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Abstract. We review a substantial literature, spanning 50 years, concerning
the resolution of conflicts using Bayesian heavy-tailed models. Conflicts arise
when different sources of information about the model parameters (e.g., prior
information, or the information in individual observations) suggest quite dif-
ferent plausible regions for those parameters. Traditional Bayesian models
based on normal distributions or other conjugate structures typically resolve
conflicts by centring the posterior at some compromise position, but this is
not a realistic resolution when it means that the posterior is then in conflict
with the different information sources. Bayesian modelling with heavy-tailed
distributions has been shown to produce more reasonable conflict resolu-
tion, typically by favouring one source of information over the other. The
less favoured source is ultimately wholly or partially rejected as the conflict
becomes increasingly extreme.

The literature reviewed here provides formal proofs of conflict resolution
by asymptotic rejection of some information sources. Results are given for
a variety of models, from the simplest case of a single observation relating
to a single location parameter up to models with many location parameters,
location and scale parameters, or other kinds of parameters. However, these
results do not begin to address models of the kind of complexity that are
routinely used in practical Bayesian modelling. In addition to reviewing the
available theory, we also identify clearly the gaps in the literature that need
to be filled in order for modellers to be able to develop applications with
appropriate “built-in robustness.”

1 Introduction

The problem of how to handle conflicting information sources is quite a gen-
eral one in statistics. It arises when two different pieces of information suggest,
or are consistent with, very differing values of unknown parameters. One com-
mon situation is the presence of outliers in data. If, for instance, we have data
x=(1.5,2.6,0.3,0.9,2.2,25.5) from a distribution with unknown mean w, then
the observation 25.5 suggests a value for u that is far from the values indicated by
the other five observations. The last observation seems to be an outlier, and raises
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the question of how to reconcile the conflict between it and the remaining obser-
vations. A huge literature has developed around this question, largely involving
techniques to decide whether to reject the outlier, and so make inference about u
on the basis of just the first five observations, or to include it, making inference
from the whole sample treating the outlier as of equal weight to any of the other
observations. The classic text on outliers is that of Barnett and Lewis (1994), and
although much has been published since it remains an excellent source for the
various approaches in this field.

In Bayesian statistics, we can have conflict when there is only one observation
if it conflicts with the prior information. In more complex applied problems, we
can be combining many different sources of information of diverse natures, and
conflicts can arise in many subtle ways. Not only is it then difficult to determine
how to handle conflicts but it can also be challenging even to spot them.

In this paper, we review the literature on Bayesian methods to resolve conflicts
in an automatic way, through the use of heavy-tailed distributions.

1.1 Bayesian outlier rejection

First, notice that if the data x given above were to be modelled as a sample from
the N (u, 1) distribution, then the likelihood function is maximised at i = 5.5, the
sample mean. In a Bayesian analysis with a weak (uniform) prior distribution the
posterior distribution would be centred at E(u|x) = 5.5 with a standard deviation
of about 0.4, leading to a 95% interval for u of (4.7, 6.3). If we were to make
inference using only the first five observations we would have a mean of 1.5 and
a 95% interval (0.6, 2.4), whereas inference based on the single final observation
would have mean 25.5 and 95% interval (23.5,27.5). The conflict between the
first five observations and the last one is very evident in the widely differing 95%
intervals that they imply, but another remarkable feature of this example is that
the posterior inference from the whole sample is again quite different. It leads
to a 95% interval that is not even close to overlapping with the intervals implied
by the two subsamples separately. This is a feature of using normal distributions.
The analysis of the whole sample gives the outlier the same weight as any other
observation, effectively ignoring the conflict.

The first discussion of outlier rejection in Bayesian inference was by de Finetti
(1961). He commented on the above analysis and noted that essentially the same
features would hold if the observations had an unknown, but common, error vari-
ance o 2. However, he remarked that if the observations had different, indepen-
dent, unknown variances, then the outlier would be estimated as having a large
error variance, and so would be given less weight. The greater the conflict, in the
sense of the outlier being further from the remaining observations, the less weight
it would get. In the limit, as the outlier became infinitely separated from the other
observations it would be given zero weight, which de Finetti described as Bayesian
outlier rejection. De Finetti’s argument was heuristic; he derived no formulae and
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did not consider specific cases. Lindley (1968), in response to a discussion contri-
bution from E. M. L. Beale, gives an approximate analysis based on the leading
term of an expansion for the posterior in the case of a ¢ prior distribution. It was not
until the contributions of Dawid (1973), Hill (1975) and O’Hagan (1979) that for-
mal analysis was given and conditions presented under which this kind of outlier
rejection behaviour would indeed arise.

1.2 Example with a ¢ distribution

The connection between this kind of outlier rejection and heavy tails arises from
the uncertainty about the error variance for each observation. Suppose that x; ~

N (i, O'iz), so that observation i has error variance o*l.z, and now let o*i2 have dis-

tribution F(-). Assuming, as de Finetti did, that the O'iZS are independent, then the
marginal density of x; is of the form known as a scale mixture of normals. It has
density

Fllw) = / o~ 1¢((xi — W /o) dF(0?),

where ¢ (-) is the standard normal density function. It is clear that de Finetti’s
argument requires F () to give nonzero probability to arbitrarily large values of
o2, so that the weight attached to an outlier can become arbitrarily small. The best
known family of scale mixtures of normals is the ¢ family, where F(-) is an inverse
gamma distribution, and ¢ distributions have heavier tails than normal distributions.

Returning to the example of data x = (1.5, 2.6,0.3,0.9,2.2,25.5), we now let
the observations x; have independent ¢ distributions with 5 degrees of freedom,
x; ~ts(u, 1). Specifically,

Fxilm) oc {5+ (x; — )=,

We assume again a uniform prior density for p. Finally, we let the sixth obser-
vation be denoted by z and consider the posterior distribution of u given data
x=(1.5,2.6,0.3,0.9,2.2,7) as z — oo.

Figure 1 shows the resulting posterior densities for z = 2 (black curve), z = 3
(purple curve), z = 5 (blue curve), z = 10 (red curve) and z = 25.5 (green curve).
We see that as z increases the posterior density initially (z = 3, 5) moves with it to
be centred on higher values of u, but then (z = 10, 25.5) it moves back, converging
towards the posterior distribution that would apply based on only the first five
observations. Table 1 presents the posterior mean and variance values for these
values of z and for the limiting posterior (z = c0). We see not only the mean
initially increasing and then converging back to its asymptotic value but we also
see the variance initially increasing to a maximum around z = 5 before falling
back towards the asymptotic value.

The influence of the outlying observation in this example is heavily discounted
beyond z = 5, and at z = 25.5 the posterior distribution has effectively rejected the
observation, being centred nowhere near the sample mean of 5.5, but instead very
close to the posterior that would be obtained from just the first five observations.
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Figure 1 Posterior densities for five values of z.

