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Abstract. We prove weak laws of large numbers and central limit theorems
of Lindeberg type for empirical centres of mass (empirical Fréchet means)
of independent nonidentically distributed random variables taking values in
Riemannian manifolds. In order to prove these theorems we describe and
prove a simple kind of Lindeberg–Feller central approximation theorem for
vector-valued random variables, which may be of independent interest and
is therefore the subject of a self-contained section. This vector-valued result
allows us to clarify the number of conditions required for the central limit
theorem for empirical Fréchet means, while extending its scope.

1 Introduction

Fréchet means, or Riemannian centres of mass, were introduced at a relatively
early stage of probability by Fréchet (1948). The idea is simple enough: generalize
the mean-square characterization of the mean E[X] as the minimizer of the “en-
ergy function” x �→ 1

2E[(X − x)2]. If X takes values in a metric space X this can
be achieved as follows: replace (X − x)2 by the square of the distance function
dist(X,x)2.

Of course the theory of Fréchet means is subject to geometric complications.
Uniqueness becomes the exception rather than the rule, though existence is guaran-
teed if the metric space satisfies some kind of local compactness condition. Ziezold
(1977, 1989, 1994) established some basic results in this broad context, as well as
developing some significant applications in applied statistics. If the metric space
X is specialized to a Riemannian manifold M then it is possible to produce use-
ful calculations and estimates using curvature; Karcher (1977) provides a good
account of this as well as surveying substantial applications of Fréchet means in
geometry.

Probabilistic interest in Fréchet means was initially spurred on by considera-
tions of how to generate theories of martingales taking values in manifolds, and
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in particular how then to extend the mathematical application of martingale theory
beyond the theory of linear elliptic differential equations to the theory of harmonic
maps [Kendall (1990); Picard (1994)]. In particular this led to strong connections
with convexity theory for Riemannian manifolds, simply expressed in Kendall
(1991b) and further developed in Kendall (1991a, 1992a, 1992b) and Corcuera and
Kendall (1999); more recently see Afsari (2011). Ziezold (1989)’s application of
Fréchet means to statistical shape theory has been taken up by several workers [see,
e.g., Le (2001, 2004); also the recent survey by Kendall and Le (2010)]. In par-
ticular Bhattacharya and Patrangenaru (2003, 2005) and Bhattacharya and Bhat-
tacharya (2008) have developed important statistical theory for empirical Fréchet
means on Riemannian manifolds, including (but not limited to) laws of large num-
bers and central limit theory for independent and identically distributed manifold-
valued random variables.

The present paper is inspired by these results of Bhattacharya and coworkers,
and addresses the challenge of extending their theory to the nonidentically dis-
tributed case. After Section 2, which establishes basic definitions and notation, in
Section 3 we develop a weak law of large numbers for empirical Fréchet means in
a metric space context (Theorem 2) which is based on the most general possible
weak law of large numbers for independent nonnegative random variables (stated
here as Theorem 1). In particular, we pay attention to the question of when one can
assert existence of local empirical Fréchet means lying close to a local minimizer
of the aggregated energy function which is obtained by summing the individual
energy functions of the random variables concerned.

It is a natural step from this theory to consider central limit theorems of Lin-
deberg type for empirical Fréchet means, since the conditions for the weak law of
large numbers (Theorem 2) involve conditions of Lindeberg type. To do this one
needs to specialize to the more specific case of Riemannian manifolds, since this
allows one to use the Riemannian Exponential map to refer the manifold to an Eu-
clidean approximation. It is therefore apparent that a central limit theorem for the
Riemannian manifold case must depend on a central limit theorem for the random
tangent vectors corresponding to the manifold-valued random variables via this
Exponential map, and Section 4 considers the relevant theory.

In fact there is a substantial literature on central limit theorems and normal
approximations for vector-valued random variables; see Bhattacharya and Rao
(1976) for an exposition in book form, and more recently Chatterjee (2008) and
Röllin (2011) (both of whom describe approaches which apply Stein’s method).
However, as we sought to generalize to a Lindeberg central limit theorem for em-
pirical Fréchet means so it became clear that we needed a subtly different result: a
theorem which would describe when a sequence of normalized random sums may
be approximated by a second sequence of matching multivariate normal random
variables, when there is no guarantee of weak convergence, and when the nor-
malization uses not individual coordinate variances but the trace of the variance–
covariance matrix of the sum. These requirements mean, for example, that one can-
not simply apply the Cramér-Wold device. The closest general result we can find
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in the published literature is that of Bhattacharya and Rao (1976, Corollary 18.2)
[also see Barbour and Gnedin (2009) for specific cases arising in study of infinite
occupancy schemes]; however this uses normalization in a matrix-valued sense,
using the inverse of the symmetric square-root of the variance–covariance matrix
(which is required to be nonsingular), whereas we need an approach which uses
scalar normalization and which can work even when the variance–covariance ma-
trix degenerates.

It turns out, as we describe in Section 4, that it is possible to formulate such
a result, a multidimensional Lindeberg central approximation theorem, which we
state and prove as Theorem 3 (and also Corollary 2 for the Feller converse). Proofs
vary little from the classic approach of, say, Feller (1966). However it is necessary
to take account of the vector-valued context and to allow for a crucial intervention
of the Wasserstein metric for the truncated Euclidean distance; therefore we give
the proofs in full for the sake of completeness of exposition, since the application
is unfamiliar.

These results allow us to prove a Lindeberg central approximation theorem for
empirical Fréchet means, which forms Theorem 4 in Section 5. The basic idea
uses Newton’s root-finding algorithm, and owes much to the work of Bhattacharya
and coworkers; however while extending to the nonidentically distributed case we
are also able to clarify the set of conditions required for the result, by exploit-
ing the idea of central approximation rather than central limits, and we can derive
a rather explicit form for the variance–covariance matrices of the approximating
multivariate normal random variables. The paper concludes with a small number
of illustrative examples, demonstrating how the results simplify in the case of in-
dependent and identically distributed random variables, and also in the case when
the Riemannian manifold is of constant sectional curvature, or carries a Kähler
structure with constant holomorphic sectional curvature.

2 Basic theory and notation

Consider the energy function of a random variable X taking values in a metric
space X :

φ(x) = E

[
1

2
dist(X,x)2

]
.

Observe that if φ is finite at one point of X then it is finite everywhere, by an argu-
ment using the triangle inequality. Given independent X1, . . . ,Xn, the aggregate
energy function is simply the sum

φn(x) =
n∑

m=1

E

[
1

2
dist(Xm,x)2

]
.
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A Fréchet mean is a global minimizer of φ. Note that there can be more than
one Fréchet mean: we then consider the set of Fréchet means

arg min
x

E

[
1

2
dist(X,x)2

]
.

An empirical Fréchet mean is a global minimizer of the energy function based on
the empirical probability measure defined by a sample X1, . . . ,Xn: thus the set of
empirical Fréchet means is

arg min
x

1

n

n∑
i=1

1

2
dist(Xi, x)2.

[In case of local compactness, the existence of global minimizers of both kinds
follows immediately from dist(X,y) + dist(X,x) ≥ dist(x, y).]

Some of our results hold for local minimizers; we use the term local Fréchet
mean to describe a local minimizer of φ, while a local empirical Fréchet mean
denotes a local minimizer of the energy function based on the empirical probability
measure defined by a sample X1, . . . ,Xn of points from the metric space X .

We shall use the operator-theoretic notation E[H ] to denote the expectation of a
random variable H . In particular we shall write E[H ;A] = E[H I[A]], where I[A]
is the indicator random variable for an event A.

