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Hierarchical wavelet modelling of environmental
sensor data
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Abstract. Motivated by the need to smooth and to summarize multiple si-
multaneous time series arising from networks of environmental monitors, we
propose a hierarchical wavelet model for which estimation of hyperparam-
eters can be performed by marginal maximum likelihood. The result is an
empirical Bayes thresholding procedure whose results improve on those of
wavethresh in terms of mean square error. We apply the approach to data
from the SensorScope environmental modelling system, and briefly discuss
issues that arise concerning variance estimation in this context.

1 Introduction

Realistic environmental modelling depends critically on detailed data that have
hitherto largely been too expensive to obtain. For example, in temperature or rain-
fall studies it has not been uncommon to base modelling on time series of daily
values gathered many kilometres apart, so that interpolation, or downscaling, has
been required to make inferences at more local scales, both in time and in space.
The stunning decrease in the cost and increase in the quality of telecommunica-
tions and other electronic equipment now make it feasible to create dense wireless
networks of cheap sensors that yield measurements at high spatial and temporal
resolutions, with the potential to learn vastly more about the detailed working of
environmental phenomena. SensorScope (http://www.sensorscope.ch) is an inter-
disciplinary project begun at EPFL which provides such data, the quantity and
quality of which create new problems for statistics: of design of such networks;
of data treatment; and of interpretation. Below we describe a simple approach to
summarization of parallel data from many sensors, preliminary to more detailed
exploitation.

Before deployment in more demanding surroundings, in July 2006 a working
group embarked on a project to measure numerous atmospheric variables around
the campus. The Lausanne Urban Canopy Experiment (LUCE) consisted of a net-
work of around 100 weather stations, deployed within an area of roughly one-half
of a square kilometre. Stations with various different configurations were used, col-
lecting data on quantities such as air temperature, ground temperature, soil mois-
ture, humidity, rainfall, and wind speed and direction, in real time and at short time

Key words and phrases. Empirical Bayes, environmental sensor, hierarchical model, mixture
model, normal distribution, SensorScope, spike-and-slab model, wavelet.

Received May 2011; accepted May 2011.

406

http://imstat.org/bjps/
http://dx.doi.org/10.1214/11-BJPS154
http://www.redeabe.org.br/
http://www.sensorscope.ch


Hierarchical wavelet modelling of environmental sensor data 407

Figure 1 Twenty-four hours of air temperature measurements (◦C) at four SensorScope weather
stations on the EPFL campus.

intervals. The resulting data are noteworthy: they are highly localized both in time
and space; they run over several months; and they are gathered in an unusual urban-
type environment. Similar dense networks have been or are being deployed in more
taxing settings, for example, at the Grand-St-Bernard pass (altitude 2400 m) and
at the Plaine Morte glacier (altitude 2750 m); more details can be obtained from
the link given above.

Figure 1 displays ambient temperatures taken during the LUCE experiment at
four stations in a time frame of 24 hours (midnight to midnight); the measure-
ments were made roughly every 30 seconds. The curves show a common trend
due to the high proximity of the stations but have distinct features due to their par-
ticular surroundings—exposure, altitude, ground type, and so forth. The signals
have appreciable local variation and some kind of smoothing seems required.

Although smoothing the signals independently would be quick and easy, we
would like to allow for the obvious similarity between signals from different sta-
tions. One approach is to assume the existence of an underlying curve that gener-
ates the station-specific curves. We will concentrate on the air temperature mea-
surements, as a prototype for other series of continuous values. We define temper-
ature curves Ys(t) for each of the S weather stations, and assume that

Ys(t) = μ(t) + ψs(t) + es(t), s = 1, . . . , S.
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The time variable t can be taken over any interval, but for our purposes it covers
24 hours, from midnight to midnight. The function μ(t) can be regarded as the
underlying temperature curve for the whole campus and ψs(t) as the effect from
station s, while es(t) represents the residual effect function at station s. Thus the
function μ(t) + ψs(t) can be considered to be the noise-free curve for station s.

