) have infinite absolute moments (thus, theoretically, their mean squared errors
are infinite and their biases cannot even be defined), while the less accurate esti-
mators (1.4) have finite moments (so their biases and mean squared errors are at
least finite).

A similar phenomenon was recently observed in a slightly different linear re-
gression model, where adjusted least squares estimators (designed to reduce the
bias of the classical least squares) also were found to have infinite moments; see
Cheng and Kukush (2006).

1In particular, it has been prescribed by a recently ratified standard for testing the data processing
software for coordinate metrology; see Ahn (2004).
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Circular regression

If one estimates the center (a, b) and the radius R of a circle by minimizing geo-
metric distances to the observed points, then

(â0, b̂0, R̂0) = argmin
n∑

i=1

[√
(xi − a)2 + (yi − b)2 − R

]2
. (1.5)

This circular fit has been used since the 1950s [see a survey Chernov (2010)], but
the resulting estimators are inconsistent. Chernov (2011) also showed that they
have infinite absolute moments:

E(|â0|) = E(|b̂0|) = E(|R̂0|) = ∞. (1.6)

This is true for both functional and structural models provided each vector (δi, εi)

has a continuous distribution with a strictly positive density.
The nonlinear minimization problem (1.5) has no closed form solution. To sim-

plify estimation, one can minimize

(â1, b̂1, R̂1) = argmin
n∑

i=1

[(xi − a)2 + (yi − b)2 − R2]2. (1.7)

This method is known as the Kåsa method; see Kåsa (1976). It has been widely
used since the 1970s. It allows a simple noniterative solution: introducing a new
parameter c = a2 + b2 − R2 turns the right-hand side of (1.7) into a quadratic
polynomial in a, b, c, hence finding its minimum is an elementary task. Once we
compute a, b, c we can recover R by R = √

a2 + b2 − c.
Kåsa estimates are easy to compute but they are inconsistent and heavily biased

toward smaller circles. On the other hand, they have finite moments, as it was
recently proved by Zelniker and Clarkson (2006). Hence, the same controversial
situation takes place—the better fit (1.5) has infinite moments, while a heavily
biased fit (1.7) has finite moments.

Here we investigate several ‘intermediate’ fitting schemes—circle fits by Pratt
and Taubin, and the so-called ‘Hyperfit.’ They have been designed as improve-
ments to the Kåsa fit, but they are still slightly less accurate than the geometric fit;
see Al-Sharadqah and Chernov (2009) and Chernov (2010). We show here that all
of them have infinite moments.

Our results confirm that the above paradoxical tendency is rather general in
the EIV regression analysis—better fits have infinite moments, while some crude
biased fits have finite moments. One can say, ironically, that infinite moments are
a ‘certificate of quality’ for parameters estimators in the EIV analysis.

Elliptic regression

Suppose we estimate the center (xc, yc) and the semi-axes A ≥ B > 0 of an ellipse
by minimizing geometric distances to the observed points. We argue that the esti-
mators of these parameters also have infinite absolute moments. More precisely,

E(|x̂c|) = E(|ŷc|) = E(Â) = ∞, (1.8)
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that is, three out of the four ellipse parameter estimators have an infinite first ab-
solute moment. The minor semiaxis B is always smaller than A, and we will see
that this leads to E(B̂) < ∞. But its second moment is infinite:

E(B̂2) = ∞. (1.9)

We need to give a word of caution though. In elliptic regression a new issue arises:
in many instances the best fitting ellipse would not exist. Strictly speaking, if one
fits a quadratic curve (a conic section) to observed points, then the best fitting conic
may be (i) an ellipse or (ii) a hyperbola or (iii) a parabola or (iv) a straight line or
(v) a pair of straight lines. And while lines and parabolas occur with probability
zero (thus they can be ignored), hyperbolas occur with a positive probability and
have to be reckoned with.

