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Abstract. With wireless sensor networks, preserving battery life is critical.
For such sensors, data collection is relatively cheap while data transmission
is relatively expensive. For such networks in ecological settings, certain pro-
cesses are sufficiently predictable so that transmission of data at a particular
time can be suppressed if it does not differ from what is expected at that time.
That is, there will not be much loss of information with regard to inference.
More precisely, there is a presumed model to explain the measurements col-
lected at the sensors, which provides insight into what is expected at a given
node, at a given time. Under the suppression, inference objectives include
both estimation of the process parameters as well as reconstruction of the
entire time series at each of the nodes.

In this paper, we build on the existing literature that has offered ways
in which one can use suppression in wireless sensor networks to limit the
number of transmissions. We introduce a new, computationally cheap, locally
linear suppression scheme based upon process knowledge and compare it to
the commonly used “constant” suppression scheme. Maintaining the same
suppression threshold, we demonstrate decreased transmission rates under
the new scheme while producing comparable posterior inference relative to
constant suppression scheme. That is, the untransmitted readings are bounded
to within an interval of the same length under both schemes, but the linear
suppression scheme will transmit less data.

We implement this scheme for a synthetic dataset produced under the as-
sumption of a diffusion model and show that even under high suppression
rates, we are able to recover simulation parameters. We also implement lin-
ear suppression on data collected from a real wireless sensor network that
measures the amount of light filtering through the forest canopy at a set of
locations in the Duke Forest. We show that the in-sample predictive sum of
squared errors from the suppressed data is only a bit larger than that from the
full dataset.

1 Introduction

Sensor networks are able to extract spatially referenced data in novel ways to learn
about processes ranging from the social patterns of zebras (Zhang et al., 2004)
to the forest dynamics of redwood trees (Tolle et al., 2005). Such data enables
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interesting new models but also introduces new challenges to the data collection
process. Of interest here are wireless sensor networks, small nodes that collect and
transmit data, relying solely upon their individual batteries. Replacement of these
batteries may be difficult, perhaps impossible. So, attention to energy savings is
crucial to the viability of the network. For such sensors, in terms of battery use,
data collection is cheap while data transmission is expensive. Hence, attention to
ways in which the sensor can minimize data transmission are of particular impor-
tance.

Suppression is a commonly employed way in which sensors can reduce trans-
mission. By suppressing the transmission of data that is similar to, that is, within
some distance of recently transmitted data, not only is less data sent, but we also
have information about the data that was not sent. That is, because we know the
mechanism by which the data was suppressed, we can bound the possible range of
values of each suppressed piece of data. These bounds are only applicable if we
are confident that all of the transmissions the node intended to send, in fact, arrived
successfully at the base station. Unfortunately, with the current state of technology,
this is often not the case. Silberstein et al. (2007) and Puggioni and Gelfand (2010)
treat this transmission failure by appending a record of the time stamp of the last r

transmissions. Any failures are then incorporated into the model.
Sensor networks monitor dynamic processes resulting in a time series at each

sensor location. The contribution of this paper is to introduce a more informa-
tive but locally cheap suppression scheme that anticipates dynamic behavior in
the mean of the process being observed. Rather than using a suppression scheme
that only takes the last transmitted value into account, we suppress according to a
locally linear trend in the mean. We implement this scheme within a fully model-
based setting. Evidently, there is loss of information in suppression. Assessment
of performance focuses on both estimation of model parameters and on predictive
performance (reconstruction) of the full time series from the partially transmitted
one.

Sensor networks are an increasingly common data collection mechanism across
a variety of fields. Indeed the Association for Computing Machines (ACM) has
published a quarterly journal, Transactions on Sensor Networks, since August
2005. Selected applications include tracking (Juang et al., 2002), monitoring vol-
canoes (Werner-Allen et al., 2006), and forest dynamics (Mainwaring et al., 2002).
Such networks are developed to infer about a process over a region which the sen-
sors span. However, they move beyond “data loggers,” where data is collected
locally and retrieved locally. In a network, the sensors can communicate with each
other as well as with a “gateway” or base station. In some designed fashion, the
sensors transmit data to the gateway which serves as a repository for the data.