In practice data may be observed at irregular intervals, at times varying slightly
from station to station. For later developments we interpolate the observed time
series to obtain observations on a regular grid t1, . . . , tN over the whole day, with
ti+1 − ti = c for all i and with N = 2J for a fixed positive integer J . The model
may then be written

Ys = μ + ψs + es, s = 1, . . . , S, (1.1)

with Ys = [Ys(t1), . . . , Ys(tN)]T denoting the vector of observations at station
s, μ = [μ(t1), . . . ,μ(tN)]T, ψs = [ψs(t1), . . . ,ψs(tN)]T, and es = [es(t1), . . . ,

es(tN)]T. Our goal here will be to filter out the noise es in order to find smooth
estimators for μ and ψs .

Equations (1.1) can be written in matrix form as

Y = XB + E, (1.2)

where Y is the S × N matrix with the observation vectors Ys in rows, X = [1S |IS]
is a S × (S + 1) design matrix, B is a (S + 1) × N matrix with μ in the first row
and ψs in row s + 1, and E is the S × N matrix of residuals. Here and elsewhere,
the term 1S designates a S × 1 vector of ones and IS is the S × S identity matrix.
Expression (1.2) corresponds to a version of the functional mixed-effects model
described in Morris and Carroll (2006), but with no random effect. A time-domain
approach to such problems using kernel density estimation has been described by
Ghosh (2001).

One of our aims is to develop an automatic approach: ultimately we would like
to produce the necessary estimates for SensorScope in real time without any inter-
vention. Many of the assumptions below are made towards that end. In Section 2
we outline our model and then in Section 3 we discuss inference for its hyper-
parameters. Section 4 describes a small simulation study to compare our approach
with use of wavethresh, and is followed by an application to the SensorScope data.
The paper concludes with a brief discussion.

2 Wavelet regression and Bayesian modelling

We work in the wavelet domain, which gives an attractive basis for curve regu-
larization and modelling. Wavelets have received a lot of attention from the math-
ematical and statistical communities in the past few years, and much has been
written about them. Strang (1993) gives a nice introduction, while Percival and
Walden (2000) provide a detailed account focusing on time series analysis.
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Let W be the N ×N orthogonal discrete wavelet transform matrix under a given
wavelet basis. Then right-multiplication of a 1 × N vector by WT corresponds to
a change of basis from the time domain to the wavelet domain. The coefficients
in this new basis have a specific interpretation in terms of local variation of the
signal, much like Fourier coefficients. However the wavelet basis allows the local
variation to depend on location, or, in our context, time. There is an infinite number
of possible wavelet bases, but only a few of them are widely used (Daubechies,
1992). At this point no assumption is needed on the type of wavelet used, and W

can be seen as a generic change of basis. Wavelet coefficients can be computed in
a highly efficient manner using the pyramid algorithm (Mallat, 1989).

Right-multiplying both sides of (1.2) by WT yields

D = XB∗ + E∗, (2.1)

where D = YWT is a S × N matrix whose row s contains the “observed” wavelet
coefficients for station s, B∗ = BWT contains the wavelet coefficients for the mean
function μ in the first row and the wavelet coefficients for the station-specific ef-
fects ψs in the other rows, while E∗ = EWT contains the residuals in the wavelet
space. We double-index the rows of D,B∗, and E∗ to include the scale and loca-
tion of each coefficient: for j = 0,1, . . . , J − 1, k = 1, . . . ,2j and s = 1, . . . , S,
write d

(s)
jk as the observed coefficient at scale j and location k in the wavelet de-

composition of Ys . Then a coefficient with large j has high resolution and so is
more likely to be interpreted as noise. Similarly, define θ

(s)
jk and ε

(s)
jk as the (j, k)-

coefficient in the wavelet decompositions of ψs and es respectively. Finally set ζjk

as the (j, k)-coefficient in the decomposition of the mean vector μ. For fixed j, k,

and s, the relation between these coefficients is

d
(s)
jk = ζjk + θ

(s)
jk + ε

(s)
jk ; (2.2)

we assume that the ε
(s)
jk are mutually independent, identically distributed variables

from a centred Gaussian density of variance σ 2. There is also a scaling coefficient
for each decomposition in expression (2.2); see below.