1.3 Heavy-tailed modelling

The primary purpose of this article is to review the research showing how, when
one or more of the distributions in a Bayesian analysis has heavy tails, and when
conflict becomes increasingly strong it is resolved by one or more of the infor-
mation sources being rejected. The pioneering paper of Dawid (1973) and most
subsequent research in this field does not assume particular distributional forms,
but instead proves general results applicable for any distributions having speci-
fied heavy-tailed properties. Heavy-tailed distributions are by no means confined
to the class of ¢ distributions, nor even to scale mixtures of normals, but applica-
tions of this theory in Bayesian analyses of real problems has almost invariably
involved ¢ distributions. Their authors have usually simply replaced the normal
distributions wherever they would typically be used by ¢ distributions, in the be-
lief that this would provide automatic robust posterior behaviour in response to
outliers and other conflicts. For instance, Wakefield et al. (1994) replace a bivari-

Table 1 Posterior means and variances for
six values of z

z E(ulz) var(i|z)
2 1.61 0.201
3 1.78 0.226
5 1.83 0.271

10 1.68 0.262

25.5 1.57 0.256

00 1.51 0.255
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ate normal distribution for parameters of a linear growth model (independently for
each individual in the population) by a bivariate ¢ distribution. They also suggest
replacing normal distributions by ¢ distributions for the observations, saying that
this will provide “an analysis that is robust to both data outliers and outlying indi-
viduals in the population.” Similarly, Meinhold and Singpurwalla (1989) employ
t distributions for a time series of observations and for the underlying evolution in
a Kalman filter model. Their approach allows for rejection of individual outlying
observations, but through an approximation that does not take account of the joint
influence of several outliers.

The truth is more complex. First, conflicts can be resolved in more than one
way. Where two information sources conflict, we can resolve this by rejecting one
information source or the other. We can also reject neither source. The posterior
distribution may, as the separation between the sources becomes wider, continue to
encompass values of the parameter consistent with both of the information sources,
so that the posterior variance increases to infinity. It may also be “resolved” in the
way that normal distributions often do, by the posterior distribution concentrating
on a compromise value that is supported by neither source. Any particular choice
of model will resolve conflicts in a particular way, and it is important to understand
how different modelling choices lead to different resolutions.

Second, the theory has to date been developed in rather simple kinds of models.
Generalisation to more complex models is not immediate. Indeed, applications
almost invariably propose models for which the theory has not been developed—
we do not know yet how conflicts are resolved in complex heavy-tailed models.

So in addition to reviewing the research in the field, this article has a second
important purpose, namely to identify the limitations and gaps in the literature
that need to be addressed in order to understand fully the effects of heavy-tailed
modelling in complex applications.

2 Single observation, single location parameter

2.1 Tails and duality

We begin with the simplest case, in which we have a single observation x having
density f(x — 0), so that 8 is a location parameter. We let 6 have prior density
g(6). We can think of x as composed of the location parameter 6 plus “observation
error” ¢ = x — 6. Notice that x =6 + ¢, and that 6 and ¢ are independent random
variables with densities g and f, respectively.

Our interest is in the limiting behaviour of the posterior distribution for 6 when x
becomes large. That limiting behaviour will depend on to what extent the posterior
distribution attributes the large value of x = 6 + ¢ to 6 being large or to ¢ being
large, which in turn depends on the forms of their densities, g and f. An important
feature of this model is a duality between 6 and ¢ that was pointed out by Dawid
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(1973). Whatever results we can prove about the posterior distribution of 6 in this
system will apply instead to ¢ if we reverse the roles of f and g. In particular,
suppose that for given f and g we can show that as x — oo the posterior density of
6 tends to its prior density g, so that the information in the observation x is rejected
in the limit. Now suppose that we switch f and g, so that now f is the prior density
of 6, then the posterior density of ¢ will tend to g, and hence the posterior density
of 0 is asymptotically g(x — ). In this case, it is the prior information about 6 that
is asymptotically rejected. This illustrates the fact that conflicts between sources
of information can always be resolved in more than one way. In this simple case
of a single observation and a single location parameter, we can reject either of the
two sources of information in favour of a limiting posterior distribution based only
on the other information source.

A second kind of duality arises when we consider what happens as x — —oc.
For large positive x, the posterior depends only on the right-hand tails of f and g,
since the implication is that either 6 or ¢ (or perhaps both) are large and positive.
Any result for x — oo can be converted to one for x — —oo by changing signs in
both distributions and looking at their left-hand tails.

2.2 Illustrative examples

Figures 2, 3 and 4 illustrate the possibilities.

First, consider Figure 2, where 6 and ¢ are both given standard normal distri-
butions. In Figure 2, the large image shows the joint density of 6 and ¢, which has
the spherical bivariate normal form. The line marked A corresponds to 6 +¢ = 0.5
and so the posterior distribution of 8 given x = 0.5 is the conditional density along
this line (projected onto the 6 axis). The panel (a) in Figure 2 shows this posterior
density. Similarly, line B represents 8 + ¢ = 6 and panel (b) is the conditional den-
sity along line B, that is, the posterior density of 6 given x = 6. We see how when
we use normal distributions the posterior distribution is normal for any x; it has
constant posterior variance and a posterior mean that increases with x. For x = 6,
we have conflict between the prior distribution which suggests 6 € [—2, 2] (with
approximately 95% probability) and the observation which suggests 6 € [4, 8].
The posterior distribution is centred at & = 3 with 95% interval approximately
[2,4]. This is a less extreme example than the one of six observations introduced
in Section 1, but still shows the same questionable resolution of this conflict.

In the main panel of Figure 2, we have assumed equal variances for 6 and ¢,
but variance is just a matter of scaling and we can readily use the same picture
to look at a case of unequal variances. Line C and panel (c) correspond to 6 +
0.5¢ = 6. This represents the case where 6 has the standard normal distribution but
the error 0.5¢ has a normal distribution with variance 0.25. The posterior density
in panel (c) therefore applies to this case; it is again normal, with mean 4.8 and
variance 0.2.

In Figure 3, the prior density g is still standard normal, but now f is the Cauchy
density. The lines A, B and C are the same as in Figure 2, and the densities (a), (b)
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Figure 2 Joint and posterior densities for normal f and g.

and (c) are the corresponding posterior densities for 6 obtained by conditioning
along those lines. Thus, in (a) we see the posterior distribution after observing
x = 0.5; there is no conflict here and the posterior distribution is similar to panel (a)
of Figure 2. In (b), however, we see a very different resolution of the conflict
created by observing x = 6. The posterior distribution is close to the Cauchy prior
distribution, corresponding to rejection of x as uninformative about 6. We can see
in the joint distribution that this result comes from the way the heavy-tailed Cauchy
distribution stretches the contours of the joint distribution out of the circular form
of Figure 2.

The distribution (c) in Figure 3 is also interesting. Remember that line C mimics
the case where the observation error standard deviation is halved relative to line
B, but in both cases for an observation x = 6. Therefore, the observation becomes
more informative, and in Figure 2 this resulted in a posterior distribution for 6 that
is centred closer to the observation. In Figure 3, however, the posterior density (c)
is similar to (b), and so also represents rejection of the observation. The message is
that variance is important in determining the posterior distribution in the absence
of conflict (or when conflict is ignored), but that tail behaviour drives the result
when we have conflict.
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Figure 3 Joint and posterior densities for Cauchy f and normal g.

These findings are reinforced in Figure 4, where both f and g are now Cauchy
distributions. For the nonconflicting observation x = (.5, the posterior density (a)
is again like those of Figures 2 and 3. But panel (b) is again different. Now the
posterior is bimodal. One mode corresponds to rejection of the observation as in
Figure 2(b), but the other mode is centred on 8 = 6 and represents rejection of
the prior information. Because the tail behaviours of f and g are identical, we
have no basis to say which source of information should be rejected. That was also
the case in Figure 2, but the resolution now is different and more credible—the
posterior supports values of 6 that are consistent with the prior or the data, but
intermediate values of 6 which are not consistent with either source of information
are not supported. The posterior distribution (c) is basically the same as (b), the
only difference being that now the observation is supposed to have smaller error,
and so the mode around 6 = 6 is narrower.