3 Weak law of large numbers for empirical Fréchet means

Ziezold (1977) established a strong law of large numbers for sequences of in-
dependent identically distributed random variables X1, X2, . . . taking values in a
separable metric space X (actually Ziezold covered the more general case of a sep-
arable finite quasi-metric space). Imposing the condition that the energy function
E[1

2 dist(Xi, x)2] be finite for some (and thus all) x, Ziezold was then able to show
that almost surely the limit of the closure of the sup of the set of empirical Fréchet
means is a subset of the set of Fréchet means (up to an event of zero probability
measure):

∞⋂
k=1

∞⋃
n=k

arg min
x

1

n

n∑
i=1

1

2
dist(Xi, x)2 ⊆ arg min

x
E

[
1

2
dist(X1, x)2

]
. (3.1)

Here of course the arg min are treated as random closed sets.
If X is not compact then it is possible for a sequence of empirical Fréchet means

to diverge to infinity even when (3.1) holds. Given uniqueness of the Fréchet mean,
Bhattacharya and Patrangenaru (2003, Theorem 2.3) have shown that a strong law
of large numbers follows from imposition of the additional condition that every
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closed bounded subset of X is compact; in that case every sequence of measurable
choices from the sets

arg min
x

1

n

n∑
i=1

1

2
dist(Xi, x)2

of empirical Fréchet means will almost surely converge to the unique Fréchet
mean.

In this section we derive a weak law of large numbers in the more general case of
nonidentically distributed independent random variables X1, X2, . . . , taking val-
ues in a separable metric space X possessing the bounded compactness property
of Bhattacharya and Patrangenaru, and such that the individual energy functions
E[1

2 dist(Xn, x)2] are finite for some (and therefore for all) x ∈ X . Evidently we
need to impose extra conditions to compensate for the lack of identical distribution;
we will require that the aggregate energy function φn(x) = ∑n

i=1 E[1
2 dist(Xi, x)2]

has a strict local minimum near a fixed reference point o ∈ X , and we will re-
quire that this holds uniformly as n → ∞ [in a particular sense captured in the
displayed equation (3.2) below]. In recompense for this restriction, our results de-
scribe the behaviour of local empirical Fréchet means lying in a geodesic ball
ball(o, ρ1) ⊆ X . The particular uniformity requirement is that for each positive
ρ0 ≤ ρ1 there is positive κ = κ(ρ0, ρ1) such that, for all n,

(1 + κ)φn(o) < inf{φn(y) :ρ0 ≤ dist(y,o) ≤ ρ1}. (3.2)

Bearing in mind that the ultimate aim of this paper is to prove a central limit
theorem, convergence in probability is a more natural objective than almost sure
convergence. Therefore it is reasonable to restrict attention to the weaker notion
of convergence in probability. Moreover even in the scalar case the law-of-large-
numbers conditions for convergence in probability are clearer and more easily
stated than for convergence almost surely. The key theorem for our treatment is
the weak law of large numbers for nonidentically distributed nonnegative real ran-
dom variables. We state a special case of this result:

Theorem 1. Suppose that Z1, Z2, . . . are independent nonnegative real random
variables, not necessarily of the same distribution. Suppose further that

1∑n
r=1 E[Zr ]

n∑
m=1

E

[
Zm;Zm ≥ ε

n∑
r=1

E[Zr ]
]

−→ 0 for each ε > 0. (3.3)

Then it is the case that as n → ∞ so∑n
r=1 Zr∑n

r=1 E[Zr ] −→ 1 in probability. (3.4)

This theorem follows directly from Chow and Teicher (2003, Chapter 10, The-
orem 1, Corollary 2).
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Remark 1. The condition (3.3) can be viewed as an equation of Lindeberg type.
Indeed, if W1, W2, . . . are independent real random variables with E[Wm] = 0 and
such that W 2

m = Zm, then (3.3) corresponds exactly to the usual Lindeberg con-
dition for the sequence {Wm :m ≥ 1}. Thus Chow and Teicher (2003, Chapter 10,
Theorem 1, Corollary 2) signals the close connection between weak laws of large
numbers and the central limit theorem.

Our strategy for proving a weak law of large numbers for nonidentically dis-
tributed X -valued random variables is as follows: consider the condition (3.3) ap-
plied to the case Z

(x)
m = 1

2 dist(Xm,x)2, and then apply the corresponding weak
laws of large numbers (3.4). Under suitable additional conditions the aggregate
empirical energy functions

∑n
m=1 Z

(x)
m = ∑n

m=1
1
2 dist(Xm,x)2 can be made to ap-

proximate the aggregate energy functions φn(x) closely enough to ensure that the
uniform local minimum property forces convergence to 1 of the probability of
there being local empirical Fréchet means close to o.

For a useful result it is preferable to require that the Lindeberg-type condition
apply only at the chosen reference point o. For a general metric space X we should
not expect the Lindeberg-type condition for the Z

(o)
m to imply the corresponding

conditions obtained when o is replaced by a general x ∈ X . However we can prove
a partial result in this direction, which will be sufficient for our purposes:

Lemma 1. Suppose as above that X is a separable metric space. Let X1, X2, . . .

be independent X -valued random variables with finite energy functions. The fol-
lowing conditions of Lindeberg-type are equivalent:

• Firstly, a local Lindeberg condition:

1

φn(x)

n∑
m=1

E

[
1

2
dist(Xm,x)2; 1

2
dist(Xm,x)2 > εφn(x)

]
→ 0

(3.5)
as n → ∞ for each ε > 0.

• Secondly, a semi-global Lindeberg condition:

1

nφn(x)

n∑
i=1

n∑
j=1

E

[
1

2
dist(Xi,Xj )

2; 1

2
dist(Xi,Xj )

2 > εφn(x)

]
→ 0

(3.6)
as n → ∞ for each ε > 0.

Remark 2. Note that the presence of φn(x) in (3.6) means that this semiglobal
condition is not truly global, since φn(x) = ∑n

m=1 E[1
2 dist(Xm,x)2] depends im-

plicitly on the choice of x ∈ X .
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Proof of Lemma 1. First suppose that the local condition (3.5) holds. We shall
use this to produce an upper bound on the quantity on the left-hand side of (3.6).
Indeed

1

nφn(x)

n∑
i=1

n∑
j=1

E

[
1

2
dist(Xi,Xj )

2; 1

2
dist(Xi,Xj )

2 > εφn(x)

]

≤ 4

φn(x)

n∑
i=1

E

[
1

2
dist(Xi, x)2; 1

2
dist(Xi, x)2 >

ε

4
φn(x)

]

+ 4

n

n∑
i=1

P

[
1

2
dist(Xi, x)2 >

ε

4
φn(x)

]
.

Here we make direct use of the triangle inequality via

dist(Xi,Xj )
2 ≤ 2 dist(Xi, x)2 + 2 dist(Xj , x)2;

in particular the condition that dist(Xi,Xj ) >
√

2εφn(x) implies that at least one
of dist(Xi, x) > 1

2

√
2εφn(x) or dist(Xj , x) > 1

2

√
2εφn(x) must hold.

The Markov inequality implies that

4

n

n∑
i=1

P

[
1

2
dist(Xi, x)2 >

ε

4
φn(x)

]

≤ 16

εnφn(x)

n∑
i=1

E

[
1

2
dist(Xi, x)2; 1

2
dist(Xi, x)2 >

ε

4
φn(x)

]
and therefore we obtain

1

nφn(x)

n∑
i=1

n∑
j=1

E

[
1

2
dist(Xi,Xj )

2; 1

2
dist(Xi,Xj )

2 > εφn(x)

]

≤ 4
(

1 + 4

εn

)
1

φn(x)

n∑
i=1

E

[
1

2
dist(Xi, x)2; 1

2
dist(Xi, x)2 >

ε

4
φn(x)

]
.

For any ε > 0 this upper bound tends to zero as n → ∞, by (3.5), and therefore
we obtain (3.6).

Now suppose on the other hand that the semiglobal condition (3.6) holds.
If dist(Xi, x) >

√
2εφn(x) and dist(Xj , x) ≤ 1

2

√
2εφn(x) then it follows that

dist(Xi,Xj ) > 1
2

√
2εφn(x). We deduce that

E

[
1

2
dist(Xi,Xj )

2; 1

2
dist(Xi,Xj )

2 >
ε

4
φn(x)

]
≥ E

[
1

2
dist(Xi,Xj )

2;dist(Xi, x) >
√

2εφn(x),dist(Xj , x) ≤ 1

2

√
2εφn(x)

]
.
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If dist(Xi, x) >
√

2εφn(x) and dist(Xj , x) ≤ 1
2

√
2εφn(x) then dist(Xi,Xj ) ≥

dist(Xi, x) − dist(Xj , x) ≥ 1
2

√
2εφn(x) ≥ 1

2 dist(Xi, x), and so

1

nφn(x)

n∑
i=1

n∑
j=1

E

[
1

2
dist(Xi,Xj )

2; 1

2
dist(Xi,Xj )

2 >
ε

4
φn(x)

]

≥ 1

4φn(x)

n∑
i=1

(
E

[
1

2
dist(Xi, x)2; 1

2
dist(Xi, x)2 > εφn(x)

]

× 1

n

n∑
j=1,j 
=i

P

[
1

2
dist(Xj , x)2 ≤ ε

4
φn(x)

])
.

