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Abstract. Wald-type test statistics based on asymptotically normally dis-
tributed estimators (not necessarily maximum likelihood estimation or best
asymptotically normal) provides an easy access to have tests for statistical hy-
potheses, far beyond the parametric paradigms. The methodological perspec-
tives rest on a basic consistent asymptotic normal (CAN) condition which is
interrelated to the well-known local asymptotic normality (LAN) condition.
Contiguity of probability measures facilitates the C(L)AN condition in a rela-
tively easier way. For many regular families of distributions, when statistical
hypotheses do not involve nonstandard constraints, verification of contigu-
ity of probability measures is facilitated by the well-known LeCam’s First
Lemma [see Hájek, Šidák and Sen Theory of Rank Tests (1999), Chapter 7].
For nonregular families, though contiguity may hold under different setups,
CAN estimators are not fully exploitable in the Wald type testing theory. This
simple feature is illustrated by a two-parameter exponential model. Guided
by this simple example, mixture of distributions are appraised in the context
of Wald-type tests and the so-called χ2- and E-test theory is thoroughly ap-
praised. A general result on counter examples is presented in detail.

1 Introduction

The theory of likelihood ratio tests (LRT) has been extensively studied in the lit-
erature. Most of these developments have taken place in the so-called regular case
where the Cramér–Rao regularity conditions hold. This development is most ef-
fective for the so-called exponential family of densities for which sufficiency plays
a pioneering role. In such cases, for statistical inference, the likelihood function
can be reduced to the distribution of sufficient statistics alone, and hence, exact
properties of tests and estimates can be studied under relatively simpler setups.
For densities not necessarily belonging to the exponential family where sufficiency
may not hold, LRT works out in some cases in a manageable way. However, even
for the exponential family, excepting for some simple cases, an exact treatise of
LRT may not be feasible. To overcome this primary drawback, statistical inference
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has been extensively developed in an asymptotic setup where the sample size is
allowed to increase indefinitely with a view to use appropriate large sample tools
in examining good approximations. It is also hoped that such asymptotic methods
could provide some justifications for moderate sample sizes as well. The evolution
of resampling methods has added much more strength to this intermediate sample
size situation. In this setup, nonregular cases are to be dealt with on a more or less
case by case basis. With respect to the asymptotic theory of statistical inference,
the methodology has incorporated several important concepts like the LAN (local
asymptotic normality) and its variants, regular family of estimators, contiguity of
probability measures, Hellinger distance, and many useful tools from probability
theory to broaden the reach of asymptotic methods in a more general setup. In the
context of hypothesis testing, in asymptotic setups, the equivalence of the LRT,
Wald test and Rao’s score test have been extensively studied in the literature. In
a general multiparameter setup, Roy’s union-intersection principle has also been
advocated. In the present study, we like to examine the role of contiguity of prob-
ability measures in this setup without confining us to the regular case only or to
simple hypotheses testing. The preliminary notion is outlined in Section 2. Sec-
tion 3 deals with some nonregular cases where contiguity does not hold. Section 4
is devoted to some nonparametric inference problems and in Section 5 we briefly
appraise a problem in constrained statistical inference. Section 6 deals with some
general observations and concluding remarks.

2 Preliminary notions and standard asymptotics

In statistical inference, covering both estimation theory and hypothesis testing, the
estimators are obtained through suitable estimating equations and tests of signifi-
cance involve suitable test statistics. Whenever such statistics are linear the usual
central limit theorems can be incorporated in providing a well manageable asymp-
totic theory which may also provide good indications of moderate sample size per-
formances. However, often the estimating equations are either implicit functions
or are highly nonlinear. Similarly, the likelihood ratio tests may involve highly
complex statistics for which a direct adaptation of suitable central limit theorems
may not be feasible. This feature invariably calls for an in-depth study of the be-
havior of such statistics at the true parameter point as well as local alternatives to
be defined suitably. In this context, the concept of contiguity of probability mea-
sures plays a basic role. A precursor to this development [Hájek (1962)] is the
differentiability in quadratic mean (DQM) [LeCam (1960)] and some related de-
velopments: locally asymptotically normal (LAN) family, locally asymptotically
quadratic (LAQ) family, and the so-called locally asymptotically mixed normal
(LAMN) family.

It may be remarked that DQM ⇒ LAQ while the LAQ is more general than
LAN and LAMN. Contiguity and LAQ setups go very nicely with each other and
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together they cater to the asymptotic theory of a much broader class of estimators
and test statistics. There is also the related concept of regular estimators as for-
mulated by Hájek (1970), LeCam (1979) and Inagaki (1970, 1973). Basically, the
LAQ condition ensures that for a suitable sequence of contiguous alternatives the
log-likelihood function can be well approximated by a quadratic function, and the
LAMN condition specifies further structures on the discriminant of that quadratic
function. A prime utility of contiguity is the simplification of the asymptotic dis-
tribution theory of statistics under such alternatives through a characterization of
their distribution under the null hypothesis. Asymptotic normality of estimators
plays a fundamental role in this context.

Following the lead in LeCam (1960) in laying down the concept of contiguity,
with a systematic account in Hájek, Šidák and Sen (1999), Chapter 7, it is custom-
ary to consider a sequence of testing problem wherein the sample size n is regarded
as a member of a sequence {nν} and a sequence of alternatives {Hν} is formulated
where Hν invokes a close alternative defined by a suitable metric dν separating the
null and the local alternatives. Let Pν be the probability measure under the null and
Qν under the alternative Hν . Then, if for any sequence of events {Aν}, Aν ∈ Aν ,
[Pν(Aν) → 0] ⇒ [Qν(Aν) → 0] as ν → ∞, then dQν is said to be contiguous to
dPν . Contiguity implies that for any sequence of random variables converging to 0
in Pν -probability converges to 0 in Qν-probability as well. However, Qν contigu-
ous to Pν does not necessarily imply that Pν is contiguous to Qν . Further, contigu-
ity does not imply the absolute continuity of Qν with respect to Pν . Also, Pν and
Qν are L1-norm equivalent if ‖Pν − Qν‖ = sup{|Pν(A) − Qν(A)| :A ∈ Aν} → 0,
then contiguity holds in both ways. If Tnν is Aν-measurable, then Tnν → 0 ∈ Pν-
probability implies that it does so under Qν -probability as well.

We define the likelihood ratio statistic Lν as dQν/dPν wherein we let it have
the value 1 when both dPν and dQν are equal to 0. In this vein, LeCam (1960)
characterized contiguity of {Qν} with respect to {Pν} by some basic results, known
as LeCam’s lemmas that we now state as in Hájek, Šidák and Sen (1999).

LeCam’s First Lemma. Assume that Fν(x) = Pν(Lν ≤ x) converges weakly (at
continuity points) to a distribution function F(·) such that∫ ∞

0
x dF(x) = 1. (2.1)

Then, {Qν} is contiguous to {Pν}.

For a log-normal random variable with parameters μ and σ 2, equation (2.1) will
be true when μ = −σ 2/2. We have then the following:

Corollary 1. If under Pν the log-likelihood ration Lν is asymptotically
N (−(1/2)σ 2, σ 2), then {Qν} is contiguous to {Pν}.
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Although the first lemma is a more general result, finding the asymptotic dis-
tribution of the likelihood ratio statistic Lν can be difficult. In real applications it
is the Corollary 1 that is widely used, specially when the alternative hypothesis is
defined in a parametric fashion.