Recent advances in wireless sensor technology have expanded the possibilities
of environmental modeling. In particular, continuous collection of data has be-
come feasible at temporal and spatial scales that were unattainable in the past. Fur-
thermore, wireless sensors can be placed in locations where measurement would
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otherwise be very costly (requiring specialized technicians), or cumbersome (be-
cause of landscape and climatic limitations). Examples of data that are suited to
collection with a wireless sensor network include soil moisture, light availability,
temperature, and atmospheric CO2.

Suppression introduces missingness that is a generalization of more familiar
censoring (see, e.g., Sun, 2006 and further references therein). With censoring, an
observation is restricted to a specified (possibly random) set. With suppression,
an observation is restricted to a set determined by the previous observations. In
other words, suppression is “informed” missingness. It is not sampling at coarser
temporal resolution. We note that data suppression is a very broad term in the lit-
erature, applied to contexts such as filtering, cleaning, acquisition, confidentiality,
and misrepresentation. In the setting of sensor networks we note the recent work
of Chu et al. (2006), Silberstein, Braynard and Yang (2006) and Silberstein et al.
(2007).

With wireless sensors, we envision high levels of suppression—potentially 70%
or more of the time. Such levels of missingness are much higher than we work with
in customary statistical inference settings but, with processes that are highly pre-
dictable, such suppression need not cost much in terms of inference performance
regarding the process. We note that our goal here is not network design or commu-
nication. We are not seeking optimal placement of sensors, optimal specification
of sensors, optimal collection rates, optimal communication between sensors, etc.
Rather, under a given network, we are focused on the impact of a novel suppression
scheme on our ability to learn about the process of interest.

We apply this linear (first order approximation) suppression scheme to two il-
lustrative simulated data examples and compare it to the “comparison with last
transmitted” suppression scheme which implicitly assumes a constant mean. The
simulated data comes from a stochastic differential equation model. As a real ex-
ample, we apply linear suppression to a dataset of readings of light availability
from the Duke Forest in North Carolina. In this setting, we show that even in cases
with greater than half of the data untransmitted, the mean posterior sum of squared
errors only increases by about 3% over that of the model fitted with the full data
series.

Hence, the format of the paper is as follows. In Section 2 we briefly review
the “last transmitted suppression” scheme. Section 3 presents a linear suppression
scheme which can be applied using local linearization of the mean. Section 4 de-
scribes a simulation example driven by an Orenstein–Uhlenbeck process. Section 5
investigates the Duke Forest data. Section 6 concludes with a brief summary and
possible future work.

2 Last transmitted suppression

Data collection is assumed over a discretized time scale. A very simple suppression
algorithm, used in, for example, Silberstein et al. (2007) and Puggioni and Gelfand
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Figure 1 Data generated from a Gaussian random walk (circles). Each of the filled circles repre-
sents a transmitted value with the +s showing the ε bounds. (See text for details.)

(2010), is the constant suppression scheme: transmit a new value if it is sufficiently
different from the last transmitted value. That is, without loss of generality, let
the node begin recording values at time t = t0, at which the first reading, Yt0 , is
transmitted. Let tl be the time stamp of the most recent transmission (which the
algorithm resets to t0 = tl). At each subsequent time point, t = tl + i, transmit
Ytl+i if |Ytl − Ytl+i | > ε for some preselected threshold, ε. If Ytl+i is transmitted,
set t0 = tl + i and continue the algorithm, transmitting the next value that differs
from the last transmitted value by more than ε. Under this algorithm, with no
transmission failure, it is clear that each of the missing readings can be bounded to
be within an interval of length 2ε.