Finally we take complements and use Markov’s inequality to deduce

1

n

n∑
j=1,j 
=i

P

[
1

2
dist(Xj , x)2 ≤ ε

4
φn(x)

]

≥ 1 − 1

n
− 4

nεφn(x)

n∑
j=1,j 
=i

E

[
1

2
dist(Xj , x)2; 1

2
dist(Xj , x)2 >

ε

4
φn(x)

]

≥ 1 − 1

n
− 4

nε
≥ 1

2
once n ≥ 2

(
1 + 4

ε

)
.

Taking n ≥ 2(1 + 4
ε
), we deduce that (3.6) implies (3.5) by arguing that

1

nφn(x)

n∑
i=1

n∑
j=1

E

[
1

2
dist(Xi,Xj )

2; 1

2
dist(Xi,Xj )

2 >
ε

4
φn(x)

]

≥ 1

8

1

φn(x)

n∑
i=1

E

[
1

2
dist(Xi, x)2; 1

2
dist(Xi, x)2 > εφn(x)

]
.

This establishes the equivalence of local and semiglobal conditions. �

Effective use of the semiglobal Lindeberg condition depends on a lower bound
on the growth of the energy function φn(y) as dist(o, y) increases.

Lemma 2. Suppose as above that X is a separable metric space. Let X1, X2, . . .

be X -valued random variables with finite energy functions. Suppose that the aggre-
gate energy function φn(y) = ∑n

m=1 E[1
2 dist(Xm,y)2] attains its minimum over X

at y = o:

φn(o) ≤ φn(y). (3.7)

Then the aggregate energy function grows at least linearly at any y 
= o:

φn(y) ≥ dist(y,o)2

16
n. (3.8)
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Proof. For convenience, set ρ = dist(y,o). If φn(o) ≥ ρ2n/16 then (3.8) follows
from Inequality (3.7). So we can suppose that φn(o) < ρ2n/16.

For additional convenience let M be a random integer chosen uniformly from
{1,2, . . . , n} (independently of X1, . . . ,Xn). Then

1

n
φn(y) = E

[
1

2
dist(XM,y)2

]
≥ ρ2

8
P

[
1

2
dist(XM,y)2 ≥ ρ2

8

]
(Markov inequality)

= ρ2

8
P

[
dist(XM,y) ≥ ρ

2

]
≥ ρ2

8
P

[
dist(XM,o) <

ρ

2

]
(triangle inequality)

= ρ2

8

(
1 − P

[
1

2
dist(XM,o)2 ≥ ρ2

8

])
≥ ρ2

8

(
1 − 8

ρ2 E

[
1

2
dist(XM,o)2

])
(Markov inequality again)

≥ ρ2

8

(
1 − 8

ρ2

ρ2

16

)
≥ ρ2

16
.

So (3.8) follows in this case also. �

We are now in a position to state and prove the main result of this section.
We follow Bhattacharya and Patrangenaru (2003) by imposing the compactness
of bounded closed sets, and also impose the uniform local minimum property de-
scribed above by Inequality (3.2).

Theorem 2. Suppose X is a separable metric space for which all bounded closed
sets are compact. Let X1, X2, . . . be independent nonidentically distributed X -
valued random variables such that E[1

2 dist(Xm,o)2] < ∞ for a given reference
point o ∈ X (hence for all points in X ), for each m. Suppose also that the uniform
local minimum property obtains: there is fixed finite ρ1 > 0 such that Inequal-
ity (3.2) holds for each positive ρ0 ≤ ρ1. Thus there is κ = κ(ρ0, ρ1) such that
(1 + κ)φn(o) (for the aggregate energy function φn specified above) is a strict
lower bound for the values of φn on the annulus centred at o and defined by radii
ρ0, ρ1. Finally, suppose that the Xm satisfy a local condition of Lindeberg type at
o: for each ε > 0, as n → ∞ so

1

φn(o)

n∑
m=1

E[dist(Xm,o)2;dist(Xm,o)2 > εφn(o)] −→ 0. (3.9)

Consider any measurable choice of a sequence of local minimizers

E (X1, . . . ,Xn) = arg inf
x∈ball(o,ρ1)

{
n∑

m=1

1

2
dist(Xm,x)2

}
.
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There exists at least one such sequence such that

P[E (X1, . . . ,Xn) ∈ ball(o, ρ0)] → 1,

and for any such sequence E (X1, . . . ,Xn) → o in probability.

Proof. First note that global (and hence also local) minimizers of the aggre-
gate empirical energy function always exist and are confined to an almost surely
bounded region: indeed global minimizers for the sample X1, . . . ,Xn are simply
conventional Fréchet means of the n-point empirical distribution, and the argu-
ment of Bhattacharya and Patrangenaru (2003, Theorem 2.1) applies (this theorem
is stated for Riemannian manifolds, but the portion relating to existence within
a bounded region is a purely metric space argument, using the compactness of
bounded sets).

Evidently it suffices to show that Inequality (3.2) has high probability of being
replicated at the empirical level: it is enough to show that the following probability
converges to 1 as n → ∞ for each positive ρ0 < ρ1:

P

[
n∑

m=1

1

2
dist(Xm,o)2 < inf

{
n∑

m=1

1

2
dist(Xm,y)2;ρ0 ≤ dist(y,o) ≤ ρ1

}]
. (3.10)

For then it follows immediately that any sequence of local minimizers of the ag-
gregate empirical energy function restricted to ball(o, ρ1)

E (X1, . . . ,Xn) = arg inf
x∈ball(o,ρ1)

{
n∑

m=1

1

2
dist(Xm,x)2

}
,

must (as n → ∞) eventually have arbitrarily high probability of lying in
ball(o, ρ0), and must in this event be a local minimizer of the unrestricted ag-
gregate empirical energy function. Since (3.10) holds for each positive ρ0 < ρ1,
we may deduce that dist(E (X1, . . . ,Xn),o) → 0 in probability.

To begin the proof, first note that the result follows trivially if φn(o) = 0 for
all n, for then Xm = o almost surely for all n. Otherwise by Theorem 1

1

φn(o)

n∑
m=1

1

2
dist(Xm,o)2 → 1 in probability. (3.11)

Furthermore Lemma 1 and (3.9) show that, for each ε > 0, as n → ∞ so

1

nφn(o)

n∑
i=1

n∑
j=1

E

[
1

2
dist(Xi,Xj )

2; 1

2
dist(Xi,Xj )

2 > εφn(o)

]
→ 0.

Moreover (3.2) implies that if ρ0 ≤ dist(y,o) ≤ ρ1 then also

1

nφn(y)

n∑
i=1

n∑
j=1

E

[
1

2
dist(Xi,Xj )

2; 1

2
dist(Xi,Xj )

2 > εφn(y)

]
→ 0.
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A further application of Lemma 1 then shows that, for each ε > 0, as n → ∞
1

φn(y)

n∑
m=1

E

[
1

2
dist(Xm,y)2; 1

2
dist(Xm,y)2 > εφn(y)

]
→ 0.

Consequently we may also deduce that if ρ0 ≤ dist(y,o) ≤ ρ1 then

1

φn(y)

n∑
m=1

1

2
dist(Xm,y)2 → 1 in probability.