LeCam’s Second Lemma. Let x′
ν = (x1, . . . , xnν ),

dPν(xν) =
nν∏
i=1

fνi(xi) and dQν(xν) =
nν∏
i=1

gνi(xi),

so that

logLν =
nν∑
i=1

log[gνi
(xi)/fνi

(xi)].

Considering the statistic

Wν = 2
nν∑
i=1

{[gνi
(Xi)/fνi

(Xi)]1/2 − 1},

if Wν converges to a N (−(1/4)σ 2, σ 2) under Pν and, ∀ε > 0

lim
ν→∞ max

1≤i≤nν

Pν

{∣∣∣∣gνi
(Xi)

fνi
(Xi)

− 1
∣∣∣∣ > ε

}
= 0,

then the statistic logLν satisfies

lim
ν→∞Pν

(∣∣∣∣logLν − Wν + 1

4
σ 2

∣∣∣∣ > ε

)
= 0

and is asymptotically N (−(1/2)σ 2, σ 2) under Pν .

LeCam’s Third Lemma. If under Pν we have(
Tnν

logLν

)
D−→ N2(μ,�), (2.2)

then under Qν ,

Tnν

D−→ N (μ1 + σ12, σ11),

where μ′ = (μ1,μ2), � = ((σij ))i,j=1,2 and μ2 = −σ22/2.

The third lemma avoids the need for messy derivation of the asymptotic mo-
ments of Tnν under Qν and simply adjusts the null distribution by a shift of the
asymptotic mean. We refer to Hájek, Šidák and Sen (1999), Section 7.1, for de-
tailed discussion of contiguity and derivation of all these powerful results. It is to
be noted further that (2.2) holds in a more general context where Tnν and μi are
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p-vectors, σ12 is a p-vector and σ11 is a p × p positive definite matrix, not nec-
essarily of full rank. Then (2.2) with Np+1 (instead of N2) provides the desired
result under Qν .

In this study, we mainly confine ourselves to the implication of contiguity in
some nonstandard statistical inference problems and some nonregular cases are
reviewed in the light of these developments. In the usual case of maximum like-
lihood estimators (MLE), excepting for the exponential family of densities, the
estimating equations are complex and solutions are implicit. Therefore, there is
a need to have a representation of the MLE in terms of the Rao-score statistics,
and exploit the asymptotic normality of the latter to have parallel results for the
MLE. LeCam’s first lemma has an elegant use in this context. Direct approaches
in deriving the asymptotic normality of MLE are often very cumbersome. In the
same way, contiguity provides a justification of the classical Wald statistics in a
variety of statistical inference problems. We shall see later on that contiguity also
plays a basic role with Wald-type of statistics in a far broader domain encompass-
ing parametric as well as nonparametric (and semiparametric) inference. Another
glaring use of contiguity in statistical inference is in the area of nonparametrics
comprising tests as well as estimates; typically these statistics are highly nonlinear
posing cumbersome methods for studying their asymptotic properties [Chernoff
and Savage (1958)] and the use of contiguity offers a tremendous simplification to
the asymptotic theory [Hájek, Šidák and Sen (1999), Chapter 7]. Even under the
null hypothesis, often, it is difficult to use directly some central limit theorems.
Sometimes some projection into linear statistics is prescribed [Hoeffding (1948),
Chernoff and Savage (1958), Hájek (1968) and others], or matching a hypothesis
of invariance, some permutational central limit theorems are used. General theory
of asymptotics for such statistics studied by Chernoff and Savage (1958), Hájek
(1968) and others involve elaborate analysis, and the use of contiguity renders
tremendous simplification [Sen (1981)]. In this context, there is an elegant uniform
asymptotic linearity in the parameter of interest result that invokes contiguity of
probability measures.

We conclude this section with a general result on Wald type tests beyond the
parametric paradigm where contiguity (LeCam’s Second Lemma) is of consider-
able help.

Wald-type of tests has the maximum flexibility to be adaptable in a broader
situation beyond the parametric paradigms. As such, we consider here a general
multiparameter hypothesis testing problem. For a t-vector θ , we frame a null hy-
pothesis

H0 : g(θ) = 0, vs. H1 : g(θ) 
= 0.

Let Tn be an estimator of θ such that
√

n(Tn − θ) ∼ Nt (0,�), and let �̂ be a suit-
able consistent estimator of �. Also, define Ġ = (∂/∂θ)g(θ) at θ̂ (a k × t matrix)
and let

Q = ̂̇G�̂ ̂̇G′.
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Then the test statistic is Ln = n[g(Tn)]′Q−1[g(Tn)]. Under H0, Ln has asymptot-
ically chi-square distribution with k degrees of freedom. This result is based on
the asymptotic multinormality of the estimator and consistency of Q. In order that
under local alternatives Ln has asymptotically noncentral chi-square distribution,
we need to verify that Q0, the counterpart of Q evaluated at θ is continuous in
a neighborhood of the true value θ0, and Q is consistent for Q0 uniformly in a
neighborhood of θ0, and further, the asymptotic (multi)normality of the estimator
holds uniformly in a neighborhood of the true parameter θ . If H1 is contiguous to
H0 (as can be verified directly without Tn in the picture), then LeCam’s Second
Lemma in the general vector case as has been presented earlier can be employed to
claim this noncentral distribution directly. This scenario is particularly noteworthy
when Tn is nonlinear or an implicit root of some complex estimating equation.
This scenario crops up typically in nonparametric and robust estimation problems.

This standard scenario is based on (i) the contiguity of the alternative hypoth-
esis with respect to the null case, and (ii) asymptotic joint normality of the log-
likelihood function and the statistic Tn. A natural question that arises in this con-
text is what happens if either (i) or (ii) fails, and this is elaborated in the proceeding
sections.

3 Nonregular family of distributions

As has been indicated earlier, contiguity hinges on some intrinsic properties of the
underlying density (a bit simpler than the classical Cramér–Rao regularity condi-
tions for the MLE); in this way, it goes beyond the treatise of the so-called expo-
nential family of densities where sufficiency prevails. Our main emphasis here is
on some nonregular cases where the Cramér–Rao regularity conditions may not
hold and where asymptotically normal distributions may not pertain. In that way,
the role of contiguity of probability measures in such nonregular setups is to be
critically appraised. In this context, either contiguity may not hold under the usual
rate of convergence or nonstandard asymptotic distributions crop up. For better
motivation, we begin with a two-parameter exponential distribution, followed by a
two-parameter uniform distribution.

3.1 Two-parameter exponential distribution

Let X be a random variable following a two-parameter exponential distribution,
with p.d.f.

f (x; θ1, θ2) = 1

θ2
e−(x−θ1)/θ2I (x ≥ θ1), θ2 > 0. (3.1)

Here, θ1 and θ2 are location and scale parameters, respectively. Assuming a ran-
dom sample X1, . . . ,Xn of X, and denoting the associated order statistics by
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Xn:1, . . . ,Xn:n, we may rewrite the likelihood function as

L(θ) = θ−n
2 exp

{
− 1

θ2

[
n∑

j=2

(Xn:j − Xn:1) + n(Xn:1 − θ1)

]}
I (Xn:1 ≥ θ1),

so that we immediately have that the statistics [∑n
j=2(Xn:j − Xn:1),Xn:1] are

jointly sufficient for (θ1, θ2), and that the maximum likelihood estimator for θ1
is θ̂1 = Xn:1. The profile log-likelihood

�(θ2) = −n log(θ2) − 1

θ2

n∑
i=1

(Xn:i − Xn:1)

provides the maximum likelihood estimator for θ2 given by

θ̂2 = 1

n

n∑
i=1

(Xn:i − Xn:1).