2.3 Asymptotic density results

Several results are available in the literature characterising combinations of f and
g for which the limiting posterior distribution of 6 as x tends to infinity is the prior
density g. From duality, these results also characterise when the limiting posterior
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Figure 4 Joint and posterior densities for Cauchy f and g.

density is f(x — 6). Indeed, several of the results are couched in terms of rejection
of the prior distribution, because where there is concern that the prior information
may not be reliable the appropriate resolution of a conflict may be to reject the
prior: for consistency of discourse we have converted these results herein to the
dual conditions for rejection of the observation.

The theorems concern the right-hand tails of f and g, but analogous conditions
on the left-hand tails will characterise the limiting posterior as x tends to minus
infinity.

2.3.1 Dawid’s conditions. First, Dawid (1973) gave the following sufficient set
of conditions.
(A1) Given e > 0, h > 0, there exists A such that if y > A then

1FOD = fI<ef ()

whenever |y — y| < h.
(A2) For some constants B, M,

0<fOY)<Mf(y)
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whenever y' > y > B.
(A3) [®k(0)g(8)d6 < oo, where k() = sup, { f(x — 0)/f (x)}.

O’Hagan (1979) sought to simplify Dawid’s condition (A3), which may be dif-
ficult to verify in practice because of the need to derive k(9). He showed that if
(A2) and (A3) were replaced by the following (slightly stronger) conditions then
together with (A1) they would still be sufficient for the posterior density of 6 to
tend to g(@) as x — 0.

(B2) (a) f(y) is continuous and positive for all y.
(b) There exists a B such that for all y > B
i. f(y) is decreasing in y,
ii. dlog f(y)/dy exists and is increasing in y.
(c) There exists a C such that, for all y < C, f(y) is increasing in y.
B3) [*{f(©)}'¢(6)do < 0.

In simple terms, the role of condition (A1) is to ensure that f is heavy-tailed by
requiring that for large enough y the density f(y) becomes arbitrarily flat, while
conditions (A2) and (B2) are regularity conditions on f. The purpose of conditions
(A3) and (B3) is to ensure that, even though g may also be heavy-tailed, its right-
hand tail is thinner than that of f.

The most widely used examples of heavy-tailed distributions are the ¢ distribu-
tions. In general, we will say that f is a ¢ density with d degrees of freedom if it
has the form

F) oc{d + 572 (y —m)?} @b/,

where m and s~ are fixed parameters. (A nonzero value for m would represent
a bias in the error distribution, while s~> determines its precision.) This distri-
bution is easily found to satisfy (Al), (A2) and (B2). Dawid’s function k(@) is
asymptotically proportional to #¢*!, which is of course also the asymptotic form
of {f (0)}~!, and so (A3) and (B3) are satisfied provided the prior distribution pos-
sesses moments of order d + 1. This will in particular be true if g is normal, but
also if g is another ¢ distribution with degrees of freedom d’ > d + 1. Remem-
bering that a Cauchy distribution is ¢ with one degree of freedom, these results
confirm what is found in Figures 2 and 3. Notice also that the asymptotic rejection
of the observation occurs regardless of any bias and precision parameters, although
they will influence the rate of approach to the limit.

In Figure 4, the two ¢ distributions have equal degrees of freedom, and so no
rejection occurs, either of the observation or of the prior information. However, the
results of Dawid (1973) and O’Hagan (1979) suggest that the same situation will
arise when the degrees of freedom differ by 1 or less, yet empirically if we compute
posterior distributions as in Figure 4 for a case where f and g are ¢ densities with
degrees of freedom d < d’ < d + 1 we still find the posterior distribution tending
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to g as x — oo. This highlights the fact that these conditions are sufficient for
rejection of the observation but not necessary.

Meinhold and Singpurwalla (1989) prove that rejection of the observation oc-
curs in the limit for two ¢ distributions whose degrees of freedom differ by an
arbitrarily small amount. We now consider some rather more general results in
which f and g are not limited to being ¢ densities.

2.3.2 Credence and regular variation. O’Hagan (1990) introduces the notion of
credence according the following definition.

Definition 1. A density f(y) has credence c if there exist K > k > 0 such that for
all y e R,

k<1+yH?f(y) <K.

Thus, f has credence c if it is bounded above and below by multiples of a ¢
density with ¢ — 1 degrees of freedom (and in particular the ¢ density itself has
credence d + 1). He then proves that if f has credence ¢ and g has credence ¢’ > ¢
then

(a) for any given d > 0, there exists an A such that for all |d| > A the posterior
density is bounded for all |#| < d above and below by multiples of g, and

(b) forall r : Rt — R™T such that r(x) — oo as x — 00, the posterior probability
that P(|60| > r(]x|) tends to 0 as |x| — oo.

This result does not quite show that the posterior density tends to the prior den-
sity g. Because the tails of f are only constrained to be flat within upper and lower
bounds result (a) says only that the posterior is bounded by multiples of g. How-
ever, (b) shows that posterior probability outside ax (or even %alnx) for any
positive a (no matter how small) tends to zero, and so the observation is indeed
asymptotically rejected. Furthermore, a theorem of Hill (1975) implies that if the
posterior converges uniformly to any density it must be g.

The ¢ distributions are examples of a broader class of distributions f(y) whose
extreme right-hand tails behave like a power of y, and are often said to have poly-
nomial tails. This wider class provides useful additional flexibility for modelling
compared with just the class of ¢ distributions. The class of distributions with fi-
nite credence is broader than the class of ¢ distributions but there are other ways to
define distributions with polynomial tails. Andrade and O’Hagan (2006) consider
distributions with regularly varying tails.

Definition 2. The right-hand tail of a density f(y) is regularly varying with index
p if
A
foy N,

f

as y — oo forall A > 0.



Bayesian conflict resolution 383

The regular variation index for a proper density must be negative, so Andrade
and O’Hagan say that f has RV-credence c if its right-hand tail is regularly varying
with index —c. A ¢ distribution with d degrees of freedom has credence d + 1 and
also RV-credence d + 1, but the two definitions are not equivalent. Andrade and
O’Hagan (2006) introduce the new conditions

(C1) f has RV-credence c,
(C3) g has RV-credence ¢’ > ¢ + 1,

and prove that (C1), (B2) and (C3) together imply the conditions (A1), (A2) and
(A3) of Dawid (1973), and hence that the posterior density will tend to the prior
density g.

Another similar result is the Generalised Polynomial Tails theorem of Fiiquene,
Cook and Pericchi (2009). Their conditions are

(D1&2) There exist constants A, ¢, C1, C2 and C3 such that for all y > A
Ciy “<f(»)=Cy™,

d e
—f(y) < C3yc7L,
dy
(D3) There exist constants A,, ¢’ > ¢ and C4 such that for all m > A,

/ ¢(0)do < Cam™ .
O>m

Conditions (D1&?2) say that the right-hand tail of f is polynomial, being bounded
above and below by multiples of y~¢, and impose regularity so that the tail does
not wiggle too much. Condition (D3) says in effect that the tail of g is thinner
than a polynomial of form 60—+ Under conditions (D1&2) and (D3), Faquene,
Cook and Pericchi (2009) prove that the observation will be rejected as x — oo.
In the case of ¢ distributions, (D3) is like (C3) and Dawid’s conditions in the sense
of only guaranteeing rejection when the degrees of freedom of f and g differ by
more than 1.

2.3.3 Regular log-convex tails. Recently, Desgagné and Angers (2007) have in-
troduced another class of distributions. We will say that a density f has a regular
log-convex right-hand tail if it is positive, bounded above and satisfies both the
condition (A1) and a new condition:

(E2) There exist constants Ay > 0 and M > 1 and proper density functions f*
and f* such that for all y > A,

262
fOfto =

2 2

d * d +
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where f* must be such that there exist constants B > 0and 0 < K; < K» <
oo for which K| < f(y)/f*(y) < K, whenever y > B.