Now we have established suitable convergence in probability for the energy
functions, but only holding pointwise not uniformly. Were we able to uniformize
this over the whole of the annulus A(ρ0, ρ1) = {y :ρ0 ≤ dist(y,o) ≤ ρ1}, and
were we able to overcome the distinction between φn(o) and φn(y) for y ∈
A(ρ0, ρ1), then we would achieve the required convergence for (3.10) via Inequal-
ity (3.2). Following Bhattacharya and Patrangenaru (2003), we do this by selecting
y1, . . . , yk from A(ρ0, ρ1) to form a finite δ-net for A(ρ0, ρ1), for suitably small
δ > 0. Consider two points y, z ∈ A(ρ0, ρ1) with dist(y, z) < δ. Then we can use
dist(Xm,y) ≤ 1 + dist(Xm,y)2 to deduce

dist(Xm, z)2 ≤ (
dist(Xm,y) + δ

)2 ≤ (1 + 2δ)dist(Xm,y)2 + (2 + δ)δ,

likewise

dist(Xm,y)2 ≤ (1 + 2δ)dist(Xm, z)2 + (2 + δ)δ.

Applying this to whichever is the larger of dist(Xm,y)2, dist(Xm, z)2, and then
using dist(Xm, z)2 ≤ (dist(Xm,y) + δ)2 ≤ 2 dist(Xm,y)2 + 2δ2,

|dist(Xm, z)2 − dist(Xm,y)2|
≤ 2δ max{dist(Xm, z)2,dist(Xm,y)2} + (2 + δ)δ

≤ 4δ dist(Xm,y)2 + 4δ3 + (2 + δ)δ = (
4 dist(Xm,y)2 + 4δ2 + δ + 2

)
δ.

For z ∈ A(ρ0, ρ1), choose p(z) to be an element of the δ-net which is closest to z.
Then the above implies that

sup

{∣∣∣∣∣1 − 1

φn(p(z))

n∑
m=1

1

2
dist(Xm, z)2

∣∣∣∣∣; z ∈ A(ρ0, ρ1)

}

≤ max
i=1,...,k

{∣∣∣∣∣1 − 1

φn(yi)

n∑
m=1

1

2
dist(Xm,yi)

2

∣∣∣∣∣
+
(

4

φn(yi)

n∑
m=1

1

2
dist(Xm,yi)

2 + 4δ2 + δ + 2

2

n

φn(yi)

)
δ

}
.
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Thus we establish useful limiting bounds holding in probability as n → ∞ so
long as we can show that if y ∈ A(ρ0, ρ1) then

lim inf
n

φn(y)

n
> 0.

But this follows (with an explicit lower bound) from Lemma 2: hence

sup

{∣∣∣∣∣1 − 1

φn(p(z))

n∑
m=1

1

2
dist(Xm, z)2

∣∣∣∣∣; z ∈ A(ρ0, ρ1)

}

≤ max
i=1,...,k

{∣∣∣∣∣1 − 1

φn(yi)

n∑
m=1

1

2
dist(Xm,yi)

2

∣∣∣∣∣
+
(

4

φn(yi)

n∑
m=1

1

2
dist(Xm,yi)

2 + 4δ2 + δ + 2

2

16

ρ2
0

)
δ

}
.

Consequently, once ρ0 is fixed, for any ε > 0 we can choose δ small enough so
that with probability tending to 1 as n → ∞

sup

{∣∣∣∣∣1 − 1

φn(p(z))

n∑
m=1

1

2
dist(Xm, z)2

∣∣∣∣∣; z ∈ A(ρ0, ρ1)

}
≤ ε

2
.

We now use (3.2) to deduce that with probability tending to 1 as n → ∞

inf

{
n∑

m=1

1

2
dist(Xm, z)2; z ∈ A(ρ0, ρ1)

}

≥ (1 + κ)φn(o) inf

{
1

φn(p(z))

n∑
m=1

1

2
dist(Xm, z)2; z ∈ A(ρ0, ρ1)

}

≥
(

1 − ε

2

)
(1 + κ)φn(o) ≥ (1 − ε)(1 + κ)

n∑
m=1

1

2
dist(Xm,o)2,

where the last step uses the convergence in probability noted in (3.11). This estab-
lishes that the quantity in (3.10) must converge to 1; this completes the proof of
the theorem. �

We have therefore shown that sequences of local empirical Fréchet means must
converge in probability to a reference point o when this reference point is uni-
formly a strict local minimum of the aggregate energy function so long as a condi-
tion of Lindeberg-type is satisfied at o. Under the additional condition of a linear
bound on the growth of φn(o) it is possible also to control the behaviour of global
minimizers and derive a result for global empirical Fréchet means.
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Corollary 1. In the situation of Theorem 2, suppose that condition (3.2) holds
for all positive ρ1 (thus in particular o is the unique global Fréchet mean), and
suppose in addition that there is a positive constant C such that

lim sup
n→∞

1

n
φn(o) = lim sup

n→∞
1

n

n∑
m=1

E

[
1

2
dist(Xm,o)2

]
≤ C2. (3.12)

Then any measurably selected sequence of local empirical Fréchet means con-
verges to o in probability.

Proof. Following the proof of Theorem 2, it would suffice to show that, for suffi-
ciently large ρ1,

P

[
1

n

n∑
m=1

1

2
dist(Xm,o)2 + 1 ≤ inf

{
1

n

n∑
m=1

1

2
dist(Xm,y)2 : dist(y,o) > ρ1

}]

converges to 1 as n → ∞. To establish this, we once again adapt methods from the
proof of Bhattacharya and Patrangenaru (2003, Theorem 2.3). First observe that
we can apply the Cauchy–Schwartz inequality to show that

1

n

n∑
m=1

1

2
dist(Xm,y)2 ≥ 1

n

n∑
m=1

1

2

(
dist(Xm,o) − dist(y,o)

)2

≥ 1

2
dist(y,o)2 + 1

n

n∑
m=1

1

2
dist(Xm,o)2

− √
2 dist(y,o)

√√√√1

n

n∑
m=1

1

2
dist(Xm,o)2.

As before, if φn(o) = 0 for all n then the corollary follows immediately. Otherwise
from Theorem 1 and the local Lindeberg condition we know that

1

φn(o)

n∑
m=1

1

2
dist(Xm,o)2 → 1 in probability,

and hence the growth condition (3.12) shows that as n → ∞ so (for example)

P

[
1

n

n∑
m=1

1

2
dist(Xm,o)2 ≤ 2C2

]
→ 1.

This can be applied as follows; if we choose ρ1 to exceed 2C + √
2 + 4C2 then,

with probability increasing to 1, as n → ∞
1

2
dist(y,o)2 − √

2 dist(y,o)

√√√√1

n

n∑
m=1

1

2
dist(Xm,o)2 − 1 ≥ 0
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once dist(y,o) > ρ1. Consequently as n → ∞ so

P

[
1

n

n∑
m=1

1

2
dist(Xm,o)2 + 1 ≤ inf

{
1

n

n∑
m=1

1

2
dist(Xm,y)2 : dist(y,o) > ρ1

}]

converges to 1 as required. �

4 Euclidean interlude

Before we turn to the central limit theorem on Riemannian manifolds, it is helpful
to prove a modest variant on the usual central limit theorem for independent Eu-
clidean (vector-valued) random variables, which may be of independent interest,
and which could be argued to capture more precisely the conventional statistical
use of the idea of a central limit theorem. The reader will see that the arguments
in this section are almost entirely classical [see, e.g., Feller (1966)] and the main
issue is simply to formulate the result. However we give complete proofs since
we have not been able to trace general forms of these results in the literature, and
also because the classical proofs must be adapted to the vector-valued nature of
the summands.

A natural condition for central limit approximation for normalized partial
sums of d-dimensional mean-zero finite-variance independent random vectors
Y1, . . . , Yn, . . . is that they should satisfy a variant of Lindeberg’s condition: for
each ε > 0, as n → ∞ so

1

φn

n∑
m=1

E[‖Ym‖2; ‖Ym‖2 > εφn] → 0. (4.1)

Here we abbreviate φn = ∑n
m=1 E[1

2‖Ym‖2] ; this parallels the φn(o) used in Sec-
tions 3 and 5 and leads us to consider the normalized sums (X1 +· · ·+Xn)/

√
2φn.