When the best fitting conic is a hyperbola, then the problem of fitting ellipses
has no solution. In that case, for any ellipse one can find another ellipse that fits
the given points even better (in the sense of a smaller sum of squares of geometric
distances); a sequence of such ellipses that approximate the given points with a
progressively better accuracy would converge to a parabola. See a detailed account
on this issue by Nievergelt (2004).

In a simple experiment, we have generated random sets of n = 5 points with a
2D standard normal distribution and checked whether the best fitting conic (which
would just interpolate our 5 points) was an ellipse or a hyperbola. We found, quite
surprisingly, that ellipses turned up only in 22% of the cases, while hyperbolas—in
78% of the cases. Thus, hyperbolas actually dominate over ellipses, so the nonex-
istence of the best fitting ellipse is quite a frequent phenomenon.

For this reason we have to restrict our analysis to the data sets where the best fit-
ting ellipse does exist (i.e., where the best fitting conic is an ellipse, rather than any-
thing else). The expectations in (1.8)–(1.9) have to be understood as conditional
expectations (i.e., the integrals of the corresponding estimates over the collection
of data sets for which the best fitting ellipse exists).

Consistency

In the EIV regression analysis many popular estimators are inconsistent. For in-
stance, all the above estimators, except (1.2), are inconsistent. There exist consis-
tent estimators for circles [Chernov (2010), Section 7.9] and ellipses [Kukush et
al. (2004)], but they have infinite moments, too [see Kukush et al. (2004) and our
Figure 1 below].

In fact, the very notion of consistency is commonly redefined in image process-
ing applications, because the sample size n is rarely large and cannot be increased
by further sampling; see a well written survey by Kanatani (2004) on this issue.
Theoretical studies commonly adopt a “small noise” model, where n is fixed but
σ → 0; see Anderson (1976) and Chernov (2010), Section 2.5. Under these con-
ditions, all the above estimators are consistent, that is, they converge to the true
parameter values as σ → 0.
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Alternative parametrization

Sometimes using different parameters can prevent moments from being infinite.
For example, lines can be defined by a1x + a2y + a3 = 0 with the constraint∑

a2
i = 1. Circles can be described by b1(x

2 + y2) + b2x + b3y + b4 = 0 with
the constraint

∑
b2
i = 1; ellipses by c1x

2 + c2y
2 + c3xy + c4x + c5y + c6 = 0 with∑

c2
i = 1. Then the corresponding parameters will be always restricted to the inter-

val [−1,1], so their estimators will have finite moments. Other parameterizations
for lines and circles that always lead to finite moments are mentioned by Chernov
(2011).

But the above parameters may cause other problems by returning a curve of the
wrong type. For example, one may get a hyperbola or a parabola instead of an el-
lipse if the estimates of ci do not satisfy the elliptic ancillary constraint 4c1c2 > c2

3.
Besides, in many practical applications it is important to estimate natural geometric
characteristics of the fitting object, rather than its abstract “algebraic” parameters.

Alternative statistical analysis

The lack of moments raises methodological questions: How can one measure the
accuracy of an estimator whose mean square error is infinite (and whose bias is
undefined)? Is there any precise meaning to the widely accepted notion that the
MLE, such as (1.2) and (1.5), are best estimators, despite having infinite moments?

These questions can be answered in the framework of an unconventional analy-
sis where one assumes that n is fixed and σ → 0 and uses the Taylor expansion to
construct approximate distributions of estimators. Those distributions have finite
moments that very accurately characterize the quality of estimators. For linear re-
gression this approach was first used by Anderson (1976) and Anderson and Sawa
(1982); they said the resulting approximations were ‘virtually exact.’ For more
general models this type of theoretical analysis was employed by Al-Sharadqah
and Chernov (2009); see also its experimental validation by Al-Sharadqah and
Chernov (2011).