Condition (E2) is deliberately weakened through the introduction of densities f*
and f7. It is satisfied for a ¢ density simply by setting both f* and f* equal to
f, but the additional flexibility widens the class of distributions appreciably. For
instance, the introduction of f* allows the tail of f to be not strictly log-convex but
simply to be bounded by one that is. Desgagné and Angers (2007) then prove that
the observation is asymptotically rejected as x — oo if f has a regular log-convex
right-hand tail and

(E3) limy_ o0 g(y)/f(y) =0.

Although the conditions for f and g to have regular log-convex tails are complex,
the final condition (E3) is particularly straightforward. In particular, it shows im-
mediately that rejection occurs for ¢ densities whose degrees of freedom differ by
an arbitrarily small amount.

We have considered four different formulations: Dawid’s (with O’Hagan’s vari-
ant of his conditions), credence, RV-credence and regular log-convexity. Each ap-
proach proves rejection of the information in the density f when it conflicts with
the information in g, under different combinations of f and g. The case when
both f and g are ¢ densities is covered in every one of the formulations, but each
encompasses combinations that are not covered by the others.

e The theory of credence requires both f and g to have finite credence, whereas
other approaches allow g to be any kind of distribution subject only to it being
lighter-tailed than f in the sense of condition (A3), (B3), (D3) or (E3). Andrade
and O’Hagan allow g to be rapidly varying as well as regularly varying, which
for instance includes the case of g being normal.

e Distributions with finite credence can have tails that “wiggle” in ways that are
not allowed by Dawid’s conditions or regular variation.

e A density f(y) whose tails are proportional to a ¢ density with d degrees of free-
dom multiplied by a slowly-varying function like log y does not have any cre-
dence value but is covered by the regular variation approach with RV-credence
d + 1. Desgagné and Angers prove that such a f is heavier-tailed than the ¢
distribution with d degrees of freedom and the observation will be rejected in
the limit if g has that ¢ distribution.

e There are other kinds of distribution, for instance those whose tails decay like
exp(—y?) for 0 < b < 1, that are covered by Dawid’s conditions and by Des-
gagné and Angers’ log-convexity conditions, but these are lighter-tailed than the
¢ distributions.

For practical Bayesian modelling, interest usually focuses on more heavy-tailed
distributions, for which there may be a more rapid transition to the appropriate
form of resolution as conflicts arise. In practice, it is the distributions with poly-
nomial tails that are of greatest importance, particularly the ¢ distributions, and
particularly those with low degrees of freedom.
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2.4 Asymptotic results for moments
Dawid showed that subject to the additional condition
(Ad) [ m0)k(©)g(®)db < 0o

the posterior expectation of m(6) tends to its prior expectation. In the case of f
having a ¢ distribution with d degrees of freedom, this means that the posterior
moments of order up to n converge to the corresponding prior moments if g is
normal, or if g is a 7 density with degrees of freedom d’ > d + p + 1. The same
will be true under the alternative conditions of O’Hagan (1979) and Andrade and
O’Hagan (2006). In fact, again we find empirically that this convergence holds
if d > d + p, but O’Hagan (1990) only obtains the same requirement, d’ > d +
p + 1, using the credence approach. The tighter condition d’ > d + p is proved
specifically for the case of two ¢ distributions by Fan and Berger (1992), at least
for the mean and variance (p = 1 or 2), but this issue is now fully resolved by
Desgagné and Angers (2007). Their condition for convergence of the posterior
expectation of m(0) to its prior expectation is simply

(E4) limy_com(y)g(y)/f(y) =0.

2.5 Some related research

Some authors have considered conditions under which a particular source of infor-
mation will not be rejected. For instance, O’Hagan (1979) showed that if f is a nor-
mal density then the observation will not be rejected, no matter what form g might
take. He remarks that for the double exponential distribution f(y) o exp(—aly|)
the observation x is not rejected for any g but its influence on the posterior dis-
tribution is bounded. This is explored further by Pericchi and Smith (1992) and
Mitchell (1994), and generalised to other distributions with bounded influence by
Pericchi and Sans6 (1995). (Note that much of the work on a single observation is
focused on the dual case of rejecting a heavy-tailed prior distribution rather than
a heavy-tailed observation, but we have recast those findings in the framework of
heavy-tailed f for ease of comparison with the principal results above.)

Others have provided results on the posterior distribution for finite x under some
kinds of heavy-tailed distributions for f or g. O’Hagan (1981) showed that when
g is normal and f is heavy-tailed, so that as x — oo the observation will ulti-
mately be rejected, then for some finite x the posterior variance will reach a lo-
cal maximum before decreasing to its asymptotic value. He characterised this as
resulting from “indecision,” the posterior accommodating both conflicting infor-
mation sources before resolving the conflict by rejecting the observation. Fan and
Berger (1992) present a number of results for the case when both f and g are
t distributions, such as conditions for the posterior density to be unimodal and
an expression for how large the local maximum of the posterior variance can be.
Meeden and Isaacson (1977) obtain some results on the rate of convergence of the
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posterior mean to the prior mean. Goldstein (1983) shows that the convergence is
monotone in distribution when g is strongly unimodal (log-concave).

Choy and Smith (1997) considered scale mixtures of normal distributions for f,
as originally envisaged by de Finetti (1961), in the special case when g is normal.
They showed that the family of stable distributions are heavy-tailed and result in
rejection of the observation, while the exponential power family with densities
f(y) o exp(—aly|?) lead to bounded influence rather than rejection for values of
b greater than 1 (the double-exponential distribution) but less than 2 (the normal
distribution). Exponential power distributions are also covered as a special case
in Angers (2000), who extends O’Hagan’s definition of credence. Angers defines
f(y) to have p-credence (b, a, c, d) if it can be bounded by multiples of

exp(—a(y*)?)(y*) " log™ (y*), (2.1)

where (to avoid singularities at the origin) y* = max(]y|, yo) for some positive yo.
By convention, a = 0 when b = 0. Angers refers to the distributions with densi-
ties proportional to (2.1) as the generalised exponential power (GEP) family. His
results generalise those of O’Hagan (1990), whose credence ¢ corresponds to p-
credence (0, 0, ¢, 0), and in particular show that the exponential power family with
p-credence (b, a, 0, 0) is heavy-tailed for b < 1 (a finding that is also covered by
O’Hagan, 1979, and proved in a different way by Choy and Walker, 2003). Des-
gagné and Angers (2007) redefine p-credence: f(y) is now said to have p-credence
(b, a, c,d) in its right-hand tail if
lim f) =K
=% exp(—a(y)?) (v*)~¢log ™ (y*)
for some K. With this modification they show that the distributions with p-

credence (b, a,c,d) for b < 1 have regular log-convex tails, so that their basic
results apply for any f and g in this wide class of densities.

2.6 Gaps in the theory

For the important case where both f and g are ¢ densities, or where one is a ¢ and
the other is normal, we have quite comprehensive results on conflict resolution.
Bayesian modellers may wish to use other kinds of heavy-tailed distribution, but
it is likely that all cases of practical importance will be covered by the theory
of Desgagné and Angers (2007). Their results cover in particular the wide class
of distributions with tails in the GEP family, and do not require densities to be
symmetric or to have the same tail behaviour in both tails.