We note that this estimator is biased; an unbiased estimator is given by

θ̂∗
2 = 1

n − 1

n∑
i=2

(Xn:i − Xn:1).

Considering the theory discussed in Sen, Singer and Pedroso-de-Lima (2010),
pages 227–231, or Kendall and Stuart (1977) on extreme order statistics, we note
that

n(Xn:1 − θ1)

θ2

D−→ exp(1),

or

n(Xn:1 − θ1)
D−→ exp(θ2).

As for the maximum likelihood estimator of θ2, we have that θ̂2 can be written
as an average of n independent and identically distributed exponential random
variables so that, by the Central Limit Theorem we have

√
n(θ̂2 − θ2)

D−→ N (0, θ2
2 ).

We note that, since the marginal distribution of θ̂1 does not converge to a normal
distribution, a Wald-type statistics would not be appropriate for testing both pa-
rameters θ1 and θ2. We now study how the contiguity property reflects this issue,
formulating the following hypotheses:

Ho : θ = θ ′
0 = (0,1) and Hn : θ = θ ′

1n = (
a/n,1 + b/

√
n
)
,

where Ho could be made more general by allowing the parameters to be any con-
stant (albeit for θ2 the constant should be positive) and the rate of convergence
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(in n) in the local alternatives is chosen motivated by the rate of convergence ob-
served for the marginal distributions of the corresponding maximum likelihood
estimators of θ1 and θ2.

By (3.1), the log-likelihood ratio is given by

logLn =
n∑

i=1

log
f (Xi, θ1n)

f (Xi, θ0)

= log
[
1 −

(
b√
n

+ b2

n

)
+ O(n−3/2)

] n∑
i=1

I

(
Xi ≥ a

n

)

+ a

n

n∑
i=1

I

(
Xi ≥ a

n

)
(3.2)

+
(

b√
n

− b2

n

) n∑
i=1

XiI

(
Xi ≥ a

n

)
+ Op(n−3/2).

If we further consider the expansion of log(1 + x) = x − x2/2 + O(x3), where in
expression (3.2) we take x = b/

√
n + b2/n, then we have

logLn = n

(
− b√

n
+ b2

n
− b2

2n
+ O(n−3/2)

)
1

n

n∑
i=1

I

(
Xi ≥ a

n

)

+ a
1

n

n∑
i=1

I

(
Xi ≥ a

n

)

+ n

(
b√
n

− b2

n

)
1

n

n∑
i=1

XiI

(
Xi ≥ a

n

)
+ Op(n−3/2).

Considering the empirical (or sample) distribution function as Fn(x) = n−1 ×∑n
i=1 I (Xi ≤ x), x ∈ R, we have

logLn =
(
−√

nb + b2

2

)[
1 − Fn

(
a−

n

)]

+ a

[
1 − Fn

(
a−

n

)]

+ (√
nb − b2)1

n

n∑
i=1

XiI

(
Xi ≥ a

n

)
+ Op(n−3/2).
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Rearranging the terms and noting that
∑n

i=1 XiI (Xi ≥ a/n) = ∑n
i=1 Xi −∑n

i=1 XiI (Xi < a/n), we have

logLn = b
√

n(Xn − 1) − √
nbFn

(
a−

n

)
+ b2

2

[
1 − Fn

(
a−

n

)]

+ a

[
1 − Fn

(
a−

n

)]
− b2Xn − (√

nb − b2)1

n

n∑
i=1

XiI

(
Xi <

a

n

)
(3.3)

+ Op(n−3/2).

Now we note that, as discussed earlier, for the first term on the r.h.s. of (3.3),

b
√

n(Xn − 1)
D−→ N (0, b2).

As for the second term on the r.h.s. of (3.3), we note that, under H0,

E

[√
nFn

(
a

n

)]
= √

nE

[
Fn

(
a−

n

)]
= √

nF

(
a

n

)
= √

n(1 − e−a/n) = √
n

[
a

n
+ O(n−2)

]
= a√

n
+ O(n−3/2)

= O(n−1/2),

implying (by the Chebyshev inequality) that
√

nbFn(a/n) = Op(n−1/2). Also,
noting that

√
n(Xn − 1) = Op(1), it follows that the 3rd, 4th and 5th terms on the

r.h.s. of (3.3) converges in probability to (1/2)b2, a and −b2 respectively. The 6th
term is Op(n−1/2). Therefore, we have that, as n → +∞,

logLn
D−→ N (0, b2) + b2

2
+ a − b2 ≡ N

(
−b2

2
+ a, b2

)
.

We therefore conclude that unless a = 0, contiguity does not hold for this simple
nonregular case. However, if we treat θ1 as a nuisance parameter, contiguity will
be intact for θ2 variation in the usual rate n−1/2. If we want to test for θ1 alone
treating θ2 as a nuisance parameter, the above result implies that the contiguity of
Qν to Pν does not hold even for the adjusted rate n instead of n−1/2.

We also note that, for testing hypotheses involving both parameters, one could
think of using the sum of the two test statistics described earlier, that is, taking a n

rate of convergence for θ̂1 with corresponding exponential asymptotic distribution
and

√
n rate of convergence for θ̂2. In this case, Xn:1 ≥ θ1 with probability 1, and

hence, under the null hypothesis, nXn:1 is nonnegative while under H1n, if a is
negative, Xn:1 could be negative with a positive probability. This will distort the
nonnull distribution and affect the efficiency properties (inspite of being based on
sufficient statistics).
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3.2 Two-parameter uniform distribution

Let X1, . . . ,Xn be a collection of independent random variables, with the same
two-parameter Uniform distribution as X, with p.d.f.

f (x; θ1, θ2) = 1

θ2
I (θ1 − θ2/2 ≤ x ≤ θ1 + θ2/2), θ2 > 0.

The likelihood may then be written as

L(θ) = θ−n
2 I (θ1 − θ2/2 ≤ Xn:1 ≤ Xn:n ≤ θ1 + θ2/2),

for which (Xn:1,Xn:n) are known to be sufficient for θ , yielding the MLE as

θ̂ =
(

1/2 1/2
−1 1

)(
Xn:1
Xn:n

)
.

In this nonregular case, it is known that Xn:1 and Xn:n are asymptotically inde-
pendent, and Un = n[(θ1 + θ2/2) − Xn:n] and Vn = n[Xn:1 − (θ1 − θ2/2)] have
asymptotically exponential distributions with parameter θ2. Therefore, it follows
that

n(̂θ − θ)
D−→

(−1/2 1/2
−1 −1

)(
U

V

)
,

where U and V are independent exponential random variables with the common
parameter θ2; none of which is normally distributed. Note that whereas for U + V

the chi-square distribution holds, for U −V that is untenable too. Further, we show
that in this case too, contiguity does not hold even for the rate n instead of n1/2, as
formulated in a simplified form below.

Consider the hypothesis

Ho : θ1 = 0; θ2 = 1 and H1n : θ1 = a/n; θ2 = 1 + b/n.

The log-likelihood ratio is

logLn =
n∑

i=1

log
(

f (Xi | θ1)

f (Xi | θ0)

)

= log
(

1

1 + b/n

)

×
n∑

i=1

I

(
max

{
−1

2
+ 2a − b

2n
; 1

2

}
≤ Xi ≤ min

{
1

2
+ 2a + b

2n
; 1

2

})
.