2 Circle fits

To see why the Kåsa method (1.7) is biased toward smaller circles note that if the
observed points are close to the circle, then

(xi − a)2 + (yi − b)2 − R2 = di(di + 2R) ≈ 2Rdi, (2.1)

where di =
√

(xi − a)2 + (yi − b)2 − R denotes the geometric distance. Then the
right-hand side of (1.7) can be approximated by

n∑
i=1

[(xi − a)2 + (yi − b)2 − R2]2 ≈ 4R2
n∑

i=1

d2
i . (2.2)
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The factor R2 in (2.2) affects the minimum of that function: the Kåsa fit often
minimizes R instead of di ’s.

To improve the Kåsa fit, one can minimize the function
n∑

i=1

R−2[(xi − a)2 + (yi − b)2 − R2]2 → min. (2.3)

This fit was proposed first by Chernov and Ososkov (1984), and in a more elegant
form by Pratt (1987) who reduced it to an eigenvalue problem which can be solved
noniteratively with modern software. The Pratt fit is much more accurate than the
Kåsa fit.

Alternatively, the approximation (2.1) allows us to replace (2.3) with∑n
i=1[(xi − a)2 + (yi − b)2 − R2]2∑n

i=1[(xi − a)2 + (yi − b)2] → min. (2.4)

This fit was proposed by Taubin (1991) who reduced the minimization of (2.4) to
another eigenvalue problem. The Taubin fit happens to be even more accurate than
the Pratt fit, though both fall behind the geometric fit (1.5); see a detailed analysis
in Al-Sharadqah and Chernov (2009) and Chernov (2010).

Lastly, the so-called Hyperfit was proposed by Al-Sharadqah and Chernov
(2009): ∑n

i=1[(xi − a)2 + (yi − b)2 − R2]2∑n
i=1[2(xi − a)2 + 2(yi − b)2 − R2] → min. (2.5)

It also reduces to an eigenvalue problem. It was shown to have a smaller bias than
the other fits.

Our main result here is the following:

Theorem 1. If the joint distribution of all the noise components δ1, ε1, . . . , δn, εn

has a continuous strictly positive density, then the estimators â, b̂, R̂ obtained by
the Pratt fit (2.3) and the Taubin fit (2.4) and the Hyperfit (2.5) have infinite mo-
ments, that is, E(|â|) = E(|b̂|) = E(R̂) = ∞.

The conditions of the theorem are met under the standard assumptions that the
noise vectors (δi, εi) are independent and each has a 2D normal distribution. How-
ever, our theorem also holds for dependent vectors and arbitrary distributions with
a continuous strictly positive density.

Before we prove this theorem, we illustrate it with a numerical experiment. We
positioned n = 10 ‘true’ points equally spaced on a semicircle {x2 + y2 = 1, y ≥
0}. We generated K random samples by perturbing the true points with Gaussian
noise δi, εi ∼ N(0, σ 2) at level σ = 0.4. For each sample we estimated the circle
parameters by all the above algebraic fits and by the consistent circle fit, which is
an adaptation of the ellipse consistent fit by Kukush et al. (2004) to circles; see
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Figure 1 Average radius estimate R̂ versus the number of random samples.

Chernov (2010), Section 7.9. Then all the K radius estimates were averaged, for
each fit separately.

Figure 1 shows the average estimate R̂, as a function of K , when K grows
from 1 to 106 (for every fit separately). The Kåsa fit corresponds to a flat line near
R ≈ 1.1, this is the only stable fit in our ‘pack.’ Every other fit yields a wildly
oscillating curve that experiences frequent jumps. Such an erratic behavior is char-
acteristic for random variables with an infinite first moment (similar plots can be
constructed, for example, for a sample mean from a Cauchy random variable).

3 Proof of Theorem 1

General strategy

An estimator θ̂ of a parameter θ is a random variable. Its first absolute moment

E(|θ̂ |) =
∫ ∞

0
Prob(|θ̂ | > t)dt

is infinite if the distribution has a power-law tail Prob(|θ̂ | > t) ∼ t−α (as t → ∞)
with α ≤ 1. The reciprocal ζ = 1/θ̂ then satisfies Prob(|ζ | < t) ∼ tα as t → 0 with
α ≤ 1. Thus, it is enough to check that ζ has a positive density which does not
vanish at 0.