We now set priors on the parameters ζjk and θ
(s)
jk . We first define a Bernoulli

random variable Zjk , with P(Zjk = 1) = πj and P(Zjk = 0) = 1 − πj , and link
it to the coefficients as follows:

• if Zjk = 1, then we independently set ζjk ∼ N (0, τ 2
j ) and θ

(s)
jk ∼ N (0, η2) for

s = 1, . . . , S;
• if Zjk = 0, then ζjk and each θ

(s)
jk follow a degenerate distribution with unit

mass at zero.

This latent variable Zjk thus indicates whether the corresponding coefficients ζjk

and {θ(s)
jk , s = 1, . . . , S} are “switched on.” We use microarray terminology and

say that the (j, k)-coefficients are differentially expressed if Zjk = 1. The main
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purpose in making the above assumptions is that we consider that only those co-
efficients which are differentially expressed contain information on the smooth
signal, the rest being treated as noise. In particular, we expect πj to decrease with
j so that high-resolution coefficients are less likely to be differentially expressed
a priori.

On marginalizing over Zjk we see that the coefficients follow mixture distribu-
tions, that is,

ζjk ∼ πj N (0, τ 2
j ) + (1 − πj )δ0

and

θ
(s)
jk ∼ πj N (0, η2) + (1 − πj )δ0,

with δ0 denoting the distribution with unit mass at zero. These prior assumptions
are very similar to those of Morris and Carroll (2006), who also set a mixture
model on the elements of B . An important difference here is that for fixed (j, k),
the coefficients ζjk and θ

(s)
jk , s = 1, . . . , S are marginally dependent: a priori they

are either all differentially expressed or all zero. This mixture approach was also
used by Abramovich, Sapatinas and Silverman (1998) and Johnstone and Silver-
man (2005), but applied to single times series.

For completeness, we place a vague prior on the single scaling coefficient of
each wavelet decomposition. Thus these coefficients are estimated a posteriori by
the sample scaling coefficients, that is, the sample mean multiplied by the square
root of the number of coefficients.

Now we establish the posterior distribution of the wavelet coefficients given
the observed coefficients D and the hyperparameters σ 2, η2, τ 2

j , and πj . Set

djk = [d(1)
jk , . . . , d

(S)
jk ]T, a column of the matrix D, and θjk = [θ(1)

jk , . . . , θ
(S)
jk ]T.

It is easily seen that, given Zjk = 1, the joint distribution of [dT
jk, θ

T
jk, ζjk]T is a

centred multivariate Gaussian distribution, and that it is degenerate given Zjk = 0.
In particular, the marginal density function of djk is the mixture

p(djk) = πjg(djk;0,Aj ) + (1 − πj )g(djk;0, σ 2IS), (2.3)

where g(·;m,�) is the density function of a multivariate Gaussian random vari-
able with mean m and covariance matrix �, and where

Aj = (σ 2 + η2)IS + τ 2
j 1S1T

S

is an equicorrelation matrix, whose inverse and determinant are (σ 2 + η2)−1IS −
τ 2
j /{(σ 2 +η2)(σ 2 +η2 +Sτ 2

j )}1S1T
S and (σ 2 +η2)2(S−1)(σ 2 +η2 +Sτ 2

j ), respec-
tively. It is straightforward to find the posterior odds ωjk of the (j, k)-coefficients
being differentially expressed:

ωjk = P(Zjk = 0|djk)

P (Zjk = 1|djk)
= 1 − πj

πj

× g(djk;0, σ 2IS)

g(djk;0,Aj )
.
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Using properties of the multivariate normal distribution, we find that the posterior
distribution function of ζjk is the mixture