Note that while a ∈ R, b/n needs to be greater than −1, thus yielding the four
cases: a ≥ or ≤ 0, b ≥ 0 or b ∈ (−n,0). In this context, it may be noted that
for X ∼ Unif[−1/2,1/2], by the Glivenko–Cantelli theorem (Sen, Singer and
Pedroso-de-Lima (2010), p. 157 ), Fn(−1/2)

a.s.→ 0 and Fn(1/2)
a.s.→ 1 as n → ∞.

Thus, depending on the combination of a and b, n(1−Fn(1/2+ (2a−b)/2n)) and
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nFn((−1/2) + (2a − b)/2n) will a.s. converge to 0 and (a − b/2), respectively, if
a − b/2 is greater than 0, and to (a − b/2) and 0 if a − b/2 is less than 0. As such,
some routine computation leads to

logLn
P−→ −b

as n → ∞.
Hence for the two parameter uniform distribution, contiguity does not hold, as

was to be expected. Sans contiguity, we may not be able to use standard results on
nonnull distribution.

4 Statistical functionals and contiguity

Statistical functionals, traditionally arising in nonparametric inference, are typi-
cally nonlinear functions, where traditional central limit theorems may not directly
apply. There are two principal approaches to the study of asymptotic properties of
such functionals: (i) To use suitable projection of such a statistic onto a linear func-
tional, on which standard asymptotics hold, and show that the residual component
is negligible in a well-defined statistical sense, and (ii) formulate some asymptoti-
cally equivalent linear functionals and use contiguity to strengthen this equivalence
to local alternatives too. In the first approach contiguity is not that essential, but
the regularity assumptions may often be a bit more stringent. For example, for U -
statistics, the kernel needs to be of a finite degree so that the parameter is estimable
in a nonparametric way—a condition which does not hold even for the simple case
of population medians or quantiles in general. In the second approach, both con-
tiguity and projection are used in a conjugate way to derive parallel asymptotics,
often under somewhat less stringent regularity assumptions.

In this section we consider some cases to illustrate how contiguity may (or not)
play an important role in the asymptotics of statistical functionals.

4.1 Hoeffding’s U -statistics

Following Hoeffding (1948), we define a general U -statistic

Un =
(

n

m

)−1 ∑
1≤i1<···<im≤n

φ(Xi1, . . . ,Xim),

where the kernel φ of degree m ≥ 1 unbiasedly estimates a parameter θ(F ), a
statistical functional or estimable parameter. If φ(·) is square integrable and we
let φ1(x) = E[φ(X1, . . . ,Xm)|X1 = x], then defining

U(1)
n = n−1

n∑
i=1

m[φ1(Xi) − θ(F )],
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we note that the projection of [Un − θ(F )] to a linear statistic is U
(1)
n and the re-

mainder term has variance O(n−2) [Hoeffding (1948)] so that whenever ζ1, the
variance of φ1(X1), is positive, n1/2[Un − θ(F )] is asymptotically normal with
zero mean and variance m2ζ1. In this derivation, contiguity is neither needed nor
has any additional advantage in dealing with asymptotic results. On the other hand,
ζ1 actually is a functional of the distribution function F and under suitable null
hypothesis, it may be explicitly known. If we consider local alternatives of the
Pitman-type, whenever ζ1(F ) is continuous in F in a neighborhood of Fo, the
asymptotic normality holds for local alternatives. Invoking the asymptotic normal-
ity of the estimator of ζ1 and contiguity it could be easier to verify this uniformity
of the convergence of the estimator and obtain a result parallel to that of LeCam’s
Third Lemma. Otherwise, we need to verify the uniform convergence of the vari-
ance estimator without invoking contiguity. If in the above context, ζ1 = 0 but
higher order variances are nonzero, the asymptotic normality of Un will not hold
but contiguity may still give the uniform consistency of the variance estimator. To
illustrate a simple case of ζ1 = 0, vitiating the asymptotic normality of Un, we
consider the following example:

Suppose that X1, . . . ,Xn are independent and identically distributed random
variables with distribution function F such that E(Xi) = μ(F) and Var(Xi) =
σ 2(F ). To estimate of θ(F ) = μ2(F ), take the kernel φ(Xi,Xj ) = XiXj , i 
= j .
We have that EF [φ(Xi,Xj )] = EF (Xi)EF (Xj ) = μ2(F ) so that the correspond-
ing U -statistic is unbiased for θ(F ). The first-order kernel is then

φ1(Xi) = EF [φ(Xi,Xj )|Xi] = XiEF (Xj ) = Xiμ(F ),

so that when μ(F) = 0, φ1(x) = 0 a.e., and hence, ζ1(F ) = 0. Thus, the parameter
μ2(F ) at μ(F) = 0 yields a Un which is stationary of order 1. Also,

φ2(Xi,Xj ) = EF [φ(Xi,Xj )|Xi,Xj ] = XiXj ,

and, hence, when μ(F) = 0, the variance of the second-order kernel is

ζ2 = EF [(XiXj )
2] = EF (X2

i )EF (X2
j ) = σ 4(F ).

Noting that

Un =
(

n

2

)−1 ∑
1≤i<j≤n

XiXj = 1

n − 1

(
nX

2
n − 1

n

n∑
i=1

X2
i

)
,

if μ(F) = 0, if follows that

n
X

2
n

σ 2(F )

D−→ χ2
1 and

1

n

n∑
i=1

X2
i

a.e.−→ σ 2(F ),

so that
(n − 1)

σ 2(F )
Un

D−→ χ2
1 − 1.



456 P. K. Sen and A. C. Pedroso-de-Lima

In the same example, let F be a continuous distribution function with a proba-
bility density function f (x) a.e., and consider the alternative Hn :F has the mean
μn = n−1/2δ, for some fixed δ. Then the log-likelihood ratio statistic for this se-
quence of alternative is asymptotically normal with mean equal to (−1/2) times
the variance, so that by LeCam’s Second Lemma, contiguity holds. On the other

hand, using the above asymptotic result (that nUn/σ
2 + 1

D→ χ2
1 under H0 : δ = 0),

we could extend the asymptotic distributional result to noncentral χ2
1 distribution

using a direct extension of LeCam’s Third Lemma. We present this extension of
LeCam’s Third Lemma as follows:

Lemma 4.1. Suppose that a statistic Sn is expressible as g(Tn) where Tn satis-
fies LeCam’s Third Lemma regularity conditions. Then the asymptotic distribution
function of normalized Sn under alternative can be obtained by appealing to the
joint distribution of normalized Tn under alternative.

In the above example, the simple χ2
1 distribution under H0 :μ = 0 goes over to

noncentral chi-square distribution with 1 degree of freedom and suitable noncen-
trality parameter. However, in a general case of U -statistics stationary of order 1
or more, the limiting distribution of normalized U -statistics becomes more com-
plex von-Mises type distributions (involving multiple Wiener integrals) and such
a simple contiguity based approach may not render significant simplifications for
the asymptotics. This difficulty in a more general setup of constrained statistical
inference will be appraised in a later subsection. In passing, we may remark that
for U -statistics or in general, for statistical functionals, alternatives are defined in
terms of such functionals and may not be of a specific parametric form. This cre-
ates an impasse to LeCam’s lemmas insuring contiguity, although alternative ways
of establishing contiguity may work out in some situation [viz., Pinheiro, Sen and
Pinheiro (2011) dealing with Hamming distance in high-dimensional categorical
data models].