3 General location parameter models

3.1 Multiple observations, single location parameter

The next simplest situation is where we have n observations, x1, x3, ..., X,, rather
than just one. We suppose that they have densities f;(x; —0),i=1,2,...,n, so
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that 6 is a location parameter for every observation but they can have different
distributions. The case when f; = f for all i is the important special case of a
sample of i.i.d. observations. The prior distribution for 6 is g as before. Interest
now focuses on rejection of outlying observations, with the posterior distribution
asymptotically tending to the posterior that would arise from the nonoutlying ob-
servations alone. In this context, it is useful to think of there being n + 1 sources
of information which might conflict with each other, and to write the prior distri-
bution as

Jo(xo —0) =g(0).

In this formulation, xq is a mean or location value for the prior distribution, and
the prior conflicts with the data if xg is far from the other x;s. Notice that the
right-hand tail of g becomes the left-hand tail of fj.

First, suppose that x, is a single outlier, so that we imagine x, — oo while
all the other xg, x1, ..., x,—1 remain fixed. This can be reduced to the problem of
Section 2 if we redefine g to be the posterior distribution of 6 after observing the
n — 1 fixed observations, and f is the density f, of the outlying observation. The
conditions discussed in Section 2.3 now determine when the outlying observation
is rejected, but in order to apply these we need to be able to identify the properties
of the right-hand tail of the redefined g. If we wish to study rejection of several
outliers, then we also need to consider the tail behaviour of groups of observations.

Both O’Hagan (1979) and Desgagné and Angers (2007) address outlier re-
jection in these general terms. Consider m groups of observations, identified by
subsets S;, j =1,2,...,m, of the indices. Thus, U?:l §;=1{0,1,2,...,n} and
S; NSy =@ when j # j’. We suppose that the observations in group 1 remain
fixed while the other groups move increasing far apart from the first group and
from each other. Formally, for i € §; we write x; = X; + z;, so that x; is a refer-
ence point for group j and the z;s denote deviations of the observations from their
respective reference points. Then we let the reference points x7, x3, ..., X, tend
to oo or to —oo such that the separations |x; — x| all tend to infinity, while the
z;$ remain fixed. For instance, we could have x; = u jw, where u; =0, uz, ..., uy
are fixed and distinct real values and let w — co. We now seek conditions under
which the posterior distribution of 6 tends to the posterior

g O) o [ fitxi —6)

iESl

that would arise given only the information sources in group 1.

O’Hagan (1979) proves that if f; has credence ¢;, i =0, 1,2,...,n, then the
asymptotic rejection of all the other groups occurs provided Cy = max; C;, where
Ci=2ic s; Ci- That is, the group with the largest total credence dominates and
ultimately rejects all the others. In the special case of i.i.d. observations, the largest
group will dominate. (The prior information could count as one of the observations
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if fp has the same credence as the other f;s. Alternatively, it would be ignored if
we assume a uniform prior, since that corresponds to cp = 0.)

Desgagné and Angers (2007) consider the case of m = 2 or 3. First, if the mem-
bers of group 2 all tend to 400, and if the densities f; have regular log-convex
right tails for i € S, then group 1 dominates group 2 provided

li HieSl f(xi - }’)
m —F
y—oe HieSz f(y)

Next, if members of group 3 all tend to —oo, and if the densities f; have regular
log-convex left tails for i € S3 then group 1 dominates group 3 provided

[lies, f(xi —y) _o.

=0.

ygrfloo [lies, F )
Group 1 dominates over both groups 1 and 2, with the posterior distribution of 6
tending to that arising from just observing group 1, if both sets of conditions hold.
Desgagné and Angers (2007) give corresponding results on limits of posterior ex-
pectations. They also provide simpler conditions based on p-credence values for
the case where all the f;s have GEP tails.

Although Desgagné and Angers consider only 3 groups and O’Hagan considers
only symmetric densities, it seems probable that both results could be generalised
to deal with many groups and the possibility of different right and left tails.

It is important to recognise in this model, as in all practical Bayesian modelling,
that different tail thicknesses can lead to different resolutions of conflict. For exam-
ple, if g is a ¢ distribution with credence 9, while each of the f;s is a ¢ distribution
with credence 2 (a Cauchy distribution), then n = 4 observations that are similar
to each other but very far from the prior mean will be rejected, but if n = 5 it is the
prior that is rejected. Such a resolution of conflict would be reasonable in many
situations where we would want to give precedence to the prior over a small num-
ber of conflicting observations but when the weight of sample evidence is enough
we should abandon the prior. Simply using always a Cauchy distribution for every
source of information (for instance, because it is a ¢ distribution with just about the
heaviest tail and so leads to the swiftest resolution) is not good modelling practice.

3.2 Multivariate location

For problems with more than one parameter, the theory is far less complete. The
first generalisation of the single location parameter that we can consider is the
multivariate location parameter, where one or more observations X; are distributed
with densities f;(x; — 6),i =1,2,...,n, where now x; and # are vectors of p
elements, and @ has prior density g(6). Hill (1975) addresses the case of a single
observation X in this framework. He presents conditions under which the posterior
distribution tends to the prior distribution as ||x|| — 0o, under a given norm | - ||.
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His conditions are rather complex, but it should be possible to generalise the vari-
ous results presented above for p =1 to this case under natural generalisations of
their conditions. However, additional complications arise.

Hill’s ||x|| — oo supposes the observation tending to infinity in any direction
and his conditions entail f(y) having uniformly heavy tails as ||y|| — oo, but it is
easy to see that different asymptotics might apply in different directions. O’Hagan
and Le (1994) point out that tails of a multivariate distribution can be of different
degrees of thickness in different directions. They contrast two bivariate distribu-
tions, the bivariate ¢ distribution with density

[y oc(1+yi 43973

and the product of independent univariate ¢ densities
HOLy) o (L+yD 72+ 372

If we hold y; fixed and let y, — oo, then f; decays as y, % while f> decays like

Yy 4 50 /> has a heavier tail in this direction (and similarly if we hold y, fixed
and let y; — 00). Yet if we set y; = y» = y and let y — oo, then f] again decays
like y~°® while f> decays as y~8. In this direction, fj is heavier tailed than f>. The
bivariate ¢ distribution f] has uniform tail thickness in every direction; its contours
are circular like those in Figure 2. The product of independent ¢ distributions, in
contrast, has contours which become increasingly star-shaped as we move into the
tails, like those in Figure 4; the tail thickness is different in the y; and y, axis
directions from in any other direction.

O’Hagan and Le (1994) introduce a family of bivariate heavy-tailed distribu-
tions, the bivariate T family, generalising the two forms above. The T (c, ¢y, ¢2)
distribution is defined to have density function

FO1,2) o< (14 v+ 93721+ yP) =21 4 y3) /2, (3.1)

O’Hagan and Le provide several numerical examples to illustrate different asymp-
totics for a single bivariate observation when both f and g have bivariate T distri-
butions. Theoretical results supporting the numerical examples are given by Le and
O’Hagan (1998), who parameterise the bivariate T distributions using s = ¢ + ¢y,
§2 = c+c3 and s3 = ¢+ c1 + ¢;. For instance, they prove that (3.1) defines a proper
distribution if 51 > 1, sp > 1 and s3 > 2.

We will say that f has T-credence s = (s1, 52, s3) if it can be bounded above
and below by multiples of the 7' (s; + so — 53, 53 — 52, 53 — 1) density. Suppose
that f has T-credence s and g has T-credence s’. Le and O’Hagan (1998) prove the
following results.

o If 51 <s|, 52 <s)ands3 < s3, then f has heavier tails in every direction than g.
As x — 00 in any direction the probability that € is in any neighbourhood of
(0, 0) tends to 1. In this case, the observation is rejected.
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o If 51 > s, 52 <5 and min(s3, 53) > 5] + 52, then as x — oo in any direction
the probability that € is in any neighbourhood of (0, x7) tends to 1. In this case,
the observation is rejected in respect of learning about 61 but it is the prior
information that is rejected in respect of learning about 6;.