This scheme is suited for a situation in which E[Yt |Ytl ] = Ytl for t > tl . Hence,
E[Yt ] is constant; there is no drift in the mean. For instance, Figure 1 shows this
suppression scheme applied to a Gaussian random walk. The trajectory given by
the solid line is observed. The full circles, along with the unfilled ones reveal the
full dataset.

3 Linear suppression

The constant suppression scheme fails to take advantage of possible trend in the
incoming data. By ignoring the trajectory of the data collected at a sensor, an op-
portunity is missed for decreased transmission at that sensor under the same thresh-
old as the constant suppression scheme. We propose a linear suppression scheme
instead. Consider a simple dynamic model (West and Harrison, 1999) with the
assumption of an observational linear trend, E[Yt ] = a + bXt , where Xt evolves
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dynamically. For convenience, in the sequel we set Xt = t but the scheme is ap-
plicable to general Xt . We use the most recent transmission and the value imme-
diately following it to calculate current estimates of a and b in order to inform
suppression decisions.

As a first version, let t0 be the time at which a sensor begins taking readings,
and let t1 be the following reading. Initialize tl0 = t0 and tl1 = t1 to be the two
most recently transmitted readings. At each time t > tl1 , use tl0 and tl1 to calculate
current â and b̂, the coefficients that connect a line between (tl0, Ytl0

) and (tl1, Ytl1
),

which can be found using simple algebra. If |Yt − â − b̂t | > ε, transmit Yt and set
tl0 = tl1 and tl1 = t . If the newest reading, Yt falls within the ε-bound of the linear
predictor, Ŷt = â + b̂t , do not transmit Yt . In the constant suppression case we do
not need to know the mean; here, we do not need to know the trend.

A second algorithm which allows faster adaptation to a quickly changing lin-
ear trend would use only the most recent transmission. Under this algorithm, we
can suppress by assuming that the points since the last transmission approximately
follow the line implied by Ytl and Ytl+1, where tl was the time of the transmis-
sion. The predicted value at tl + i for i > 1 is then â + b̂(tl + i), where â and b̂

are calculated such that the line passes through Ytl and Ytl+1. In this case, the
transmission rule is different. Again, for i > 1, if |Ytl+i − â − b̂(tl + i)| < ε,
do not transmit. If |Ytl+i − â − b̂(tl + i)| > ε, transmit Ytl+i . Then, we know
that Ytl + jbmin − ε ≤ Ytl+j ≤ Ytl+j + jbmax + ε for 1 < j < i − 1, where

bmin = (Ytl+i−1−ε)−Ytl

i−1 ≤ b ≤ (Ytl+i−1+ε)−Ytl

i−1 = bmax. Note that, because we use ad-
jacent time points to create the local linear predictor, the estimated lines may have
high variability. Also, due to the uncertainty about the b̂ that was used for suppres-
sion, the bounds become wider as we move away in time from the last transmis-
sion. Still, because it adapts rapidly, we employ this scheme in the sequel.

Figure 2 shows an illustration of the second linear suppression scheme. The dot-
ted line, which passes through the last transmitted value and the following value,
shows the line to which each subsequent transmission is compared. Once a reading
deviates from the dotted line by more than ε, the previous value (dot) is transmit-
ted. Figure 3 shows a periodic time series without noise (top) and with random
deviations (bottom) suppressed by both linear and constant suppression with the
same threshold. It reveals that the linear algorithm can achieve faster adaptation to
a quickly changing locally linear trend relative to the constant suppression scheme,
particularly when the approximately linear trend is strong relative to the noise.