4.2 Rank tests for Lehmann alternatives

In survival analysis a first step frequently involves testing homogeneity of groups.
The problem can be posed as follows. Let X1, . . . ,Xn be failure times, that is,
independent random variables such that Xi has a survival function denoted by
F i = 1 − Fi , i = 1, . . . , n. Consider the hypotheses

H0 :F i(x) = F(x) ∀x ∈ R, i = 1, . . . , n

against the Lehmann alternatives [Lehmann (1953)] given by

Hn :F i(x) = [F(x)]1+((ci−cn)/Cn)λ ∀x ∈ R, (4.1)
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where λ > 0, c1, . . . , cn are known constants, cn = n−1 ∑n
i=1 ci , C2

n = ∑n
i=1(ci −

cn)
2 and the following Noether condition holds:

max
1≤i≤n

(ci − cn)
2

C2
n

n→+∞−→ 0.

The hypothesis Hn is in the context of linear regression model, and it has been
generalized in proportional hazards models, introduced by Cox (1972) and other
multiplicative intensity models in semiparametric setups. The role of contiguity
for theses cases will be addressed in a later communication.

In the case of the two-sample procedure, where we have samples of sizes n1
and n2, n1 + n2 = n, we take ci = 1/n1, i = 1, . . . , n1 and ci = −1/n2, i = n1 +
1, . . . , n and F i = F for i = 1, . . . , n1 and F i = G for i = 1, . . . , n2.

Contiguity may be established in this case. Considering absolutely continuous
failure times, it follows that under H0, fi(x) = f (x), i = 1, . . . , n whereas for Hn,

fi(x) =
(

1 + ci − cn

Cn

λ

)
[F(x)]((ci−cn)/Cn)λf (x),

so that the log-likelihood ratio is

logLn =
n∑

i=1

{
log

(
1 + ci − cn

Cn

λ

)
+ ci − cn

Cn

λ log[1 − F(Xi)]
}

= λ

n∑
i=1

{
ci − cn

Cn

− λ2

2

n∑
i=1

(ci − cn)
2

C2
n

+ o(1)

+ λ

n∑
i=1

ci − cn

Cn

log[1 − F(Xi)]
}

= −λ2

2
− λ

n∑
i=1

ci − cn

Cn

(−1 − log[1 − F(Xi)]) + o(1).

If we write

Wi = ci − cn

Cn

(−1 − log[1 − F(Xi)]),
we have that W1, . . . ,Wn are independent random variables with E(Wi) = 0 and
Var(Wi) = (ci − cn)

2/C2
n . Applying the Hájek–Šidák Central Limit theorem [see,

e.g., Sen, Singer and Pedroso-de-Lima (2010)], we have
n∑

i=1

Wi
D−→ N (0,1),

so that

logLn
D−→ −λ2

2
− λN (0,1) ≡ N (−λ2/2, λ2).

Thus, by Corollary 1 of LeCam’s First Lemma [see Hájek, Šidák and Sen (1999)],
contiguity holds for the considered Lehmann alternatives.
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4.3 General linear rank statistics

A simple linear rank statistic Tn = Tn(X1, . . . ,Xn) depends on X1, . . . ,Xn only
through their ranks Rn1, . . . ,Rnn, where

Rni =
n∑

j=1

I (Xi ≥ Xj), i = 1, . . . , n.

Let

Tn =
n∑

i=1

(ci − cn)an(Rni), n ≥ 1, (4.2)

where c1, . . . , cn are known constants and an(1), . . . , an(n) are scores, often ex-
pressed as an(i) = E[φ(Un:i)] or φ[i/(n+ 1)], 1 ≤ i ≤ n, where Un:1 ≤ · · · ≤ Un:n
are ordered random variables of a sample U1, . . . ,Un from the Uniform(0,1) dis-
tribution, so that E(Un:i) = i/(n + 1), 1 ≤ i ≤ n. For the score function φ(·) we
will assume that, without loss of generality,

φ =
∫ 1

0
φ(u)du = 0.

Based on (4.2), we define

T ∗
n =

n∑
i=1

(ci − cn)φ(Ui), (4.3)

where φ(·) is the same score function defined earlier. If we take Rn = (Rn1, . . . ,

Rnn), and denote the distribution function of Xi by Fi(·), i = 1, . . . , n, then, under
H0 : F1 = · · · = Fn = F ,

E(T ∗|Rn) = Tn, (4.4)

since (Rn1, . . . ,Rnn) is independent of the order statistics Un:j , j = 1, . . . , n. Ex-
pression (4.4) shows that Tn may be thought of as a projection of T ∗

n based on the
vector of ranks. In order to establish the equivalence of Tn and T ∗

n , note that

E(Tn) =
n∑

i=1

(ci − cn)E[φ(Un:Rni
)].

Since, under H0, E[φ(Un:Rni
)] = n−1 ∑n

i=1 E[φ(Ui)] = φ̄ = 0, it follows that
E(Tn) = 0 and E(T ∗

n ) = 0. Also, using the projection of T ∗
n based on Rn, we have

that under H0,

E(Tn − T ∗
n ) = E(T ∗

n )2 − E(Tn)
2. (4.5)

After some algebraic computation, we get that

E(T 2
n ) = v2

n = A2
nC

2
n

n

n − 1
, (4.6)
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and

E(T ∗
n )2 = C2

nA2
φ, (4.7)

where A2
n = n−1 ∑n

i=1[an(i) − an]2, C2
n = ∑n

i=1(ci − cn)
2 and

A2
φ =

∫ 1

0
φ2(u)du.

Plugging (4.6) and (4.7) into (4.5), we have that, under H0,

E

[
Tn − T ∗

n

v∗
n

]2

=
(

n − 1

n

)
A2

φ

A2
n

− 1 −→ 0, n → ∞,

since A2
n → A2

φ , as n → ∞. Therefore,

Tn − T ∗
n

vn

P−→ 0. (4.8)

As

Tn

vn

= Tn − T ∗
n

vn

+ T ∗
n

vn

, (4.9)

the convergence in distribution for Tn/vn may be derived from the convergence in
distribution for T ∗

n /vn.
The asymptotic distribution of T ∗

n /vn may be derived based on LeCam’s Third
Lemma. For that, consider the Lehmann alternatives (4.1) discussed in the previous
section and the corresponding log-likelihood function, that may be written as

logLn = �n = −λ2

2
− λ

n∑
i=1

ci − cn

Cn

φ∗(Ui) + o(1),

where φ∗(Ui) = −1 − log(Ui), with Ui ∼ Uniform[0,1].
For any real-valued constants α and β ,

α
T ∗

n

v∗
n

+ β�n =
n∑

i=1

ci − cn

Cn

1

A∗
n

αφ(Ui) − β
λ2

2
− λ

n∑
i=1

ci − cn

Cn

βφ∗(Ui) + o(1)

(4.10)

= −λ2

2
β +

n∑
i=1

ci − cn

Cn

Wi + o(1),

where W1, . . . ,Wn are independent and identically distributed random variables,
such that, under H0,

E(Wi) = α

A∗
n

E[φ(Ui)] − λβE[φ∗(Ui)] = 0
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and

Var(Wi) = α2 + λ2β2 − 2
λ

A∗
n

αβσ12,

where σ12 = Cov[φ(Ui),φ
∗(Ui)] = ∫ 1

0 φ(u)φ∗(u)du = 〈φ,φ∗〉.
Applying the Hájek–Šidák Central Limit Theorem in (4.10), we conclude that

for all α and β ,

α
T ∗

n

v∗
n

+ β�n
D−→ N

(
−β

λ

2
, α2 + λ2β2 − 2αβλ

σ12

Aφ

)
as n → ∞.