We employ the following strategy. Suppose we can position data points
(x1, y1), . . . , (xn, yn) so that the corresponding parameter estimator θ̂ will be
infinite, hence its reciprocal ζ , =1/θ̂ vanishes. Next, we note that the estima-
tor θ̂ , and hence its reciprocal ζ , are continuous functions of the coordinates
x1, y1, . . . , xn, yn. We will examine how ζ changes if only one of those coordi-
nate, say, x1, varies.
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Lemma 2. Suppose that the derivative ∂ζ/∂x1 is bounded, that is, |∂ζ/∂x1| ≤ D

for some D > 0. Then the conditional expectation of |θ̂ |, given that the co-
ordinates y1, x2, y2, . . . , xn, yn (i.e., all but x1) are fixed, is infinite, that is,
E(|θ̂ ||y1, x2, y2, . . . , xn, yn) = ∞.

Proof. Since the original joint distribution of all the coordinates x1, y1, . . . , xn, yn

has a strictly positive density, the conditional distribution of x1 (given all the other
coordinates) also has a strictly positive density:

P(dx1|y1, . . . , xn, yn) = ρ(x1|y1, . . . , xn, yn) dx1.

Now since |∂ζ/∂x1| ≤ D, the conditional density of ζ is positive, too, as

P(dζ |y1, . . . , xn, yn) = |∂x1/∂ζ | · ρ(x1|y1, . . . , xn, yn) dζ

and |∂x1/∂ζ | ≥ 1/D > 0. Hence, as we have seen above, the conditional expecta-
tion of |θ̂ | is infinite. Lemma 2 is proved. �

Next suppose the derivative ∂ζ/∂x1 remains bounded when every previously
fixed coordinate y1, x2, y2, . . . , xn, yn is slightly perturbed, that is, the bounded-
ness holds for all xi ∈ Ii , 2 ≤ i ≤ n, and yj ∈ Jj , 1 ≤ j ≤ n, for some small in-
tervals Ii and Jj . The lengths of Ii ’s and Jj ’s do not matter, because the original
joint density of x1, y1, . . . , xn, yn is strictly positive. Hence, we obtain the desired
result: E(|θ̂ |) = ∞.

Circular regression

We fix a small rectangle B1 = [−h,h]×[1−h2,1+h2] centered on the point (0,1)

and two very small squares B2 = [−h2, h2] × [−h2, h2] and B3 = [−h2, h2] ×
[−1 −h2,−1 +h2] centered on the points (0,0) and (0,−1), respectively. Here h

is a very small number, such as h = (10n)−9. Note that h2 
 h.
Next we choose (x1, y1) ∈ B1, (x2, y2) ∈ B2, and all the other points (xi, yi) ∈

B3 for i = 3, . . . , n. Note that x1 is allowed to vary from −h to h, while all the
other coordinates are confined to much smaller intervals of length 2h2 
 2h. We
will regard x = x1 as the only variable, while all the other coordinates are fixed,
and we examine how the fitting circle changes as x = x1 varies from −h to h. Let
â(x) denote the x coordinate of the center of the fitting circle, as a function of x,
and ζ(x) = 1/â(x). If the circle degenerates to a line, we set â = ∞ and ζ = 0.

Since h is very small, all our data points lie near the vertical line (the y axis),
but the first point (x, y1) can slightly deviate from it left or right; see Figure 2. It
is clear that if x = h, then â(x) is positive, hence, ζ(h) > 0. Similarly, if x = −h,
then â(x) is negative, that is, ζ(−h) < 0. As x = x1 changes from −h to h, the
function ζ(x) changes from negative values to positive values (and remains small).
All we need is to show that ζ(x) has a bounded derivative:



Errors-In-Variables regression 409

Figure 2 A rectangle and two squares around the y axis. Two fitting circles: one has center to the
left (â < 0) and the other to the right (â > 0).