Le and O’Hagan prove these and other results to illustrate the variety of conflict
resolutions that are possible with f and g in this family of bivariate heavy-tailed
distributions. Their findings, however, barely scratch the surface of the behaviour
of heavy-tailed multivariate distributions. First, even for this bivariate family, their
theorems do not exhaust all the possible combinations of s and s’ triples; second,
this family does not by any means exhaust the possible bivariate forms of heavy
tailed density; third, it is surely true that even more complexity will be possible in
three or more dimensions.

It seems likely that quite general results could be proved to the effect that if f
has heavier tails than g in every direction, then as ||x|| tends to infinity for any
norm the observation will be rejected and the posterior density will tend to g in
the limit. However, not only are there many more ways to resolve the conflict but
these ways are also practically important as the next section demonstrates.

3.3 Exchangeable locations

A closely related model is the one-way analysis of variance model, which we write
here in a general hierarchical form.

1. Observations x; have densities f;(x; — 6;) fori =1,2,..., p. Often we have
replication and would suppose that observations x;; have densities f; (x;; — 6;)
fori=1,2,...,pand j=1,2,...,n;.

2. Parameters 6; have independent densities g; (6; — &) given &,i=1,2,..., p.

3. The hyperparameter £ has density i (§).

Typically, the 6;s all have the same density given &. This is the case of exchange-
able parameters. Similarly, the observations typically have a common density, but
the extra generality of allowing different densities f; and g; may sometimes be
useful in practice. Note that we can reduce this model to the multivariate location
model of Section 3.2 by integrating out the hyperparameter &. Thus,

p
2(0) =/h<s> [ 8 —&)de
i=1

and f(x —0) = f:] fi(x; — 6;). However, the resulting distribution g may be
complex to deal with, and we may also be interested in inference about &. It is
therefore usual not to collapse the hierarchical model.

The analysis when all of the distributions are normal is straightforward and
widely used in Bayesian applications, but more reasonable posterior behaviour in
conflict situations will be achieved by using heavy-tailed distributions. Based on
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Figure 5 Exchangeable means, no conflict.

the results in previous sections, we can speculate on how conflict will be resolved
with the aid of some diagrams.

Figure 5 shows a situation when there is no conflict. In this diagram, the hori-
zontal locations of the boxes represent the observations and the posterior parameter
estimates. The vertical locations are simply arranged to show the different levels
of the hierarchy. The lines between boxes indicate the distributions, linking each
box to its location parameter in the next level of the hierarchy, and we can think of
each line as acting like a spring to pull the corresponding pair of boxes together.
The observations x; have fixed values. They are grouped together, with no apparent
outliers. The corresponding estimates of the ;s are shrunk together by the hierar-
chical model, because in addition to being linked to the corresponding x; they are
linked to &. The relative strengths (precisions) of the distributions determine how
much shrinkage occurs. Finally, £ is linked to its prior mean, another fixed point
in the diagram, and we can see that this has pulled £ a little way from the centre
of the 6;s. This is the kind of situation that would apply with normal distributions,
and would be qualitatively the same with heavy-tailed distributions when there is
no conflict. Conflict can arise by moving any of the fixed points sufficiently far
apart.

Figure 6 shows such a situation, where x, is an outlier, lying far from the other
x;s (and from the prior mean of &). The resolution of this conflict depends on the
weights of the different tails. In Figure 6, it is supposed that f, has thinner right-
hand tail than g, and so the prior has been rejected. This is indicated in Figure 6
by the absence of the link represented by g,,. (We can suppose that the spring has
broken under the strain, and think of tail thickness as determining the ability of a
spring to stretch without deforming and ultimately breaking.) As a result, 6, is not
shrunk towards &, and its posterior distribution is given solely by the observation
term f},(x, —0)p).

The conflict would be resolved differently if g, had thinner tails than f),. Then it
would be the f), link that broke, with the result that the posterior distribution of 6,
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Figure 6 Exchangeable means with an outlier.

would be based only on that of £. If there is replication, then outlying observations
within each group might be rejected, and then the balance between rejecting the
data and rejecting the prior might depend on how many (nonoutlying) observations
are in a group. This kind of heuristic reasoning was presented in O’Hagan (1988)
and illustrated with a numerical example. But such behaviour cannot be proved
just from the theory regarding a single location parameter or results in the preced-
ing Section 3.2. However intuitively reasonable the suggestions may be, they are
unproven and could be wrong. For instance, the tail thickness of £ may matter.

Angers and Berger (1991) prove that the behaviour described in Figure 6 arises
in the specific case where the f;s are normal and the g;s are Cauchy. Choy and
Smith (1997) give numerical examples of the same behaviour when the g;s have
other heavy-tailed distributions.

3.4 Gaps in the theory

We have quite complete theory for the case of many observations and a single
location parameter, as set out in Section 3.1. Unfortunately, in models with two
or more parameters we have only a few sparse results. We need more general
theory of multivariate heavy-tailed distributions, addressing more of the potential
complexity that is opened up by allowing different tail thicknesses in different
directions. We need some theory dealing with the interaction of heavy-tailed dis-
tributions at different levels of a hierarchical model. Even the simplest of all hierar-
chical models has not been addressed fully, and yet the norm in practical Bayesian
statistics is to build much more complex hierarchical models. The combination of
hierarchical models and more general heavy-tailed distributions is illustrated by
the proposal in O’Hagan (1988) of the following exchangeable prior distribution
for @ = (61,602, ...,0)):

@) =[Tu@ -6,

i<i’
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where u is a ¢ distribution or other heavy-tailed distribution. A diagram like Fig-
ure 5 for this case would have a line (spring) connecting every pair of 6;s. O’Hagan
argues that then a group of outlying x;s could lead to the 6; estimates being shrunk
within each group but with no shrinkage between groups. This would be a very
natural resolution of conflict between groups, but does not happen with the hier-
archical forms discussed in Section 3.3. O’Hagan illustrates this behaviour with a
numerical example, but no proof is offered.

In the usual linear regression model y; = X + ¢;, the parameters 8 are often
thought of as analogous to location parameters, generalising the case of x; 8 = 6.
West (1984) considers this model, allowing both the ¢;s and 8 to have heavy-
tailed distributions. He argues, on the basis of the score or influence functions, that
individual observations or individual components of the prior distribution may be
rejected in cases of conflict. Again, though, no formal proof or theory has been
developed for linear models.

3.5 Scale mixtures of normals

One way to generate heavy-tailed distributions, and ¢ distributions in particular, is
as scale mixtures of normal distributions. Thus, if fy is the density of the N (0, w)
distribution and we let w have a density p(w), then integrating out w gives the
density

fo) = 2exp(—0~y?/2) p(0) do.

1 o0
— 1)
7
If p is an inverse-gamma density, then f is a ¢ density. Other choices of p(w)
can give exponential power distributions or stable distributions. If the tail of p is
sufficiently heavy, then f will be a heavy-tailed distribution. The representation as
a scale mixture of normals can facilitate computation of the posterior distribution
by MCMC; see, for instance, West (1981, 1984), Carlin and Polson (1991), Choy
and Smith (1997). Essentially, rejection of an information source represented by a
scale mixture arises through the posterior distribution of w concentrating on larger
values of w. As the posterior distribution of @ “goes to infinity,” the information is
deemed increasingly uninformative and it is ultimately rejected.