Therefore, by Cramér–Wold, under H0,(
T ∗

n /vn

�n

)
D−→ N2

[(
0

−λ/2

)
;
(

1 −λσ12/Aφ

−λσ12/Aφ λ2

)]
.

Then, if we apply Lemma 3 of LeCam’s Third Lemma [see Hájek, Šidák and
Sen (1999), p. 259], we have that, under Hn,

T ∗
n

vn

D−→ N
(
−λ

σ12

Aφ

;1
)
. (4.11)

The result in (4.11) shows that, asymptotically under Hn, the distribution of T ∗
n

(and hence, Tn) has noncentrality parameter given by

νT ∗
n

= λ2σ 2
12

A2
φ

= λ2

A2
φ

[〈φ,φ∗〉]2.

Inspecting the expression of the log-likelihood �n more closely, we see that it
involves the linear statistic

T�n =
n∑

i=1

ci − cn

Cn

φ∗(Ui),

where φ∗(Ui) = −1 − log(1 − Ui). Then, if we follow the same steps as in the
case of T ∗

n , we obtain

νT�n
= λ2

A2
φ∗

[〈φ∗, φ∗〉]2.

Since

〈φ∗, φ∗〉 =
∫ 1

0
φ∗(u)φ∗(u)du =

∫ 1

0
φ∗2 du = 1

and

A2
φ∗ = 1,
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it turns out the noncentrality parameter for the asymptotic distribution of T�n , under
the alternative hypothesis, is

νT�n
= λ2.

In order to compare both statistics, we note that the Pitman asymptotic relative
efficiency (PARE) is

PARE(T ∗
n |T�n) = [〈φ∗, φ∗〉]2

A2
φ∗ × 1

= (
∫ 1

0 φ(u)φ∗(u)du)2

(
∫ 1

0 φ2(u)du)(
∫ 1

0 φ∗2(u)du)

= [ρ(φ,φ∗)]2 ≤ 1,

where the equality holds when φ = φ∗, that is, the (generalized) log-rank statistic.
In other words, for Lehmann alternatives, the log-rank statistic is asymptotically
optimal (or the most efficient).

In this case, we have a possibly unbounded score function, such as the normal
scores where φ(u) = �−1(u), u ∈ (0,1) where �(x) is the standard normal distri-
bution function. Chernoff and Savage (1958) initiated a general line of attack on
the asymptotic theory (before the concept and use of contiguity become popular).
In their approach whereas contiguity was not needed, it has some more stringent
regularity conditions on the score function and its first and second derivatives. On
the other hand, Hájek (1962), invoking contiguity, was able to relax these regular-
ity conditions to practically square integrability of the score function, provided the
underlying density admits a finite Fisher information. Of course, there are some
densities (such as a mixture of two densities each having finite Fisher informa-
tion, as arising in error contamination models) where the finite Fisher information
clause is not tenable. This led Hájek (1968) to explore the general case without
imposing contiguity and to show how contiguous alternatives can be conceived in
that context as well. For details of these developments, we may refer to Hájek,
Šidák and Sen (1999), Chapter 7.

4.4 Wilcoxon two-sample rank sum test

This rank test statistic is expressible in terms of a generalized U -statistics and
its asymptotic normality does not need contiguity of probability measures. The
closeness of the two distributions allow the uniform consistency of the variance in
a neighborhood of the null hypothesis. This is expected because the score function
is bounded and continuous.

4.5 Contiguity and differentiable statistical functionals

Unlike the case of U -statistics, statistical functionals in general may not be of a
finite degree. For example, the population median of a distribution F , defined on
R, is a functional θ(F ) = F−1(1/2). In general, a p-quantile of F is defined as
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θp(F ) = F−1(p), 0 < p < 1. The corresponding sample counterpart, based on the
empirical distribution function Fn(·), is defined as F−1

n (p), with some refinements
when (n + 1)p is not an integer. Since Fn is a step function, the population func-
tional θ(F ) and its sample counterpart θ̂n = θ(Fn) may not share the same continu-
ity and other properties. Moreover, often the alternative hypotheses is formulated
in a nonparametric or nonstandard way wherein the usual way of constructing the
likelihood ratio test statistic and verifying LeCam’s First Lemma may be diffi-
cult. In some cases, the asymptotic distribution may not be even normal or chi-
square distributions. In that way, the role of contiguity is somewhat subdued in the
study of asymptotic properties of these statistics. In the case of sample quantiles,
whenever the probability density function at the population quantile is continuous
and positive, asymptotic normality holds without recourse to contiguity arguments.
This asymptotic results is based on a representation, known as the Bahadur rep-
resentation of sample quantile [see Bahadur (1966)], which enables a first-order
representation in terms of a linear statistics with a reminder term that stochasti-
cally converges to 0 at a faster rate. In a general framework, we could write under
appropriate (Hadamard, Fréchet or Gâteaux) differentiability conditions:

θ(Fn) − θ(F ) = n−1
n∑

i=1

T1(Xi;F) + op(n−1/2), (4.12)

where T1(Xi;F), i = 1, . . . , n are centered at 0 and have a finite variance σ 2
T .

Thus, the first term on the r.h.s. of (4.12) represents a linear functional where the
central limit theorem applies and that paves the way to asymptotic normality, based
on the Slutsky theorem. The functional T1(·;F) is often termed the influence func-
tion, and their average is the so called Hadamard derivative of θ(Fn) at F . Thus,
basically, here contiguity is bypassed by verifying the first-order representation of
θ(Fn). In general, we may consider under more stringent differentiability condi-
tions, a higher order representation for θ(Fn) similar to the case of U -statistics or
von Mises functions, treated earlier. In that way, if T1(x;F) = 0 a.e., θ(Fn)−θ(F )

is dominated by the second-order term, a quadratic functional whose asymptotic
distribution may not be chi-square but a von Mises type distribution involving a
convolution of scalar multiples of independent variables having chi-square distri-
butions with one degree of freedom. In any case, the corresponding nonnull dis-
tribution may not be representable by the same linear combination of independent
noncentral chi-square variables. Let us illustrate this feature with the following
example:

The Cramér–von Mises statistic: Let X1, . . . ,Xm be independent and identi-
cally distributed random variables with a continuous distribution F(x), defined
on R, and let Y1, . . . , Yn be a second independent sample from a continuous dis-
tribution G(x), also defined on R. Let Fm(x) and Gn(x) be the respective em-
pirical distributions and let N = m + n, HN(x) = (m/N)Fm(x) + (n/N)Gn(x)

be the combined sample empirical distribution. Similarly, let H(x) = H(N)(x) =
(m/n)F (x) + (n/N)G(x). Note that under the null hypothesis H0 :F = G, the
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functional �(F,G) = ∫
R
(F (x)−G(x))2 dH(x) = 0, and it is nonnegative for any

F 
= G. Consider the sample counterpart

TN = (mn/N)

∫
R

[Fm(x) − Gn(x)]2 dHN(x). (4.13)

Under the null hypothesis, the asymptotic distribution of TN agrees with the dis-
tribution of

∑∞
j=1 Z2

j /(j
2π2) where the Zj are independent and identically dis-

tributed random variables with the standard normal distribution [viz., Theorem 3
of Hájek, Šidák and Sen (1999), p. 221]. If, however, we consider a local alter-
native where �(F,G) = �N = N−1/2γ for some fixed γ > 0, irrespective of
being a contiguous alternative or not, the asymptotic distribution of TN will not
be of the same form but involving noncentral counterparts of the Z2

j . If in defin-
ing such local alternatives, some norms (like the Kolmogorov) are chosen (viz.,
d(F,G) = supx |F(x)−G(x)|), LeCam’s lemmas may not be applicable in deriv-
ing their nonstandard distributions.