F(ζjk|djk) = 1

1 + ωjk



{ ζjk − τ 2
j 1T

SA−1
j djk

τj

√
1 − τ 2

j 1T
SA−1

j 1S

}
+ ωjk

1 + ωjk

I {ζjk ≥ 0}, (2.4)

where  is the standard normal distribution function and I is the indicator func-
tion. Recall that for fixed s, the θ

(s)
jk represent the coefficients for the effect of

station s. We will focus on the estimation of ν
(s)
jk = ζjk + θ

(s)
jk : for fixed s, the

ν
(s)
jk are the wavelet coefficients for the noise-free signal from station s. Let

cjs = [τ 2
j , . . . , τ 2

j , τ 2
j + η2, τ 2

j , . . . , τ 2
j ]T be a S × 1 vector, with the τ 2

j + η2 term

in position s. The posterior distribution of ν
(s)
jk is

F
(
ν

(s)
jk |djk

) = 1

1 + ωjk



{ ν
(s)
jk − cT

jsA
−1
j djk√

η2 + τ 2
j − cT

jsA
−1
j cjs

}
+ ωjk

1 + ωjk

I
{
ν

(s)
jk ≥ 0

}
.

(2.5)
These distribution functions have jumps of sizes ωjk/(1 + ωjk) at ν

(s)
jk = 0.

3 Hyperparameter estimation and inference

3.1 Basic model

We use an empirical Bayes approach to choose the hyperparameters σ 2, η2, τ 2
j ,

and πj of our model. The full marginal log likelihood for these hyperparameters is

�(σ 2, η2, τ 2
0 , . . . , τ 2

J−1, π0, . . . , πJ−1;D) = ∑
j,k

logp(djk), (3.1)

where the p(djk) are computed from (2.3). The hyperparameter estimates will be
the values which maximize (3.1). The number of hyperparameters, 2(J +1), can be
relatively high, since typically J ≥ 10 in this context. We can ease the computation
somewhat by following the model of Abramovich, Sapatinas and Silverman (1998)
for the variance of ζjk ,

τ 2
j = 2−jαC, j = 0,1, . . . , J − 1, (3.2)

for α,C > 0. Making the appropriate substitutions in (3.1), we can then maximize
over the parameters α and C rather than over τ 2

0 , . . . , τ 2
J−1. Experiments with un-

connected τ 2
j suggest that (3.2) is reasonable. We expect only the higher-resolution

coefficients to correspond to noise, so we group the k lower scale πj ’s into a single
parameter πB , which we expect to be close to unity.

To estimate the wavelet coefficients ζjk and ν
(s)
jk , we follow the Abramovich,

Sapatinas and Silverman (1998) thresholding approach, by computing the posterior
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medians of the distributions (2.4) and (2.5). We can find the median for the mixture
distribution H(x) = (1 +ω)−1{(x −μ)/ν}+ω/(1 + ω)I (x ≥ 0) corresponding
to (2.4) and (2.5) as follows:

• if ω ≥ 1, then the jump at 0 is greater than 1/2 and the median is zero;
• if (1 − ω)/2 ≤ (−μ/ν) ≤ (1 + ω)/2, the jump at 0 starts below 1/2 and lands

above 1/2, so the median is zero;
• otherwise the median is

μ + ν−1
[

1

2
+ ω

2
sign

{
(−μ/ν)

1 + ω
− 1

2

}]
.

Let d̄jk = ∑S
s=1 d

(s)
jk /S be the mean of the (j, k)-coefficients across the sites.

After some algebra we find that

ζ̂jk = med(ζjk|djk) = sign(d̄jk)max(0, γjk),

with

γjk = Sτ 2
j

σ 2 + η2 + Sτ 2
j

|d̄jk| −
√√√√ τ 2

j (σ 2 + η2)

σ 2 + η2 + Sτ 2
j

× −1
{

1 + min(ωjk,1)

2

}
.