Figure 3 A rectangle and four squares near a parabola.

Lemma 3. For any fixed values y1, x2, y2, . . . , xn, yn as above, the function ζ(x1)

has a bounded derivative: |ζ ′(x1)| ≤ D for all x1 ∈ [−h,h] and some constant
D > 0.

This lemma is proved by direct calculations that will be provided in the next
section. It implies that E(|â|) = ∞. It is also clear that E(R̂) = ∞. Rotating our
construction, say, by π/2, we obtain E(|b̂|) = ∞ as well. Theorem 1 is proved.

Elliptic regression

Natural parameters of an ellipse are the coordinates of its center (xc, yc) and its
semiaxes A ≥ B . All these parameters grow to infinity as an ellipse degenerates to
a parabola. So we choose a parabola, say, y = x2, and five points on it: (±1,1),
(±2,4) and (0,0). Then we fix a small rectangle B1 of size (2h2) × (2h) centered
on (0,0) and four very small squares Bk (2 ≤ k ≤ 5) of size (2h2)× (2h2) centered
on the other four points, respectively; see Figure 3. Here h is a very small number,
such as h = (10n)−9.

Next we choose (x1, y1) ∈ B1, and all the other points (xi, yi), 2 ≤ i ≤ n, are
placed in the squares Bk , 2 ≤ k ≤ 5, so that each square has at least one data point.
Note that y1 is allowed to vary from −h to h, while all the other coordinates are
confined to much smaller intervals of length 2h2 
 2h. We will regard y1 as the
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only variable while all the other coordinates are fixed and examine how the fitting
ellipse changes as y1 varies from −h to h.

It is not hard to check by elementary geometry that for y1 = h the best fitting
conic is an ellipse, but for y1 = −h the best fitting conic is a hyperbola. As y1
changes from h to −h, the best fitting ellipse grows, degenerates to a parabola (for
some y1 = y∗

1 ) and then becomes a hyperbola. So we only consider the interval
y∗

1 < y1 < h. At the moment y1 = y∗
1 the ellipse explodes and its major semiaxis

Â becomes infinite. We denote ζ = 1/Â. We will argue that the following fact
holds (but we cannot prove it fully yet, so we call it a conjecture):

Conjecture 4. For any fixed values x1, x2, y2, . . . , xn, yn as above, the function
ζ(y1) has bounded derivatives, that is, |ζ ′(y1)| ≤ D for all y1 ∈ [−h,h] and some
constant D > 0.

Assuming that this conjecture is true, it readily implies that E(Â) = ∞. It is
also clear that E(|ŷc|) = ∞. Rotating our construction, say, by π/2, we obtain
E(|x̂c|) = ∞ as well, hence we get (1.8). Moreover, we will argue that as Â grows
to infinity the minor semiaxis also grows but at a slower rate, as B̂ ∼ Â1/2. This
will imply (1.9).

4 Proof of Lemma 3

Lemma 3 will be proved here for each circle fit separately.

Pratt fit

Let (ρ, θ) be the polar coordinates of the center (a, b). The objective function
(2.3) takes all of its small values on circles and lines that pass in the h-vicinity
of the three basic points: (0,0), (0,−1) and (0,1). These circles and lines have
parameters restricted to the region where ρ > 1/(100h) and | sin θ | < 100h. Since
ρ attains large values, it is more convenient to deal with its reciprocal δ = 1/ρ.
Accordingly, our analysis will be restricted to the region

 = {|δ| ≤ 100h and |θ | ≤ 100h}. (4.1)

We denote wi = (xi − a)2 + (yi − b)2 and use standard ‘sample mean’ notation
w̄ = 1

n

∑
wi , etc. The conditional minimum of the objective function (2.3), when

a and b are kept fixed, is attained at R̂4 = ww = 1
n

∑
w2

i . Thus, one can eliminate
R and rewrite the objective function as

F (a, b) =
∑n

i=1(wi − R̂2)2

4nR̂2
= R̂2 − w̄

2
. (4.2)