More elaborate local suppression schemes can be developed, such as second
order approximation. However, we suspect that, in many cases, this would be lo-
cally very unstable. Moreover, we focus on first order approximation as an ap-
proach that requires negligible additional local computation compared with the
constant suppression scheme. We note that if EYt = aexp(−bt), we can take
logs and then implement linear suppression, similarly for any linearizable form,
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Figure 2 A cartoon illustration of the second linear suppression scheme. The dotted line provides
comparison to determine subsequent transmission.

that is, a mean allowing a one-to-one transformation to linearity. More generally,
we might devise linear suppression as a first order approximation from a more
complex mean evolution. That is, if EYt = g(t) where g is differentiable, then
EYt ≈ g(t0)+ g′(t0)(t − t0) for t near t0. Such local linearity supports the use of a
linear suppression scheme. Below, we work with a stochastic differential equation
to describe the evolution of Yt . Using customary Euler discretization leads to local
linearity in the conditional mean, again encouraging linear suppression. Lastly, all
of the above applies if we replace t with Xt , as long as Xt is observed locally
with Yt .

4 Examples using a diffusion model

We turn to a simulated application of model-based suppression, using the second
suppression algorithm described above. This example is motivated by a model
that has been used to characterize soil moisture, as in Puggioni (2008) and ref-
erences therein. We apply a suppression scheme tailored to the data generating
model which arises from a stochastic differential equation, in fact, a simulated
classic Orenstein–Uhlenbeck (O–U) process (see Uhlenbeck and Ornstein, 1930)
with fixed parameters. We then demonstrate our approach with data generated from
a logistic growth model, again a stochastic differential equation model, with dy-
namic parameters that themselves are an O–U processes.

We simulate an O–U process dYt = (θ1 + θ2Yt ) dt + dWt using the Euler dis-
cretization Yt −Yt−1 = (θ1 +θ2Xt−1)�t +θ3N(0,

√
�t) (see Iacus, 2008; Elerian,
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Figure 3 Data generated from 10 cos(t), for 30 values of t , and suppressed using both linear (left)
and constant (right) suppression, both with ε = 1. The suppression rate was 0.43̄ for linear suppres-
sion and and 0.2 for constant suppression for the top “noise-less” row.

Chib and Shephard, 2001 and Eraker, 1998). We simulate the series on the process
on the interval [0,50] at a resolution 100 times higher than the data that we use for
the analysis, that is, we sampled 5000 observations in the interval but viewed the
series as sampled at t = 1,2, . . . ,50. The higher resolution is intended to provide a
discrete sample that better resembles a continuous trajectory. Figure 4 shows both
the original series and the series used for the analysis.

In order to suppress transmission from this series, we use a scheme tailored to
the process. We assume θ1 = 0 for simplicity, though this can be relaxed. We then
suppress according to the following scheme:
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Figure 4 Simulated O–U process realization with parameters θ1 = 0, θ2 = −0.7, θ3 = 1.

1. Transmit first two readings (t = 1, t ′ = 2, Ŷt = Y1, Ŷt ′ = Y2, i = t ′).
2. Calculate current estimate of θ2 from these two values as θ̂2 = (Yt ′ −

Yt )/(�tYt ).
3. Forward simulate with 0 variance from Ŷi to form predictions of the coming

values. Thus the prediction for Yi+1 is Ŷi+1 = Ŷi + Ŷi θ̂2�t .
4. If |Ŷi+1 − Yi+1| > ε, transmit Yi+1. Set t = t ′, t ′ = i + 1, i = 1, Ŷi+1 = Yi+1

and go to (2). Else i = i + 1 and go to (3).

The dynamic parameter estimates are calculated very similarly to the linear sup-
pression scheme, though prediction is done according to the SDE.

In order to infer about the model parameters, we use the method of Eraker
(1998) to estimate the parameters. We use a Metropolis–Hastings step rather than
the more complicated rejection sample hybrid Metropolis–Hastings for this simple
univariate series. This method requires inserting several latent variables between
each of the sampled time points, even in the case of a unsuppressed series. We
include four latent variables between each integer time point, and we sample each
of the suppressed time points within their known bounds. For further discussion
on estimation of stochastic differential equations, see Elerian, Chib and Shephard
(2001) or Durham and Gallant (2002).