(The factor 1
2 is awkward in the Euclidean context, but eases details of calculations

later in the geometric context of Section 5.) Note that (4.1) corresponds exactly to
the local condition of Lindeberg type (3.5) for X1, X2, . . . . However it should be
clear that (4.1) cannot be sufficient to establish weak convergence to normality of
(Y1 +· · ·+Yn)/

√
2φn; consider two-dimensional examples in which the sequence

Y1, Y2, . . . alternates between longer and longer stretches of L(Yk) = (N(0,1),0)

versus longer and longer stretches of L(Yk) = (0,N(0,1)). So we cannot hope for
a central limit theorem (thus the Cramér-Wold device is inapplicable); however it
is the case that in fact (4.1) implies a central approximation theorem.

In order to describe the result we first recall that the topology of weak con-
vergence of probability measures can be metrized using a truncated Wasserstein
distance

W̃1(μ, ν) = inf{E[1 ∧ ‖U − V ‖] : L(U) = μ, L(V ) = ν} (4.2)



Limit theorems for Fréchet means 337

[see, e.g., Villani (2003, Chapter 7)]. Moreover by Kantorovich–Rubinstein repre-
sentation [Villani (2003, Remark 7.5(i))] we may write

W̃1(μ, ν) = sup
{∫

f d(μ − ν) :f is Lip(1) for distance 1 ∧ ‖x − y‖
}
. (4.3)

We now consider when the law of (Y1 + · · · + Yn)/
√

2φn draws ever closer to the
matching (but varying) multivariate normal distribution as n → ∞.

Theorem 3 (Lindeberg central approximation theorem for vector-valued ran-
dom variables). Suppose that Y1, . . . , Yn, . . . are independent zero-mean random
d-dimensional vectors with finite variance–covariance matrices and that the above
variant of Lindeberg’s condition (4.1) is satisfied. Then

W̃1

(
Y1 + · · · + Yn√

2φn

,Zn

)
→ 0,

where φn = ∑n
m=1 E[1

2‖Ym‖2] and Zn has the multivariate d-dimensional normal
distribution of zero mean and variance–covariance matrix Vn, with

u
Vnu = 1

φn

n∑
m=1

E

[
1

2
〈u,Ym〉2

]
for all vectors u. (4.4)

Remark 3. Note that the variance–covariance matrix Vn has unit trace.

Proof of Theorem 3. The proof is based heavily on the classic proof of the Feller–
Lindeberg central limit theorem using characteristic functions. First of all, observe
that it is a consequence of the variant Lindeberg condition that

sup
m=1,...,n

1

φn

E[‖Ym‖2] → 0.

For otherwise we can find a subsequence {nr} and mr in 1, . . . , nr such that for
some positive c > 0 we have E[‖Ymr ‖2] ≥ cφnr for all r , and if we choose ε < c

then this implies that

nr∑
m=1

E[‖Ym‖2; ‖Ym‖2 > εφnr ] ≥ E[‖Ymr ‖2; ‖Ymr ‖2 > εφnr ] ≥ (c − ε)φnr .

Choosing ε < c, this contradicts the variant Lindeberg condition (4.1). Thus we
can choose N = N(u) large enough that E[1

2〈u,Ym〉2] < φn for all m = 1, . . . , n

and all n ≥ N(u).
Using independence, set

�n(u) = E

[
exp

(
i
〈u,Y1 + · · · + Yn〉√

2φn

)]
=

n∏
m=1

E

[
exp

(
i
〈u,Ym〉√

2φn

)]
.
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By estimates based on Taylor expansion [Billingsley (1986, Section 27)],∣∣∣∣1 + i
〈u,Ym〉√

2φn

− 1

2

〈u,Ym〉2

2φn

− exp
(
i
〈u,Ym〉√

2φn

)∣∣∣∣
≤
(〈u,Ym〉2

2φn

)
∧
( |〈u,Ym〉|3

(2φn)3/2

)

≤ max{1,‖u‖3}
{‖Ym‖2

2φn

I[‖Ym‖2 > εφn] + ‖Ym‖3

(2φn)3/2 I[‖Ym‖2 ≤ εφn]
}
.

Hence for n ≥ N(u),∣∣∣∣∣�n(u) −
n∏

m=1

(
1 − 1

2

E[〈u,Ym〉2]
2φn

)∣∣∣∣∣
≤ max{1,‖u‖3}

{
1

2φn

n∑
m=1

E[‖Ym‖2; ‖Ym‖2 > εφn] +
√

ε

2

n∑
m=1

E[‖Ym‖2]
2φn

}

= max{1,‖u‖3}
{

1

2φn

n∑
m=1

E[‖Ym‖2; ‖Ym‖2 > εφn] +
√

ε

2

}

(recalling the definition of φn for the last step, and noting that for n ≥ N(u) we

know that every 1
2

E[〈u,Ym〉2]
2φn

is bounded above by 1
2 ).

Now invoke the inequality

e−p/(1−p) ≤ 1 − p ≤ e−p,

valid for 0 ≤ p < 1. Since 1
2

E[〈u,Ym〉2]
2φn

< 1
2 when n ≥ N(u),

0 ≤ log
n∏

m=1

exp
(
−1

2

E[〈u,Ym〉2]
2φn

)
− log

n∏
m=1

(
1 − 1

2

E[〈u,Ym〉2]
2φn

)

≤
n∑

m=1

1

1 − (1/2)E[〈u,Ym〉2]/(2φn)

(
1

2

E[〈u,Ym〉2]
2φn

)2

≤ 1

2
max

m=1,...,n

E[〈u,Ym〉2]
2φn

≤ ‖u‖2

2
max

m=1,...,n

E[‖Ym‖2]
2φn

→ 0.

Accordingly we may use (4.4) to deduce that if n ≥ N(u) then∣∣∣∣�n(u) − exp
(
−1

2
u
Vnu

)∣∣∣∣ ≤ max{1,‖u‖3} × An, (4.5)

An =
√

ε

2
+ 1

2
max

m=1,...,n

E[‖Ym‖2]
2φn

+ 1

2φn

n∑
m=1

E[‖Ym‖2; ‖Ym‖2 > εφn]. (4.6)
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Since ε can be chosen to be arbitrarily small, and the variant Lindeberg con-
dition (4.1) implies the other quantities converge to 0, it follows that |�n(u) −
exp(−1

2u
Vnu)| converges to 0 for each fixed u.
We now convert this relationship between characteristic functions into an in-

equality for the truncated Wasserstein distance between the corresponding distri-
butions. To this end we use a Parseval equality [Feller (1966, XV.3)]:

e−i〈u,t〉�n(u) = E

[
exp

(
i

〈
u,

Y1 + · · · + Yn√
2φn

− t

〉)]
.

We can multiply by the symmetric d-dimensional normal density of variance σ−2,
integrate with respect to u, and rearrange to obtain

1

(2π)d

∫
Rd

e−i〈u,t〉�n(u)e−σ 2|u|2/2 du

(4.7)

= 1

(2πσ 2)d/2 E

[
exp

(
− 1

2σ 2

∥∥∥∥t − Y1 + · · · + Yn√
2φn

∥∥∥∥2)]
.

The right-hand side (viewed as a function of t) is the density of Y1+···+Yn√
2φn

+ Z′,
where Z′ has a d-dimensional multivariate normal distribution of variance–
covariance matrix σ 2

Id , independent of Y1+···+Yn√
2φn

. By the definition (4.2) of
Wasserstein distance the truncated Wasserstein distance between the distribution
of Y1+···+Yn√

2φn
and the distribution of Y1+···+Yn√

2φn
+ Z′ is bounded by

E[‖Z′‖] ≤ constant × σ.