With multiple observations, heavy-tailed distributions f; can be modelled as
scale mixtures, each with its own w;. Therefore, individual observations can be
rejected when they conflict with the remaining observations, and the posterior es-
timates of the w; s provide an indication of which observations are being discounted
as outliers. However, it is useful to clarify here the distinction between this use of
scale mixtures and a similar construct. In all of the models, we have consider thus
far, we have effectively assumed known variances.

Suppose we have a sample from a normal distribution with unknown mean and
variance. Thus, x; has the distribution N (6, o2) with both 6 and o2 unknown. If
o2 has an inverse-gamma distribution, which is the standard conjugate prior dis-
tribution, then after integrating out o> each x; has a r distribution. But these are
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not independent ¢ distributions. Instead, the x;s jointly have a multivariate ¢ dis-
tribution. The difference is substantial when conflict arises. Instead of being able
to reject individual observations as outliers (corresponding to large individual w;
values), we can only reject the entire sample or none of it. This is because there
is just a single mixing scale parameter o2, Large observations (conflicting with
the prior distribution) will, given a suitably lighter-tailed prior, lead to a large pos-
terior estimate of o2, and thereby the whole sample is discounted and eventually
rejected. In practice, it is very important to give each information source its own
; (which usually means having independent heavy-tailed distributions), so that
each may be rejected in the appropriate situation.

4 Adding a scale parameter

4.1 Single scale parameter

Almost all applied Bayesian models will have one or more unknown scale param-
eters. The presence of scale parameters raises two questions about heavy-tailed
models and the resolution of conflicts. First, if we focus on posterior inference
about the scale parameter(s), do heavy-tailed models result in rejection of sample
information or prior information regarding the scale parameter(s)? Second, if we
focus on location parameter(s), does the presence of unknown scale parameters
change the theory in Sections 2 and 3?

Consider the situation where we have a single observation with density
6~! f(x/0), so that 6 is a scale parameter, and let the prior density of 6 be g(0).
When x becomes large, a conflict arises between the observation, which suggests
0 should have a value in the neighbourhood of x, and the prior which says 6 should
have values in the neighbourhood of the finite and fixed prior mean.

Before proceeding to study this further, it is useful to ask whether it can be dealt
with by transformation to the location parameter case. For, if we write x* =logx
and 6* = log#, then the density of x* is f*(x™ — 6*) where f*(y) =&’ f(e”).
Section 2 then deals with the asymptotic behaviour of the posterior distribution
of 0* as x* — oo. It will say when the observation is ultimately rejected and the
posterior distribution of 8* tends to its prior distribution, and will thereby say
when, as x — oo the posterior distribution of 6 tends to its prior distribution g.
And using duality, we can also say when the prior distribution is rejected and the
posterior distribution of 6 becomes centred around the observation x. However,
this theory is of limited use in practice. One reason is that in order for this kind
of rejection to occur, we need either f* or the corresponding prior distribution
g™ to be heavy-tailed, but heavy-tailed distributions on the logarithm convert to
extremely heavy-tailed distributions in the original formulation. For instance, if 6*
has a ¢ prior distribution, then the prior distribution of 6 is a log-¢ distribution. This
distribution is so heavy-tailed that it does not have any moments, no matter how
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many degrees of the freedom the original ¢ distribution for 6* had. So one problem
is that the theory of Section 2 requires f or g to have the form of distributions that
are rarely used, and seem unrealistic, in practical Bayesian modelling. The other
problem is that in order for x* to become large enough for rejection to occur, x
needs to be enormous, so rejection only arises when the conflict is very extreme.

We therefore consider the original problem, noting that there is a duality also in
this case. Writing ¢ = x /6, we have x = 8¢, where 6 and ¢ have independent dis-
tributions. Therefore, when x becomes large the conflict requires that either 6 or
¢ (or both) must take a large value relative to their distributions, g and f, respec-
tively. We consider the case where the resolution will be to reject the observation,
and so ask under what conditions the posterior distribution of 6 will remain finite
with probability 1 as x — oo.

This question is answered by Andrade and O’Hagan (2006) when f has regu-
larly varying right tail. If the RV-credence of f is c, they have a single condition
for g to be lighter-tailed than f.

(F) For some § > 0, [0 ~1g(0)dh < .

In particular, if g also has regularly varying right tail with RV-credence ¢’, then
condition (F) simply requires ¢ > ¢. Andrade and O’Hagan (2006) prove that then
the limiting posterior density of 9 is

0 1g(®)
Joo 0 1g(0)do

Notice that this is not the prior distribution. Andrade and O’Hagan refer to (4.1) as
a partial rejection of the observation. One way to see why this happens is to look
again at the log transformation. Given that f(y) has a tail like y~¢ then the tail
of f*(y) is asymptotically exp(—(c — 1)y), so in the log scale we have a location
parameter model with a tail like that of an exponential (or double exponential)
distribution. This distribution is not sufficiently heavy-tailed to lead to rejection of
the observation, but instead has bounded influence. That bounded influence is seen
in the additional term 6! in (4.1).

Another way to look at this result is to generalise the idea of rejection. This is
most readily appreciated in the dual framework where it is the prior information
that is rejected. In the location parameter models, rejection of the prior means a
limiting posterior that is the same as would have been obtained from an improper
uniform prior. A uniform prior is, however, not usually the preferred representation
of weak prior information about a scale parameter; a density proportional to 6!
is more often chosen for its invariance properties. In the dual form of (4.1), the
limi{[ing posterior corresponds to an improper prior with density proportional to
0.

Andrade and O’Hagan (2006) also consider the case of multiple observations,
and prove that when there are two or more outlying groups the group with largest
total RV-credence dominates and all the other information sources are “partially
rejected.”

4.1
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4.2 Location and scale parameters

We now consider the case of a model with both location and scale parameters.
Suppose that x has density 0~ f((x — w)/0), so that the location parameter is
and the scale parameter is . What might be appropriate resolutions of the conflict
between observation and prior distribution as x — oco? If the prior information on
0 is strong and light-tailed, then we may expect the posterior for u to behave as in
the discussion of location parameters. Conversely, if the prior information on w is
strong and light-tailed we should expect the posterior distribution of 8 to behave
as in Section 4.1. It is nevertheless not obvious how the posterior distribution of
the other parameter would behave (for instance, if the observation is rejected in
the posterior for u will it also be rejected for the posterior of 67), and when both
parameters have heavy-tailed prior distributions, it is less clear what resolutions
are available.

O’Hagan and Andrade (2011) deal with this model, but only for a specific form
of prior distribution. They assume that the posterior distribution of © given 0 has
the form 6! g(u/0), while the prior density for 6 is k(0). This prior structure
imposes some association between u and 9, effectively making 6 a scale parameter
for the prior distribution of u as well as for the observation. It reflects the conjugate
prior structure for normal observations with unknown location and scale, but it is
nevertheless a restrictive form that will not always be reasonable in practice.

With this model, they assume that all three densities have regularly varying right
tails, such that the RV-credences of f, g and & are ¢, ¢’ and ¢”, respectively. They
prove that as x — oo the following three forms of resolution are possible.

1. If ¢ < min(c¢/, ¢”), then subject to additional regularity conditions on f the
observation is “partially rejected” and the posterior joint distribution of u and
6 is in the limit proportional to Oc_lg(,u/e)h(e).

2. If ¢’ < min(c, ¢”), then subject to additional regularity conditions on g the prior
information on p is “partially rejected” and the posterior joint distribution of ©
and 6 is in the limit proportional to 06/_1f((x —w)/0)h(6).

3. If ¢” < min(c, ¢’), then the prior information on 6 is “partially rejected” and the
posterior joint distribution of © and 6 is in the limit proportional to o< f(x—

w)/0)g(/0).