In an illustrative simulation with parameters θ1 = 0, θ2 = −0.7, θ3 = 1, we
set ε such that the suppression rate was 38%. This resulted in posterior means
and 95% credible intervals of θ̂1 = 0.02 with interval [−0.24,0.29], θ̂2 = −0.54
with interval [−0.72,−0.38], θ̂3 = 0.82 with interval [0.77,1.10]. For each of
the parameters, despite 38% suppression, the credible intervals always contain the
true simulated parameters. We note that the maximum likelihood estimates from
the full data set were θ2 = −0.57, θ3 = 0.87.

The above suppression scheme updates θ2 dynamically based on the last two
transmissions. The data, however, were generated from a fixed θ2. A more interest-
ing case is when the model parameters are themselves dynamic. For this, we turn
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Figure 5 (left) Logistic series simulated at 100 times the resolution sensed by nodes. (right) Series
sensed by the node. The parameters for this simulation were θ1 = 0, θ2 = −0.8, θ3 = 1, σ = 0.05.

to a new model in which Yt is a logistic stochastic differential equation process
with carrying capacity K , which is fixed at one in this example, and time-varying
rate parameter rt governed by an O–U process:

dYt = rt (1 − Yt/K)Yt dt + σ dWt,

drt = (θ1 + θ2rt ) dt + θ3 dWt .

The parameters of the logistic process are themselves governed by a stochastic
differential equation, allowing for movement of Yt according to the sign of rt , as
seen in Figure 5, which is an example realization from this process. A version of
this model was considered recently in Duan et al. (2010).

In order to illustrate, we assume that both series, {Yt } and {rt } are sensed by
the node, though each series is suppressed completely independently of the other.
The O–U process in rt is suppressed as above, and the logistic series is transmitted
using a suppression scheme in accord with the logistic model. At each time point,
we use the last two transmissions, t and t ′ to estimate r̂ = Yt ′−Yt

(t ′−t)Yt (1−Yt /K)
. As only

the unsuppressed values of the rt and Yt series are ever seen by the base station,
we must infer both the missing values of each series and the model parameters
governing both processes. Table 1 shows posterior mean estimates for each of the
parameters averaged over 10 series of length 100, suppressed at the rates indicated.

5 Duke Forest light availability data

The Duke Forest in Durham, North Carolina has deployed a sensor network to
study various aspects related to the health of the forest. One of the variables col-
lected is a reading of the amount of light each node senses during the course of
a day (Clark et al., 2011). We work with a dataset consisting of five nodes, mea-
sured across 12 days, with 72 measurements taken each day (20 minutes apart).
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Table 1 Posterior inference for the logistic/O–U model under varying suppression rates (see text
for details)

Suppression rate for r

Suppression rate for Y 0.05 0.25 0.45 0.65 0.85

0.05 θ1 = 0 −0.022 −0.023 −0.015 −0.024 −0.001
0.25 −0.022 −0.016 −0.013 −0.018 0
0.45 −0.019 −0.018 −0.015 −0.026 −0.004
0.65 −0.019 −0.015 −0.011 −0.032 0
0.85 −0.022 −0.020 −0.020 −0.032 −0.005

0.05 θ2 = −0.50 −0.497 −0.418 −0.512 −0.506 −0.613
0.25 −0.514 −0.503 −0.513 −0.519 −0.583
0.45 −0.495 −0.527 −0.492 −0.511 −0.558
0.65 −0.483 −0.494 −0.495 −0.512 −0.656
0.85 −0.559 −0.607 −0.609 −0.624 −0.942

0.05 θ3 = 1 0.947 0.957 0.952 0.942 0.999
0.25 0.956 0.947 0.944 0.944 0.973
0.45 0.940 0.961 0.924 0.931 0.951
0.65 0.918 0.929 0.916 0.933 1.00
0.85 0.962 0.986 0.969 0.964 1.05

0.05 σ = 0.05 0.044 0.044 0.044 0.043 0.043
0.25 0.044 0.044 0.042 0.043 0.044
0.45 0.045 0.043 0.045 0.043 0.041
0.65 0.046 0.045 0.045 0.047 0.043
0.85 0.078 0.077 0.077 0.079 0.071

After discussion with ecologists, the following model for light filtration through a
canopy was proposed:

− log
(

Iitd

I0td

)
= Fit + Gd + εitd ,

Fit ∼ N+(μi, τ
2
i ),

μi ∼ N+(θμ, τ 2
μ),

Gd ∼ N+(μG, τ 2
G),

εitd ∼ N+(0, σ 2).