Given any η > 0, we can choose σ to make this smaller than η/5.
Choose Zn to be of d-dimensional multivariate normal distribution with

variance–covariance matrix Vn, independent of Z′. The truncated Wasserstein dis-
tance between the distributions Zn and Zn +Z′ satisfies the same bound of η/5. So
consider bounds on the truncated Wasserstein distance between the distributions of
(a) Y1+···+Yn√

2φn
+ Z′, with density given by (4.7), and (b) Zn + Z′ whose density sat-

isfies a similar formula but with the normal characteristic function exp(−1
2u
Vnu)

replacing �n(u). By the Kantorovich–Rubinstein representation (4.3) of the trun-
cated Wasserstein distance we may consider∣∣∣∣E[f(

Y1 + · · · + Yn√
2φn

+ Z′
)]

− E[f (Zn + Z′)]
∣∣∣∣,

where f is Lip(1) with respect to the truncated distance function 1 ∧‖x − y‖ [see
(4.3)]. Without loss of generality we take f (o) = 0; the Lipschitz condition then
implies that |f | ≤ 1 (since the truncated distance 1 ∧ ‖x − y‖ is always bounded
above by 1). Now both Y1+···+Yn√

2φn
+ Z′ and Zn + Z′ have variance–covariance ma-

trices with traces bounded above by 1 + σ 2d; therefore once σ is fixed we may
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choose a large radius R and deduce by Chebyshev that the distributions of both
Y1+···+Yn√

2φn
+ Z′ and Zn + Z′ place probability mass of at most η/5 outside the ball

centred on o and of radius R, so that∣∣∣∣E[f(
Y1 + · · · + Yn√

2φn

+ Z′
)
;
∥∥∥∥Y1 + · · · + Yn√

2φn

+ Z′
∥∥∥∥ > R

]∣∣∣∣ ≤ η/5,∣∣E[f (Zn + Z′); ‖Zn + Z′‖ > R]∣∣ ≤ η/5.

Finally ∣∣∣∣E[f(
Y1 + · · · + Yn√

2φn

+ Z′
)
;
∥∥∥∥Y1 + · · · + Yn√

2φn

+ Z′
∥∥∥∥ ≤ R

]

− E[f (Zn + Z′); ‖Zn + Z′‖≤R]
∣∣∣∣

≤
∫

ball(o,R)

∣∣∣∣ 1

(2π)d

∫
Rd

e−i〈u,t〉�n(u)e−σ 2|u|2/2 du

− 1

(2π)d

∫
Rd

e−i〈u,t〉e−(1/2)u
Vnue−σ 2|u|2/2 du

∣∣∣∣dt

≤ 1

(2π)d

∫
ball(o,R)

∫
Rd

∣∣�n(u) − e−(1/2)u
Vnu
∣∣e−σ 2|u|2/2 dudt.

Given σ and R, the dominated convergence theorem allows us to choose N (not
depending on u) to make this arbitrarily small for all n ≥ N , hence∣∣∣∣E[f(

Y1 + · · · + Yn√
2φn

+ Z′
)
;
∥∥∥∥Y1 + · · · + Yn√

2φn

+ Z′
∥∥∥∥ ≤ R

]

− E[f (Zn + Z′); ‖Zn + Z′‖≤R]
∣∣∣∣ ≤ η/5

for all n ≥ N . It therefore follows that for n ≥ N we obtain

W̃1

(
L
(

Y1 + · · · + Yn√
2φn

)
,Zn

)
≤ η,

and since η > 0 was arbitrary the theorem follows. �

The following converse to this result mirrors Feller’s converse to Lindeberg’s
theorem.

Corollary 2 (Feller converse to Lindeberg central approximation theorem).
In the situation of Theorem 3, suppose that in place of the above variant of the
Lindeberg condition (4.1) it is the case that

1

φn

E[‖Yn‖2] → 0 and φn → ∞ (4.8)
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and that

W̃1

(
Y1 + · · · + Yn√

2φn

,Zn

)
→ 0. (4.9)

Then the Lindeberg condition (4.1) must be satisfied.

Proof. As a consequence of (4.8) and the fact that φn increases with n,

lim
n→∞ max

1≤m≤n

E[‖Ym‖2]
φn

≤ lim
n→∞ max

1≤m≤k

E[‖Ym‖2]
φn

+ lim
n→∞ max

k<m

E[‖Ym‖2]
φm

also tends to zero. For fixed u ∈ R
d , the bounded Lipschitz nature of exp(i〈u,x〉)

as a function of x, applied to (4.9) and the Kantorovich–Rubinstein characteriza-
tion (4.3) together imply that

E

[
exp

(
i
〈u,Y1 + · · · + Ym〉√

2φn

)]
− exp

(
−1

2
〈u,Vnu〉

)
→ 0.

Since Vn has unit trace, we can multiply through by exp(1
2 〈u,Vnu〉), take logs and

use independence to see that

1

2
〈u,Vnu〉 +

n∑
m=1

log E

[
exp

(
i
〈u,Ym〉√

2φn

)]
→ 0.

Standard estimates using Taylor expansion show that∣∣∣∣log E

[
exp

(
i
〈u,Ym〉√

2φn

)]
−
(

E

[
exp

(
i
〈u,Ym〉√

2φn

)]
− 1

)∣∣∣∣
≤
∣∣∣∣E[exp

(
i
〈u,Ym〉√

2φn

)]
− 1

∣∣∣∣2,
while

n∑
m=1

∣∣∣∣E[exp
(
i
〈u,Ym〉√

2φn

)]
− 1

∣∣∣∣2

≤
(

max
1≤m≤n

∣∣∣∣E[exp
(
i
〈u,Ym〉√

2φn

)]
− 1

∣∣∣∣)×
n∑

m=1

∣∣∣∣E[exp
(
i
〈u,Ym〉√

2φn

)]
− 1

∣∣∣∣
≤ max

1≤m≤n

‖u‖2

2

E[‖Ym‖2]
2φn

×
n∑

m=1

‖u‖2

2

E[‖Ym‖2]
2φn

= max
1≤m≤n

‖u‖4

8

E[‖Ym‖2]
φn

→ 0.

Thus for fixed u

1

2
〈u,Vnu〉 −

n∑
m=1

E

[
1 − exp

(
i
〈u,Ym〉√

2φn

)]
→ 0.
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Taking real parts and splitting the expectation at ‖Ym‖2 = εφn,

1

2
〈u,Vnu〉 −

n∑
m=1

E

[
1 − cos

(〈u,Ym〉√
2φn

)
; ‖Ym‖2 ≤ εφn

]

=
n∑

m=1

E

[
1 − cos

(〈u,Ym〉√
2φn

)
; ‖Ym‖2 > εφn

]
+ o(1),

where we must bear in mind that the o(1) term depends on u. The right-hand side
is bounded above by

n∑
m=1

E

[
2 × ‖Ym‖2

εφn

; ‖Ym‖2 > εφn

]
+ o(1) ≤ 4

ε
+ o(1);

while the left-hand side is bounded below by

1

2
〈u,Vnu〉 −

n∑
m=1

E

[
1

2

( 〈u,Ym〉√
2φn

)2

; ‖Ym‖2 ≤ εφn

]

=
n∑

m=1

E

[
1

2

(〈u,Ym〉√
2φn

)2

; ‖Ym‖2 > εφn

]
by (4.4); thus

1

φn

n∑
m=1

E

[〈
u

‖u‖ , Ym

〉2

; ‖Ym‖2 > εφn

]
≤ 1

‖u‖2

(
16

ε
+ o(1)

)
.

The variant Lindeberg condition (4.1) now follows by summing over vectors
u/‖u‖ forming an orthonormal basis, and choosing suitably large ‖u‖. �

5 Central limit theory for empirical Fréchet means

In order to discuss the second-order theory of empirical Fréchet means, namely
central limit theorems, we augment the metric space structure of X by moving to
the context of a complete and connected Riemannian manifold M of dimension
d . Let dist(x, y) be the Riemannian distance between points x, y ∈ M. For any
x ∈ M, let Cx denote the cut locus of x. Let Expx :TxM → M be the Exponential
map from the tangent space TxM to M; observe that Exp−1

x (y) can be defined
uniquely for y /∈ Cx by Exp−1

x (y) = γ ′(1), where γ : [0,1] → M is the unique
minimal geodesic running from x to y. Now let 
x,y :TxM → TyM be the parallel
transport map along the geodesic γ , and note that 
−1

x,y = 
y,x , both being defined
when x /∈ Cy equivalently y /∈ Cx . Finally, denote the covariant derivative by ∇: if
U is a smooth vectorfield and γ is a geodesic then the covariant derivative of U at
γ (0) in the direction γ ′(0) is given by

∇γ ′(0)U = lim
s↓0


γ(s),γ (0)U(γ (s)) − U(γ (0))

s
.
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Moreover ∇γ ′(0) depends only on the tangent vector γ ′(0), rather than the actual
curve γ .