5 Contiguity in constrained statistical inference

In constrained statistical inference (CSI) with inequality, ordered, or shape re-
straints on parameters or sample spaces, standard asymptotics on statistical in-
ference may not generally hold [Silvapulle and Sen (2005)]. In fact, in some most
simple CSI cases arising in parametric as well as nonparametric approaches, vari-
ants of chi-squared or beta distributions, known as the chi-bar square or E-bar
distributions relate to the null hypothesis case whereas their nonnull (even for con-
tiguous alternatives) counterparts may not have the noncentral chi-bar square or
non-central E-bar distributions. In more complex CSI setups, it may be difficult to
formulate contiguity and simple statistical tests. Thus, contiguity seems to have a
somewhat limited role in the derivation of asymptotic distribution theory of tests
and estimates in CSI. Going back to the three basic lemmas of LeCam [Hájek,
Šidák and Sen (1999), Chapter 7], we can comment that whereas Lemmas 1 and 2
characterize contiguity, it is Lemma 3 which enables contiguity to provide a simple
asymptotic nonnull distribution in standard cases. It is the third lemma that may
not serve the same prime role in CSI. In this respect, under null hypotheses, both
restricted likelihood ratio tests (RLRT) and union-intersection tests (UIT) share
the nonstandard asymptotics to a certain extent, albeit their nonnull distributions
even under contiguous (constrained) alternatives are mostly difficult to formulate.
We illustrate this feature with a couple of examples.

5.1 Tests for a binomial population under mixture

Consider the model

P {X = k} =
(

n

k

)
[(1 − α)πk

1 (1 − π1)
(n−k) + απk

2 (1 − π2)
n−k],

(5.1)
k = 0,1, . . . , n,
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where α ∈ (0,1) and π1, π2 are in (0,1), all unknown. The null hypothesis H0
specifies that it is a single binomial law and the alternative hypothesis is that it
is the mixture in (5.1). Note that in the above model, we have a single binomial
population when either α is 0 or 1, or π1 = π2, irrespective of α ∈ (0,1). Thus, if
we consider the parameter space � = [0,1]3, the null hypothesis refers to a union
of a subspace of dimension 1, namely the vertexes of � with α = {0,1} and a two-
dimensional subspace where π1 = π2, α ∈ (0,1). This violates the usual regularity
condition that the parameter space under H0 is an inner subspace of �, and the
log-likelihood ratio test statistic under the null hypothesis fails to have the usual
asymptotic chi-square distribution with 2 degrees of freedom. Contiguity rests on a
shrinking neighborhood of the null parameter space but lack of identifiability pre-
cludes an easy verification of that through LeCam’s First and Second Lemmas. In
this particular case, the asymptotic null distribution is a chi-bar distribution, though
under alternatives, it may not be a noncentral chi-bar distribution. The difference
comes from the fact that the mixing coefficients in the nonnull case themselves
may depend on the noncentrality which is no longer homogeneous across the al-
ternative parameter space.

5.2 Multivariate normal mean: Positive orthant alternative

Let X1, . . . ,Xn be independent p-dimensional random vectors such that

Xj ∼ Np(θ ,�),

where both the p-vector θ and the p ×p matrix � are unknown. Consider that our
primary interest is on θ (i.e., � is a nuisance parameter) and the hypotheses

H0 : θ = 0 against H1 : θ ≥ 0, (5.2)

where the inequality in the alternative hypothesis is taken elementwise.
The likelihood in this case is

L(X, θ,�) = (2π)−np/2|�|−n/2 exp

{
−1

2

n∑
i=1

(Xi − θ)′�−1(Xi − θ)

}
,

where we assume that � is a nonsingular matrix. Under H0, such likelihood is

L(X,0,�) = (2π)−np/2|�|−n/2 exp

{
−1

2

n∑
i=1

X′
i�

−1Xi

}
,

and the corresponding maximum likelihood estimator for � is readily computed
as

�̂
0 = 1

n

n∑
i=1

XiX′
i .



Nonregular asymptotics 465

The unrestricted MLE of θ is the sample mean vector Xn. Hence, even if we
consider local alternatives H1n : θ = n−1/2λ, λ > 0, treating � as nuisance param-
eter, direct computation leads to the following expression for the log-likelihood
ratio statistic √

nX
′
n�

−1λ − (1/2)λ′�−1λ,

which is exactly normally distributed with mean equal to (−1/2) variance, and
hence, by LeCam’s Second Lemma, contiguity holds.

Let us next consider tests for H0 against the positive orthant alternative consid-
ering the union-intersection test (UIT) approached in Silvapulle and Sen (2005).
For testing the hypotheses in (5.2) we may write, for a p-vector a,

H0 :
⋂

a∈R+p

H0a against H1 :
⋃

a∈R+p

H+
1a,

where H0a : a′θ = 0 and H+
1a : a′θ > 0. For P = {1, . . . , p}, consider ∅ ⊆ � ⊆ P ,

denoting the complement by �′ and the cardinality by 0 ≤ |�| ≤ p. For a given �,
we partition Xn and � in the following way

Xn =
(

Xn�

Xn�′

)
and � =

(
��� ���′
��′� ��′�′

)
and then denote

Xn�:�′ = Xn� − ���′�−1
�′�′Xn�′

and

���:�′ = ��� − ���′�−1
�′�′��′�.

Also, we define

In� = I (Xn�:�′ > 0, �−1
�′�′Xn�′ ≤ 0).

The UIT statistic is then

T ∗2
n = n

∑
�⊆P

X
′
n�:�′�−1

��:�′Xn�:�′In�.

Under the null hypothesis, the quadratic form X̄′
n�:�′�−1

��:�′X̄n�:�′ and In� are
stochastically independent; for any given � ∈ P , the quadratic form has the chi-
square distribution with degrees of freedom equals to |�|; we note that In� = 1
with probability equal to the corresponding orthant probability. As such, T ∗

n has
the chi-square bar distribution with coefficients given by the 2p quadrant probabil-
ities.

We consider now the situation where � is unspecified, being replaced by Sn =
n−1 ∑n

i=1(Xi −Xn)(Xi −Xn)
′, so that in the previous expressions we consider the

partitioned matrix

Sn =
(

Sn�� Sn��′
Sn�′� Sn�′�′

)
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and, also, write

Sn��:�′ = Sn�� − Sn��′S−1
n�′�′Sn�′�

so that

In� = I (Xn�:�′ > 0, S−1
n�′�′Xn�′ ≤ 0).

Now, the UIT statistic is given by

T ∗2
n = n

∑
�⊆P

X
′
n�:�′S−1

n��:�′Xn�:�′In�.

In this setup, the likelihood ratio test statistic will be given by [see Silvapulle and
Sen (2005)]

Ln = ∑
�⊆P

In�(nX
′
n�:�′S−1

n��:�′Xn�:�′)(1 + X
′
n�′S−1

n�′�′Xn�′)−1

so that

Ln ≤ T ∗2
n ,

where the equality holds when the vector Xn lies in the positive orthant, which
occurs with probability less than one.