For convenience we introduce the notation

ui = xi cos θ + yi sin θ and vi = −xi sin θ + yi cos θ.
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Now F can be expressed in polar coordinates as

F (ρ, θ) = R̂2 − (z̄ − 2ūρ + ρ2)/2

= 1

2

[√
zz − 4uzρ + 2(2uu + z̄)ρ2 − 4ūρ3 + ρ4 (4.3)

− (z̄ − 2ūρ + ρ2)
]
,

where zi = x2
i + y2

i = u2
i + v2

i . To shorten our formulas, it will be convenient to
use the following notation:

Szz =
n∑

i=1

(zi − z̄)2, Suz =
n∑

i=1

(ui − ū)(zi − z̄), Suu =
v∑

i=1

(ui − ū)2.

We also denote E = z̄δ2 − 2ūδ + 1 and

F =
√

(z̄δ2 − 2ūδ + 1)2 + Szzδ4 − 4Suzδ3 + 4Suuδ2.

With this notation, it can be shown that

F (δ, θ) = (2δ2)−1(F − E)

= 1

2
(E + F)−1(Szzδ

2 − 4Suzδ + 4Suu).

Notice that 4 > E +F > 1
2 . Also, Szz = 2+χ , where χ is a small quantity (χ → 0

as h → 0), while Suu and Suz are also small quantities. Hence, F (δ, θ) is bounded
and continuous in . The second derivative with respect to x = x1 is bounded.
Indeed, both E and F are bounded by 2, so the second derivative with respect
to x is a fraction function whose numerator is a polynomial of x and F while
the denominator has the form Fk(E + F)m for some integers k ≥ 1 and m ≥ 1.
Therefore,

∂F (δ, θ)

∂x
≤ M1,

∂2F (δ, θ)

∂x2 ≤ M2 (4.4)

for some positive constants M1 and M2.
Similarly, the first and the second partial derivatives of F (δ, θ) with respect to

θ, δ are continuous and bounded by some positive constant M (details are omitted,
but they are similar to above justification). Moreover, direct differentiation implies
that ∇2F (δ, θ) is positive definite because

∇2F (δ, θ) =
[

1 − 2

n
+ χ1 χ2

χ2 4 + χ3

]
,

where χi’s denote various small quantities (in the sense that χi → 0 as h → 0).
Thus, F is a convex function that has exactly one minimum in  and no other
critical points.
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Finally, we will show that |ζ ′| ≤ 4M . Indeed, let (δ̂, θ̂ ) denote the above unique
minimum. Differentiating equations

Fδ(δ̂, θ̂ ) = 0 and Fθ (δ̂, θ̂ ) = 0

(here indices denote partial derivatives) with respect to x gives

Fδδ(δ̂, θ̂ )δ̂′ + Fδθ (δ̂, θ̂ )θ̂ ′ + Fδx(δ̂, θ̂ ) = 0,

Fθδ(δ̂, θ̂ )δ̂′ + Fθθ (δ̂, θ̂ )θ̂ ′ + Fθx(δ̂, θ̂ ) = 0,

where δ̂′ and θ̂ ′ denote the derivatives with respect to x. Since all our partial deriva-
tives are uniformly bounded by M , we have that |δ̂′| ≤ 2M and |θ̂ ′| ≤ 2M . Lastly,
recall that ζ = 1/â = δ̂/ cos θ̂ , hence,

|ζ ′| =
∣∣∣∣ θ̂

′ sin θ̂

cos2 θ̂
δ̂ + δ̂′

cos θ̂

∣∣∣∣ ≤ 4M

(recall that θ̂ ≈ 0). This completes the proof of Lemma 3.