Our discussion concerns a sequence of independent (but not identically dis-
tributed) random variables X1, X2, . . . , taking values in M, for which each
E[dist(x,Xi)

2] is finite for some (and therefore for all) x, and which share a com-
mon Fréchet mean o ∈ M. Furthermore we suppose that

P[Xn ∈ Co] = 0 for n ≥ 1. (5.1)

For each n we choose E (X1, . . . ,Xn) to be a measurably selected empirical local
Fréchet mean of X1, . . . ,Xn, and we suppose it possible to make these choices so
that E (X1, . . . ,Xn) converges to o in probability. (Theorem 2 delineates a large
class of cases in which this can be done.)

For each i ≥ 1 we can define a random vectorfield Yi on M \ CXi
by

Yi(x) = Exp−1
x (Xi). (5.2)

Here we use the definition of Exp−1
x on M \ Cx ; in the cases when Exp−1

x (Xi) is
not defined we choose Yi measurably but otherwise arbitrarily from the preimage
of Xi under Expx . In fact it can be shown that (5.2) defines Yi(x) uniquely for
almost all x with probability 1; moreover the cut locus condition (5.1) ensures that
Yi(o) in particular is almost surely well defined.

Since o is a Fréchet mean of each Xi , it follows that E[Yi(o)] = 0; moreover the
finiteness of E[dist(o,Xi)

2] implies the finiteness of E[‖Yi‖2], which is the trace
of the variance–covariance matrix of the random vector Yi . Moreover the calculus
of manifolds shows that

Yi(x) = −dist(x,Xi)gradx dist(x,Xi) = gradx

(
−1

2
dist(x,Xi)

2
)
. (5.3)

Indeed, if x ∈ M \ CXi
then covariant differentiation defines a symmetric (d × d)

tensor Hi(x) = −(∇Yi)(x), acting on vectorfields U , V by

〈HiU,V 〉(x) = 〈−∇UYi,V 〉(x) = Hessx

(
1

2
dist(x,Xi)

2
)
(U,V ). (5.4)

[The sign of Hi is chosen so that if Xi = o then Hi(o) is the identity tensor.]
As noted above, the assumption that o is a Fréchet mean of Xi for all i ≥ 1

implies that Yi(o) = Exp−1
o (Xi) determines a sequence of independent random

variables with zero mean on To(M). Then Theorem 3 and Corollary 2 capture the
conditions under which the normalized sum (Y1(o) + · · · + Yn(o))/

√
2φn(o) is

asymptotically multivariate normal (where φn is the aggregate energy function as
defined in Section 2). Moreover a first-order Taylor expansion argument suggests
that (under further regularity conditions) the Exponential map of a suitable trans-
formation of this normalized sum should approximate the local empirical Fréchet
mean E (X1, . . . ,Xn); this corresponds to an application of Newton’s root-finding
method. This is indeed the case, and forms the main result of this section. However
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before we turn to this we must first prove a preliminary geometric result, required
in order to control the effects of the approximation.

We begin by constructing a certain orthonormal frame field e1, . . . , ed over M \
Co. Pick e1(o), . . . , ed(o) to be an orthonormal basis for To(M), and extend by
parallel transport along minimal geodesics from o over all of M \ Co: er(x) =

o,xer (o), for x ∈ M \ Co. By the properties of geodesic normal coordinates, the
vectorfields ∇er es all vanish at o.

Lemma 3. For given ε > 0, choose ρ > 0 such that ball(o, ρ) ⊆ M \ Co and
‖∇er es‖ < ε/d within ball(o, ρ), for r , s = 1, . . . , d . Set Zr,i = 〈Yi, er〉er , for some
Yi . Then [viewing ∇Zr,i as a symmetric (d × d) tensor] for x ∈ ball(o, ρ) we have

‖
x,o∇Zr,i(x) − ∇Zr,i(o)‖ ≤ (1 + 2ερ) sup
x′∈ball(o,ρ)

‖
x′,o∇Yi(x
′) − ∇Yi(o)‖

(5.5)
+ 2ε

(‖Yi(o)‖ + ‖∇Yi(o)‖ρ).
Proof. We suppress the dependence on the suffix i for the sake of convenience of
exposition, and write Zr = Zr,i , Y = Yi . First consider ∇V Zr for a general smooth
vectorfield V . By the calculus of covariant differentiation

∇V Zr = ∇V (〈Y, er〉er) = 〈∇V Y, er〉er + 〈Y,∇V er〉er + 〈Y, er〉∇V er .

Because ∇V er vanishes at o,


x,o∇V Zr(x) − ∇V Zr(o) = (〈∇V Y, er〉(x) − 〈∇V Yr, er〉(o)
)
er(o)

+ 〈Y,∇V er〉(x)er(o) + 〈Y, er〉(x)
x,o∇V er(x).

The coefficient of er(o) in the first term on the right-hand side can be rewritten
as the evaluation of 〈
x,o∇V Y − ∇V Y, er〉er at o; the other two terms can be
expanded to achieve


x,o∇V Zr(x) − ∇V Zr(o)

= 〈
x,o∇V Y − ∇V Y, er〉(o)er(o)

+ 〈Y,
x,o∇V er〉(o)er(o) + 〈
x,oY − Y,
x,o∇V er〉(o)er(o)

+ 〈Y, er〉(o)(
x,o∇V er)(o) + 〈
x,oY − Y, er〉(o)(
x,o∇V er)(o).

To control the size of the matrix M = 
x,o∇Zr − ∇Zr at o we shall use the

Frobenius norm ‖M‖ = √
M
M =

√∑
i,j M2

i,j . Now V is an arbitrary vectorfield,
hence (evaluating tensor and vectorfields at o throughout) we may deduce that

‖
x,o∇Zr(x) − ∇Zr(o)‖
≤ ‖
x,o∇Y(x) − ∇Y(o)‖

(5.6)
+ 2

(‖
x,oY(x) − Y(o)‖ + ‖Y(o)‖)‖∇er(x)‖
≤ ‖
x,o∇Y(x) − ∇Y(o)‖ + 2ε

(‖
x,oY(x) − Y(o)‖ + ‖Y(o)‖)
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so long as x ∈ ball(o, ρ).
We now apply the Mean Value Theorem to observe that

‖
x,oY(x) − Y(o)‖
≤ dist(x,o) sup

x′∈ball(o,ρ)

‖∇Y(x′)‖ (5.7)

≤ dist(x,o)
(
‖∇Y(o)‖ + sup

x′∈ball(o,ρ)

‖
x′,o∇Y(x′) − ∇Y(o)‖
)

and thus (restoring the dependence on the suffix i) we can apply (5.7) to (5.6) and
combine with dist(o, x) ≤ ρ to deduce the required inequality. �

The above lemma allows us to control the errors arising from the approximation
implicit in the Newton method described above. We can now state and prove the
main theorem of this section.

Theorem 4. Suppose that X1, X2, . . . are independent nonidentically distributed
random variables taking values in M, such that for all n and all x ∈ M the aggre-
gate energy function φn(x) = ∑n

i=1
1
2E[dist(x,Xi)

2] is finite. Suppose that o is a
local Fréchet mean of each of the Xi and moreover suppose that P[Xi ∈ Co] = 0
for each i. Let Yi = Exp−1

o (Xi). Let xn = E (X1, . . . ,Xn) be a measurable choice
of local empirical Fréchet means such that xn → o in probability. Suppose that the
following conditions hold:

1. φn(o) is of at least linear growth, so lim infn→∞ φn(o)
n

= C1 > 0 for a finite
positive constant C1 > 0;

2. For each sufficiently small ρ > 0, as n → ∞ so

1

φn(o)

n∑
i=1

sup
x′∈ball(o,ρ)

E[‖
x′,oHi(x
′) − Hi(o)‖] → 0,

where Hi is as given in (5.4);
3. There is a finite constant C2 such that

lim sup
n→∞

1

φn(o)

n∑
i=1

E[‖Hi(o)‖2] ≤ C2;

4. Let H̃n be the coordinate-wise expectation

H̃n = E[H1(o) + · · · + Hn(o)]
2φn(o)

.