The “threshold” rule is thus

ζ̂jk = 0 ⇐⇒ |d̄jk| ≤ 1

S

√√√√(σ 2 + η2 + Sτ 2
j )(σ 2 + η2)

τ 2
j

× −1
{

1 + min(ωjk,1)

2

}
.

As ωjk depends both on d̄jk and on
∑S

s=1(d
(s)
jk )2, this is not a pure threshold rule.

As a result of taking the posterior median, the estimated coefficients are either
differentially expressed or set to zero, as in the prior model. By setting certain
coefficients to zero we remove the noise and retain just the smooth components of
the curves.

Once we have our estimates ζ̂jk and ν̂
(s)
jk , we reconstruct the smooth signal

by applying the inverse discrete wavelet transform to the appropriate vectors of
estimated coefficients: the smooth estimated curves μ̂ and ψ̂s can be extracted
from the matrix WB̂∗, where B̂∗ is the matrix B∗ with the estimates ζ̂jk and θ̂

(s)
jk =

ζ̂jk − ν̂
(s)
jk inserted at the appropriate locations.

3.2 Nonconstant noise variance

Above we assumed a constant variance for the noise. However examination of
the daily temperature data in both time and wavelet domains suggests that there
are two variance regimes: one towards the afternoon during which the variance is
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clearly larger, and another with less variability. The boundaries between them are
hard to pinpoint, and vary from day to day. We deal with this by assigning mixtures
of normal densities to the errors ε

(s)
jk , namely:

ε
(s)
jk ∼ π̃ N (0, σ 2

1 ) + (1 − π̃)N (0, σ 2
2 ),

with 0 < π̃ < 1. We have implicitly defined a Bernoulli variable Z̃jk such that
Z̃jk = 1 implies that the error variance equals σ 2

1 while Z̃jk = 0 implies it
equals σ 2

2 . As in the constant-variance case, σ 2
1 and σ 2

2 can be estimated by maxi-
mizing the marginal likelihood

�(σ 2
1 , σ 2

2 , η2, τ 2
j , πj , π̃;D) = ∑

j,k

logp(djk),

with

p(djk) = πj π̃g(djk;0,A1j ) + πj (1 − π̃)g(djk;0,A2j )

+ (1 − πj )π̃g(djk;0, σ 2
1 IS) + (1 − πj )(1 − π̃)g(djk;0, σ 2

2 IS),

where A1j is the matrix Aj with the σ 2 terms replaced by σ 2
1 , and similarly for A2j

and σ 2
2 . The posteriors for ζjk and ν

(s)
jk are now mixtures of two distinct normal

components and a point mass at zero, making computation of the posterior medians
awkward. We circumvent this by first computing the posterior odds of the error
variance being σ 2

1 , for each (j, k), giving

ω̃jk = 1 − π̃

π̃
× πjg(djk;0,A2j ) + (1 − πj )g(djk;0, σ 2

2 IS)

πjg(djk;0,A1j ) + (1 − πj )g(djk;0, σ 2
1 IS)

.

The estimators are then

ζ̂jk = med(ζjk|Z̃jk = 1)I {ω̃jk ≤ 1} + med(ζjk|Z̃jk = 0)I {ω̃jk > 1}
and

ν̂
(s)
jk = med

(
ν

(s)
jk |Z̃jk = 1

)
I {ω̃jk ≤ 1} + med

(
ν

(s)
jk |Z̃jk = 0

)
I {ω̃jk > 1}.

This dual-variance model need not be applied at all resolutions, but only at the
few highest which directly correspond to noise. One can use the single-variance
model (2.3) for the lower-scale levels.

4 Simulation study

Here we apply our estimation approach to simulated data and compare the results
with independent wavelet thresholding.