It follows that the UIT and LRT are then different and none has strictly a speci-
fied null distribution; even their asymptotic distributions are complicated, not chi-
bar square in the true sense.

The complications arising in this restricted alternative problem for the nonnull
distribution is due to the fact that In� and the associated quadratic form for differ-
ent � ∈ P are no longer stochastically independent, so that Lemma 3.2 of Perlman
(1969) no longer holds, and further, the orthant probabilities P {X ∈ �}, � ∈ P also
depend on the unspecified λ. Note that even if in (5.2) we replace θ by n−1/2λ,
the distribution of n1/2Xn will be multinormal with mean vector λ and same
covariance matrix as X. This will change the orthant probabilities for n−1/2Xn,
which will affect the independence of In� and the RMLE of θ and �, invalidating
Lemma 3.2 of Perlman (1969). As such this does not yield a noncentral chi-bar
square distribution, even for contiguous alternatives.

6 Concluding remarks

There are a few important results where contiguity plays a basic role, and we
briefly outline some of these perspectives in this concluding section.



Nonregular asymptotics 467

6.1 Uniform asymptotic linearity in probability

In the context of robust R-estimation of location and regression parameters,
aligned rank statistics were incorporated in the formulation of suitable estimating
equations. Similarly, in robust M-estimation of location and regression, suitable
aligned M-statistics are used. There are other situations where such alignments
are incorporated to formulate suitable estimating equations yielding appropriate
estimators. Even the maximum likelihood estimators, mostly based on implicit
equations, are based on such alignment; we refer to Chapter 3 of Jurečková and
Sen (1996). Basically, asymptotic properties of such estimators are more conve-
niently studied by some appropriate uniform asymptotic linearity in probability
result wherein contiguity plays a basic role. We explain this with the simple case
of Wilcoxon score estimation of location, and a similar result follows for other
examples too.

We define

Wn(b) =
n∑

i=1

sign(Xi − b)R+
ni(b),

where R+
ni(b) is the rank of |Xi − b| among the n values |Xj − b|, j = 1, . . . , n.

If θ is the true location parameter (point of symmetry of the distribution F ), then
Wn(θ) is distribution free with mean 0 and variance n(n + 1)(2n + 1)/6. Further,
Wn(b) is a nonincreasing (step) function of b ∈ R. Hence, equating Wn(b) to 0,
one gets the R-estimator of θ . The uniform asymptotic linearity result states that,
for every C < ∞,

sup√
n|b−θ |≤C

{|Wn(b) − Wn(θ) + n(n + 1)γ (b − θ)|} = op

(√
n(n + 1)(2n + 1)

6

)
,

where the variance of Wn(θ) is equal to n(n+ 1)(2n+ 1)/6. A similar result holds
for the log-likelihood ratio statistics under the Cramér–Rao regularity conditions.
Basically, in deriving the above result, pointwise (in b), one can use contiguity
of the probability measures and then the conclusion is extended to the interval
by invoking the nonincreasing property of Wn(b) in b. For general rank scores
or likelihood ratio scores statistics, this contiguity greatly simplifies the process
[Jurečková and Sen (1996), Chapters 3–6].

6.2 Contiguity and compactness of derived stochastic processes

In the context of statistical inference on stochastic processes with special emphasis
on invariance principles, it has been observed that pointwise a stochastic function,
say S(t) may have a first-order representation by a simpler function which is more
amenable to stochastic analysis. In such a case, it may be simpler to verify the tight-
ness of the process S(t) under suitable measures {Pn} (usually related to suitable
null hypothesis), and weak invariance principles can be formulated under {Pn}.
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However, if some alternative measures {Qn} are considered, direct verification of
such tightness or compactness condition may often be very cumbersome [viz., Sen
(1981), Chapters 3–7]. In this context, the following theorem [Sen (1981), p. 100]
seems to be very useful.

If {Qn} is contiguous to {Pn} and a process is tight under the Pn-measure, then
it remains tight under the Qn-measure as well.

This result is not confined to asymptotic Gaussian processes and can be used in
more complex situations too.

6.3 Contiguity, regular estimators and convolution theorems

Following the notion in Section 3, we elaborate here the role of contiguity in the
so-called regular estimators in a general setup as adapted from Hájek (1970, 1972)
and Inagaki (1970, 1973), both exploiting the basic idea of LeCam (1960), in a
parametric setup.

Consider a family of probability measures {Pθ ,n : θ ∈ �} on some measure
space {(Xn, An); n ≥ 1} where θ is a finite-dimensional parameter lying in the
interior of R

k , for some k ≥ 1. Following LeCam (1960), we consider a bounded
set B and a sequence {δn} of real numbers, such that {Pθ+δntn} is contiguous to
{Pθ }, for all tn ∈ B. Typically, δn = O(n−1/2). We denote the log-likelihood func-
tion by �(θ + δntn; θ) = log{dPθ+δntn/dPθ ,n}. Recall that the model {Pθn

, θ ∈ �}
is LAN at θ0 if (i) for θn = θ0 + δnh, h ∈ Rk ,

�(θn, θ0) − t′nUn + (1/2)h′I(θ0)h → 0,

in Pθ0,n-probability, where Un = Un(θo) is the Rao score statistic, I(θ0) is the
(Fisher) information (matrix) at θ0, and (ii) under Pθo,n,

Un
D−→ N [0, I(θ0)].

Let {Tn} be a sequence of estimators of θ , and let θn = θ0 + n−1/2h, h ∈ R
k .

Denote by Hn(·; θ) the probability law for n1/2(Tn − θ) under Pθ ,n. Then Tn is
said to be regular at θ0, if Hn(·; θn) ⇒ H(·; θ0), where H(·.; θ0) does not depend
on h. It is possible to replace regular by essentially regular estimators wherein we
replace “for all h ∈ R

k” by “for all h ∈ Dk ⊂ R
k , for some unique Dk .” The Hájek

convolution theorem may then be presented as follows:
Suppose that {Pθ ,n} is LAN at θ0 ∈ �, and {Tn} is a sequence of regular es-

timators at θ0. Then under {Pθ ,n}, n1/2(Tn − θ0) = I −1(θ0)Un + ψn + op(1),
where ψn is (asymptotically) independent of Un. Thus, H(θ0) = �(0, I −1(θ0)) ∗
G(·; θ0) where ∗ stands for the convolution, �(·) for the Gaussian distribution
and G(·; θ0) for the distribution of ψn.

As a corollary, it follows that if Tn is BAN, then ψn is 0 a.e. so that Tn is
asymptotically equivalent to Un. Actually, Hájek (1970) established a stronger re-
sult on the asymptotic limits of mean squared error (or dispersion matrix) of reg-
ular estimators under some extra regularity conditions. As far as the convolution
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theorem is concerned, the above result suffices. Following Sen (2000), we may re-
mark that contiguity along with the first-order asymptotic representation paves the
way for the convolution theorem for Bayes estimators and Bayes version of some
robust estimators. In conclusion, we may note that the contiguity as assumed in
the above setup essentially relates to a parametric setup. It can also be developed
for a semiparametric model when the null hypothesis and the alternative relate to
the parametric component, treating the nonparametric component as a nuisance
functional. This was the case with the Lehmann–Cox proportional hazards model
treated earlier. We intend to explore this further in more complex semiparametric
models arising in survival and reliability analysis, extending the notion to some
conditional model and incorporating suitable martingale theory.
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