Taubin fit

The above argument, with certain modifications, applies to the Taubin fit. First,
eliminating R from its objective function (2.4) gives

F (a, b) =
∑n

i=1(wi − w̄)2

4nw̄

=
∑n

i=1[(zi − z̄) − 2(ui − ū)ρ]2

4n(z̄ − 2ūρ + ρ2)
.

Changing variables gives

F (δ, θ) =
∑n

i=1[(zi − z̄)δ − 2(ui − ū)]2

4n(z̄δ2 − 2ūδ + 1)

= Szzδ
2 − 4Suzδ + 4Suu

4n(z̄δ2 − 2ūδ + 1)
.

It is clear that the denominator is bounded from below by 3 and from above by
4n, hence, F (δ, θ) ≤ 1 and is continuous in . In the same way the second partial
derivatives ∇xx F , ∇xθ F and ∇xδ F are continuous and bounded as well. By direct
differentiation we find that

∇2F (δ, θ) =
[

1 − 2

n
+ χ1 χ2

χ2 4 + χ3

]
,

where χi’s are again various small quantities. Thus, F is a convex function that
has exactly one minimum in  and no other critical points. The rest of the proof
goes unchanged.
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Hyper fit

The objective function is

F (a, b,R) =
∑n

i=1(wi − R2)2

4n(2w̄ − R2)
= ww − 2w̄R2 + R4

8w̄ − 4R2 . (4.5)

Eliminating R gives the same function (4.2) that we obtained for the Pratt fit earlier.
Thus, these two fits return the same center (a, b), so its first moment is infinite, too.

5 A case supporting Conjecture 4

We cannot give a full proof of Conjecture 4 yet, but one particular case is tractable
and we present it here.

Suppose we choose exactly one point in each square Bk , 2 ≤ k ≤ 5. Then the
total number of data points is n = 5, and there exists a unique conic interpolating
them, which obviously provides the best fit. In that case the type and parameters
of that conic can be explicitly determined. For simplicity, let the four points be
chosen at the centers of the squares Bk , 2 ≤ k ≤ 5, that is, they are (±1,1) and
(±2,4). Recall that the first point (x1, y1) ∈ B1 has a variable y-coordinate |y1| <
h and an x-coordinate |x1| < h2. Then for some (x1, y1) the interpolating conic
will be a hyperbola or a parabola (we will ignore such values of x1 and y1) and for
others—an ellipse. We will see that the interpolating conic is an ellipse if and only
if y1 > x2

1 .
Since our conic interpolates the four points chosen at the centers of the squares

Bk , 2 ≤ k ≤ 5, it is easy to see that its equation is

x2 + cy2 − (1 + 5c)y + 4c = 0, (5.1)

where c is a variable parameter. Since the curve (5.1) also must pass through the
point (x1, y1), we get

c = y1 − x2
1

4 − 5y1 + y2
1

. (5.2)

Clearly, c is small (of order h). Equation (5.1) can be rewritten as

x2 + c

(
y − 1 + 5c

2c

)2

= 1 + 10c + 9c2

4c
. (5.3)

It is now easy to see that the conic (5.1) is an ellipse if and only if c > 0 (i.e.,
y1 > x2

1 ), and that this ellipse has semiaxes

Â =
√

1 + 10c + 9c2

2c
, B̂ =

√
1 + 10c + 9c2

2
√

c
. (5.4)
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Therefore, ζ = 1/Â = 2c/
√

1 + 10c + 9c2, hence, ∂ζ/∂c ≈ 2. It follows from
(5.2) that ∂c/∂y1 ≈ 1/4, hence, ∂ζ/∂y1 ≈ 1/2, which proves Conjecture 4. Also
note that (5.4) implies B̂ ∼ Â1/2, which implies (1.9).

If the points (xi, yi), 2 ≤ i ≤ 5, are not exactly as chosen above but lie in very
small squares Bi centered on the above points, the calculations are the same, except
the values of all our numerical constants will be slightly different, but the final
conclusion ∂ζ/∂y1 ≈ 1/2 will remain valid.
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