The case of multiple observations is more complex. O’Hagan and Andrade
(2011) consider only a single outlying observation, for which they can apply the
above results by absorbing the remaining observations into the prior information.
With more than one outlying observation, there is information about 6 arising from
differences between the outliers. It may be possible for the outliers to be rejected
in terms of the information they provide about p but for them still to provide infor-
mation about 6. It may even be possible for the outliers to be rejected in terms of
information about p but for the prior information about 6 to be rejected. However,
these cases have not been explored and no theoretical results are available. Nor is
there any literature on other prior structures.
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One more article is worthy of mention here. Haro-Lépez and Smith (1999)
consider a p-dimensional vector observation X = (xi,...,x,) with a joint den-
sity in the class of v-spherical distributions introduced by Ferndndez, Osiewalski
and Steel (1995),

07" f(v(x — p)/6),

where v is a scalar function with the property that v(ka) = kv(a) for any k > 0.
If we integrate the scale parameter 6 out of this model, we obtain a location-
parameter model that generalises the work of Hill (1975), because the function
v does not have to be a metric. Such distributions still have the same tail thick-
ness in all directions, and so will also involve rejection of the whole observation
x or none. However, Haro-Lépez and Smith (1999) also provide results for both
location and scale, particularly concerning when the observation x has bounded
influence on the posterior expectation of a general function m(u, 9).

5 Other kinds of parameter

We have so far considered only models with location and/or scale parameters, but
many important statistical models do not fit these restrictive forms. Perhaps the
simplest such models are where the observations have distributions from the gen-
eral exponential family. With the exception of the normal and the log-gamma dis-
tributions, exponential family distributions are not location-scale. Suppose that the
observation x follows an exponential family distribution with canonical parameter
6 with an arbitrary prior distribution for 6, and consider the posterior expectation
of a function m(6#). Extending a result of Meeden and Isaacson (1977), Pericchi,
Sansé and Smith (1993) show that if m(0) is bounded for large 6 by a power of
6 then, subject to some regularity conditions, the posterior expectation of m(6)
tends to m(f) as x — oo, where 6 is the posterior mode. They also show that 6
may be found by solving a simple equation. It is now possible to explore cases
under which the observation (or the prior distribution) is asymptotically rejected
by studying the behaviour of 6.

As an example, Pericchi et al. (1993) consider a Poisson likelihood, f(x|0) o
exp(fx — e?). They establish that: (i) if the prior is normal, the posterior mean of
the mean parameter ¢? diverges from the observation, and thus the prior has un-
bounded influence; (ii) if the prior is a ¢ distribution the posterior mean approaches
x, and so the prior is discarded; (iii) if the prior is logistic with o2 then E[e?|x]
behaves like x — reflecting a situation of bounded influence.

\/_7

6 Discussion

The substantial literature reviewed here is at the heart of a “Theory of Conflict
Resolution,” and one of our objectives in this work has been to stimulate the con-
tinuing development of such a theory. There are many different results showing
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how, when heavy-tailed distributions are used to represent different sources of in-
formation in a Bayesian model, then these sources of information can be wholly
or partially rejected in the limit as conflicts between information sources become
larger. Such results allow the modeller to achieve a kind of “built-in robustness.”
But we have also seen, as O’Hagan (1988) asserted; that it is not enough to simply
employ arbitrary heavy-tailed distributions, such as the Cauchy distribution or a ¢
distribution with 2 degrees of freedom. Instead the modeller needs to think about
what conflicts may arise and how they should be resolved, and then should use the
theory to apply heavy-tailed distributions to the various information sources with
tail weights that achieve the required behaviour.

This theory is one essential component in the specification of the prior and the
likelihood. When eliciting such distributions, the practitioner’s substantive knowl-
edge and past experience, together with careful introspection, will typically allow
the centre and spread of the distribution to be determined rather well, but it is much
more difficult to elicit meaningful beliefs about tails. In this context, the theory of
conflict resolution is a powerful tool for determining the relative weights of tails. It
is quite natural to ask the practitioner, for example, “What if the next observation is
in conflict with prior expectations, would you believe the data (the prior is wrong)
or the prior (the data is an outlier) or both (I would not decide yet, but will wait un-
til more information is gathered)?” The three different answers for the “What if”
question immediately settle the question of tail characteristics of likelihood and
prior. Heavy-tailed distributions can be used precisely to achieve whatever resolu-
tions of conflicts are judged to be appropriate. For instance, if it is felt that when
observations conflict with the prior information the prior should be rejected, then
this can be achieved by a suitably heavy-tailed prior distribution. Equally, if it is
felt that extreme data should be discounted as outliers, then this can be achieved
with appropriate heavy-tailed distributions for the data. And if the judgement is
that a small number of observations conflicting with the prior might be discounted
but that a larger number should lead to rejection of the prior then this, too, can be
“built-in” through careful choices of tail weights.

The existing theory gives us clear guidance on how to model prior and like-
lihood tails in order to obtain the desired behaviour for a “what if” question as
simple as the one above. For more complex and realistic models, the Theory of
Conflict Resolution in Bayesian Statistics is still lagging behind. The theoretical
results in the literature are almost exclusively confined to models far simpler than
those that are routinely used in practice, because in the last two decades Bayesian
Statistics has undergone a spectacular development in computational capabilities.
Nowadays, highly complex models are the standard, since complexity is not overly
expensive. Comparatively, a much smaller effort has been devoted to understand-
ing conflict resolution.

The progression in increasingly complex models reviewed here already makes
it clear just how little we know about how those more complex models will behave.
The results in simple models do not carry over automatically. There is a pressing
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need for more research, both to fill the gaps in what has been done so far and to
extend to ever more complex models. Specifically, we believe that the following
gaps in the existing literature need to be filled in order to build understanding and
confidence in the use of heavy-tailed models in Bayesian analysis.

e Hierarchical models. With three or more layers of hierarchy, and even with
known variances throughout, we do not know how the posterior behaves when
all layers have heavy-tailed models.

e Unknown variances. In models with a single location parameter and a single
scale parameter, we do not know how the posterior behaves when there are mul-
tiple outlying observations. We do not even know what happens with a single
observation when the joint prior distribution does not fit the structure assumed
by O’Hagan and Andrade (2011), for instance when the parameters have in-
dependent priors. There is no theory at all for models with two or more scale
parameters, such as routinely arise in hierarchical modelling.

e More general models. An important class of models in which heavy-tailed mod-
els have been used but for which there is almost no theory is the linear and
generalised linear models. Research is needed here and in time-series models.
Although there has been some work on observations with exponential family
distributions, the whole area of models that do not fit the structure of location
and/or scale parameters is more or less unexplored.

e Other questions. The more abstract question of what constitutes a source of in-
formation demands careful study. Observations with independent ¢ distributions
behave like separate information sources but multivariate ¢ distributions behave
like a single source. It is not just a matter of independence, because in the bivari-
ate priors of (3.1) the parameters are generally not independent and yet it seems
that each of the three components represents a separate source. which can be
separately rejected.

One motivation for the authors in preparing this review was to stimulate re-
search to address some of these questions. Computational power may come to our
aid in this endeavour. On the one hand, it means that we are modelling complex
systems to make powerful and subtle predictions without a fundamental insight
into how the different components of modelling interact, at least in extreme cir-
cumstances. On the other hand, however, computation may be used to educate the
intuition in extreme circumstances of conflict, to at least enable us to conjecture
likely behaviour. Indeed, several such conjectures have already been identified in
preceding sections. Research into the Theory of Conflict Resolution may proceed
on two fronts, perhaps being led by insights revealed through computation, but
ultimately it is vital that intuition is followed up by formal proof.
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