We created S = 8 sets of 2J wavelet coefficients following the model described
in Section 3, with J = 11. More precisely, we generated “true” coefficients ζjk
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Figure 2 Three time series obtained by applying the inverse discrete wavelet transform to sets of
simulated wavelet coefficients.

and ν
(s)
jk from the appropriate mixture models and added Gaussian noise to obtain

the d
(s)
jk . The coefficient scale parameter used was that of the coefficients from

the SensorScope temperature measurements. Setting σ 2 = 4, η2 = 15, C = 1000,
and α = 2, with πj quickly decreasing in j , the reconstructed simulated time se-
ries, while very noisy, have a similar underlying smooth curve; three are shown
in Figure 2. Applying empirical Bayes estimation yields σ̂ 2 = 3.935, η̂2 = 12.15,
Ĉ = 1162, and α̂ = 2.729. The fairly large error in the latter three estimates can
probably be explained by the fact that they are based only on a few low-scale,
differentially expressed coefficients, whereas the noise variance estimate is based
on numerous high-resolution coefficients. Further simulations based on the above
“true” hyperparameter values suggest that, apart from η̂2, the estimates are un-
biased. With the values from which we simulate, the empirical Bayes approach
seems to underestimate η2.

Figure 3 compares the “true” curves underlying the data in Figure 2, obtained
by applying the inverse discrete wavelet transform to the simulated coefficients
ζjk and ν

(s)
jk , with the corresponding estimates reconstructed from the posterior

medians of (2.4) and (2.5), using the empirical Bayes hyperparameter values. None
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Figure 3 Reconstructed time series obtained by applying inverse discrete wavelet transform to,
from top to bottom, the true wavelet coefficients, the coefficients estimated with the median rule
via empirical Bayes, and the coefficients after thresholding with wavethresh using default settings.
Narrow lines: the eight station-specific smooth signals, thick line: the underlying mean signal (in the
bottom panel, the pointwise mean of the station-specific smooth signals).

of the estimates ν̂
(s)
jk is falsely declared to be differentially expressed or falsely

declared to be zero. Of the 211 estimates for ζjk , six are falsely declared to be zero,
and one is falsely declared to be differentially expressed. Also shown are the curves
smoothed independently using universal “hard” wavelet thresholding (Nason and
Silverman, 1994); this clearly oversmooths, and thereby fails to capture most of
the true features of the curves.

Given the nature of our model, we expect that a coefficient estimated from a
given station may “borrow strength” from the estimates for the other stations. Thus
having data from more stations should give better estimates, both of the underly-
ing coefficients ζjk and the station-specific coefficients ν

(s)
jk . Figure 4 shows the

corresponding mean square errors

MSEζ (S) = 1

2J

∑
j,k

(ζjk − ζ̂jk,S)2, MSEν(S) = 1

2J S

∑
j,k

S∑
s=1

(
ν

(s)
jk − ν̂

(s)
jk,S

)2
,
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Figure 4 Mean square errors (MSE) for different estimation methods, based on 50 replicates with
different numbers of stations. The lines show: MSE of the posterior median estimates (solid) and
wavethresh estimates (dashes) of the grand mean coefficients ζjk , with the wavethresh estimates
simply the mean of the thresholded coefficients; and MSE of the posterior median estimates of the

signal-specific coefficients ν
(s)
jk (dots). wavethresh estimates for these have an MSE of about 0.14,

which does not decrease with the number of stations.

as functions of the number of stations S, where ζ̂jk,S and ν̂
(s)
jk,S are the estimates

based on S signals. As we increase S, we do not resimulate all the previous coef-
ficients, but simply augment the data by adding further series of coefficients. The
values for the hyperparameters were the same as above. We see that MSEζ (S)

decreases roughly exponentially. The evolution of the signal-specific estimates is
less clear: the “borrowing of strength” seems to kick in at around S = 12 before
stabilizing. We would not see these improvements in performance if the signals
were modelled independently.