In this model, Iitd is the reading of the ith node at time t of day d with I0td the
associated above-canopy reading. The Fit are intended to capture the local fluctu-
ations in light at each time of day at each node. We also include Gd as a daily av-
erage to capture the relative cloudiness of each day. Lastly, we include i.i.d. errors,
εitd . This simplified model reflects the ecologists’ belief that the shadows which
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Figure 6 (left) Light readings from a selected node. (center) The log ratio, log(
Iitd
I0td

) for this node
to the above canopy reading. (left) A portion of the suppressed series.

Table 2 The sum of squared error of the light model applied to each datasets with varying suppres-
sion levels

Threshold Suppression level SSE

0 0 268
10 0.39 271
20 0.47 271
30 0.53 271
40 0.57 274
50 0.62 275

pass over the node throughout the day are highly local, so much so that incorpo-
rating information from neighboring nodes would likely not improve explanation.
Thus, this model is completely nonspatial. It is essentially a random effects model,
where each node has its own random effect for each time of day. These are tied
together in the hierarchy by μi , the node-level mean. Evidently, the first stage is
loglinear in the ratio, log( Iitd

I0td
). We assume that the above canopy reading is known

without error because this can be read at the base station directly. Also, we know
that if there is no light above the canopy, there must also be no light below. So, we
assume that each of the zero readings are also known. Figure 6 shows an example
of light readings from one series, the log ratio log( Iitd

I0td
), and the suppressed data.

To complete a Bayesian specification, we adopt flat priors for the mean parameters
with inverse Gamma priors on each of the variance components/parameters.

We fit the model using several suppression thresholds, resulting in suppres-
sion levels up to 62%. Table 2 shows the fitted sum of squared errors (observed–
predicted) for each of the models. Note that, even in the case of highest suppres-
sion, there is only a 3% increase in the sum of squared errors. Figure 7 shows
a comparison between each of the Fit fitted from the full dataset to each of the
suppressed datasets. We find that, in general, again we are able to recover approx-
imately the same parameters, even from the most suppressed dataset.
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Figure 7 Each panel represents the average fitted value versus the actual data for a different sup-
pression threshold applied to the light data.

6 Summary and future work

We have shown the benefits of working with locally linear suppression schemes.
In particular, by allowing the data model to inform about the nature of trend and
then adapting the suppression scheme accordingly, under fairly high levels of sup-
pression, we can achieve comparable inference performance, in terms of parameter
estimation and prediction, to using the full dataset. We have shown this in a simple
simulation example, a more complicated diffusion model simulation example, and
with a real dataset.

Future work in this area includes exploring suppression schemes incorporating
spatial dependence. By incorporating both the temporal dependence as we have
done in the suppression scheme presented here as well as spatial dependence with
neighboring nodes, potentially less data might be transmitted. Cascaded suppres-
sion is a spatial suppression scheme in which nodes are clustered together depend-



404 K. Lum and A. E. Gelfand

ing on location and a “head node” is selected for each cluster. The head node then
takes the temporally suppressed readings from each node in its cluster and decides
which, if any, values to forward to the base station. In this way, the cluster head
will forward representative readings from the cluster so that all readings not sent
can be bounded in a way similar to purely temporal suppression. Another research
avenue would examine suppression for time series that are non-Gaussian, or even
discrete (e.g., binary or count data).
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