5 Application to SensorScope measurements

We now consider several ways of smoothing the SensorScope time series. The
different approaches were applied to all S = 73 series for which data were avail-
able on a particular day, though for clarity only eight will be plotted. We use
Daubechie’s (1992) least-asymmetric compactly supported wavelet with four van-
ishing moments.
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Figure 5 Example series from the SensorScope data. Top: eight time series consisting of Sen-
sorScope air temperature data taken over 24 hours. Bottom: wavelet decomposition of one of the
series.

Figure 5 shows the eight time series and a wavelet decomposition of one of
them; note the diurnal fluctuations in the coefficient sizes at the lowest level. Fig-
ure 6 shows the result of applying the mixed variance model of Section 3.2 to the
two finest coefficient levels. There is some smoothing of the individual original
series, but little visual difference between this approach and the use of a single
variance. The global curve estimate appears slightly biased because it is based on
all 73 series, not merely on those plotted. The effect of the mixture is clearer in the
wavelet domain: without the mixture, some coefficients at levels 9 and 10 survive
thresholding, but with the mixture they are all zeroed out. As expected, the empir-
ical Bayes estimates for the πj decrease rapidly with the level j . We have merged
the πj for the five coarsest levels into a single parameter, whose estimate is practi-
cally unity; the estimates for π9 and π10 are both very close to zero. Moreover we
find η̂2 = 0.98, Ĉ = 41761, and α̂ = 3.15. As for the variance mixture parameters,
the estimates of σ 2

a , σ 2
b , and π̃ are 0.0036, 0.028, and 0.75 respectively.

The top panel of Figure 7 displays the wavethresh smoothing of the eight time
series using the default “hard” thresholding and error variance estimate based on
the squared median absolute deviation of the coefficients at level 3 and higher. The
results seem unsatisfactory in comparison with those of the hierarchical model:
more detailed noise has survived thresholding. The middle panel shows the results
of wavethresh when the error variance estimate is based on variance of the coef-
ficients. The choice of variance estimate is crucial: with this much larger variance
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Figure 6 Application of the hierarchical model to the SensorScope data. Top: reconstruction after
applying the hierarchical model with a mixture for the error variance; the dark line represents the
global curve; bottom: corresponding estimates of the wavelet coefficients ζjk .

estimate the curves are appreciably smoother, with so few coefficients surviving
that some individual wavelets can be identified. For some purposes these smoother
curves might be preferred. The lower panel of the figure shows the results of our
hierarchical approach with the noise variance fixed as the variance of all coeffi-
cients at levels 3 and higher; though not so smooth as in the second panel, the
result might for some purposes be regarded as more satisfactory than the upper
panel of Figure 6.

6 Discussion

We have described a simple hierarchical model for treating numerous mutually
dependent time series. An empirical Bayes approach was used to assign values
to the hyperparameters of the model, and the wavelet coefficients were estimated
using a posterior median rule.

Experiments with simulated data show a clear gain in treating the time series
simultaneously rather than independently. Any gain is less obvious when applying
our methodology to the SensorScope data. The empirical Bayes estimate for the
error variance is relatively small, so many high level coefficients pass the thresh-
olding filter. A potential solution would be to assign a value to the error variance
beforehand—for example, the variance of all the coefficients at level j0 and higher.
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Figure 7 Effect of variance estimation on reconstruction. Top: wavethresh smoothing using default
settings; middle: wavethresh smoothing with modified settings; bottom: reconstruction after applying
the hierarchical model, with the error variance fixed beforehand as the variance of the coefficients at
level 3 and higher.

In this case j0 might be interpreted as a smoothing parameter, a “slider” that de-
termines the strength of the smoothing.

One natural extension is to allow for a different variance at each station in the
basic model (1.1). To test the effect of this we estimated the variances for each
series using the median absolute deviation of its finest level of wavelet coeffi-
cients, rescaled the wavelet coefficients to have unit standard error, and applied the
mixture model approach to the result, finally back-transforming to allow for the
different variances. This had little effect on the reconstructed curves, however.

Other possibilities for work on the rich SensorScope database are the inclu-
sion of covariates to allow for the particular surroundings of each station, and the
treatment of outliers and missing data.
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