Then the symmetric matrix H̃n is asymptotically nonsingular; there is a positive
constant C3 > 0 with lim supn→∞ ‖H̃−1

n ‖ ≤ C3;
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5. Finally we require a condition of Lindeberg type: for each ε > 0, as n → ∞ so

1

φn(o)

n∑
i=1

E[dist(o,Xi)
2;dist(o,Xi)

2 > εφn(o)] → 0.

Let Z̃n have the multivariate normal distribution with zero mean and variance–
covariance matrix H̃−1

n VnH̃
−1
n , where Vn is the variance–covariance matrix of

Y1+···+Yn√
2φn(o)

. Then as n → ∞ so

W̃1
(√

2φn(o)Exp−1
o (xn), Z̃n

) → 0.

Proof. Begin by representing
∑n

i=1 Yi(x) = ∑n
i=1 gradx(−1

2 dist(x,Xi)
2) by a

first-order Taylor series expansion about o: if γx is a minimal geodesic begun at o
and ending at x ∈ M \ Co at unit time then


x,o

n∑
i=1

Yi(x) =
n∑

i=1

Yi(o) +
n∑

i=1

∇γ ′
x(0)Yi(o) + �n(x)γ ′

x(0)

=
n∑

i=1

Yi(o) −
n∑

i=1

Hi(o)γ ′
x(0) + �n(x)γ ′

x(0),

where the Mean Value Theorem can be applied to show that the matrix correction
term �n(x) can be written as

�n(x)U =
d∑

r=1

n∑
i=1

(

γx(θr ),o∇UZr,i(γx(θr)) − ∇UZr,i(o)

)
for Zr,i = 〈Yi, er〉er as defined in Lemma 3, and for suitable 0 ≤ θ1, . . . , θd ≤ 1.
Choosing ρ > 0 given ε as in Lemma 3, if x ∈ ball(o, ρ) then

‖�n(x)‖ ≤
d∑

r=1

n∑
i=1

(
(1 + 2ερ) sup

x′∈ball(o,ρ)

‖
x′,o∇Yi(x
′) − ∇Yi(o)‖

(5.8)
+ 2ε

(‖Yi(o)‖ + ρ‖∇Yi(o)‖)).
Now choose x = xn = E (X1, . . . ,Xn). Since γ ′

x(0) = Exp−1
o (x), it follows that


xn,o
∑n

i=1 Yi(xn) = 0. If xn = E (X1, . . . ,Xn) ∈ ball(o, ρ) then

0 =
n∑

i=1

Yi(o) −
(

n∑
i=1

Hi(o) − �n(xn)

)
Exp−1

o (xn).

Consequently, so long as
∑n

i=1 Hi(o) − �n(xn) is invertible, we may write

xn = E (X1, . . . ,Xn) = Expo

((
n∑

i=1

Hi(o) − �n(xn)

)−1 n∑
i=1

Yi(o)

)
. (5.9)
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Use the aggregrate energy function φn(x) = ∑n
i=1 E[1

2 dist(Xi, x)2] (defined in
Section 3) to adjust the above equation into a form hinting at a central limit ap-
proximation for E (X1, . . . ,Xn):√

2φn(o) × Exp−1
o (E (X1, . . . ,Xn))

(5.10)

=
(

n∑
i=1

Hi(o)

2φn(o)
− �n(xn)

2φn(o)

)−1∑n
i=1 Yi(o)√
2φn(o)

.

Using our estimates on the Frobenius norm ‖�n(xn)‖,

1

d

∥∥∥∥�n(xn)

2φn(o)

∥∥∥∥ ≤ (1 + 2ερ)

∑n
i=1 supx′∈ball(o,ρ) ‖
x′,o∇Yi(x

′) − ∇Yi(o)‖
2φn(o)

+ ε

∑n
i=1 ‖Yi(o)‖

φn(o)
+ ερ

∑n
i=1 ‖∇Yi(o)‖

φn(o)
.

We are given that xn → o in probability, so with probability tending to 1 we may
apply condition 2 of the theorem to the first of these summands, together with the
Markov inequality, and deduce that

(1 + 2ερ)

∑n
i=1 supx′∈ball(o,ρ) ‖
x′,o∇Yi(x

′) − ∇Yi(o)‖
2φn(o)

→ 0 in probability.

Application of the Cauchy–Schwartz inequality to the second summand, to-
gether with the definition of the aggregate energy function, the fact that ‖Yi(o)‖ =
dist(o,Xi), and condition 1 of the theorem, shows that

E[∑n
i=1 ‖Yi(o)‖]
φn(o)

≤
√

E[∑n
i=1 ‖Yi(o)‖2]
φn(o)

√
n

φn(o)
=

√
2n

φn(o)
≤ 2√

C1
.

A similar argument, but using condition 3 of the theorem as well as condition 1,
allows us to deduce that

E[∑n
i=1 ‖∇Yi(o)‖]

φn(o)
= E[∑n

i=1 ‖Hi(o)‖]
φn(o)

≤
√

E[∑n
i=1 ‖Hi(o)‖2]
φn(o)

√
n

φn(o)
≤
√

C2

C1
.

Once again we may use the assumption that xn → o in probability; it follows from
this and the Markov inequality that we may choose ε = εn to decrease to zero in
such a manner that

εn

∑n
i=1 ‖Yi(o)‖

φn(o)
+ εnρ

∑n
i=1 ‖∇Yi(o)‖

φn(o)
→ 0 in probability.

Accordingly it follows that the matrix error term is negligible:

�n(xn)

2φn(o)
→ 0 in probability. (5.11)
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Now consider the behaviour of
∑n

i=1
Hi(o)
2φn(o)

. We can control the sum of the vari-
ances of the components of this matrix: by independence, and the fact that variance
is always bounded above by second moment, we deduce that the sum of variances
is bounded above by

n∑
i=1

E[‖Hi(o)‖2]
4φn(o)2

which converges to zero by conditions 1 and 3 of the theorem. Accordingly
n∑

i=1

Hi(o)

2φn(o)
− H̃n → 0 in probability.

Condition 4 of the theorem, together with the negligibility of �n(xn)
φn(o)

established
above in (5.11), implies that the probability of the following being invertible con-
verges to 1: (

n∑
i=1

Hi(o)

2φn(o)
− �n(xn)

2φn(o)

)
.

Moreover we may deduce that(
n∑

i=1

Hi(o)

2φn(o)
− �n(xn)

2φn(o)

)−1

− H̃−1
n → 0 in probability. (5.12)

Finally we consider the asymptotic distributional behaviour of∑n
i=1 Yi(o)√
2φn(o)

.

The Lindeberg condition 5 of the theorem translates directly into a condition of
Lindeberg type on the Yi : since ‖Yi(o)‖ = dist(o,Xi), and since E[Yi(o)] = 0 as a
consequence of o being a local Fréchet mean of Xi , as n → ∞ so

1

φ(o)

n∑
i=1

E[‖Yi(o)‖2; ‖Yi(o)‖2 > εφn(o)] → 0.

Now Theorem 3 shows that

W̃1

(
Y1(o) + · · · + Yn(o)√

2φn

,Zn

)
→ 0,

where Zn has the multivariate d-dimensional normal distribution of zero mean and
variance–covariance matrix Vn.

The proof of the theorem is now completed by using observation (5.12), since
properties of the Wasserstein distance allow us to deduce

W̃1

((
n∑

i=1

Hi(o)

2φn(o)
− �n(xn)

2φn(o)

)−1
Y1(o) + · · · + Yn(o)√

2φn

, H̃−1
n Zn

)
→ 0
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from the convergence in probability specified in (5.12), together with the upper
bound supplied by condition 4 of the theorem. �

We finish by looking at a few special cases. First, if we assume that the Xn

are actually identically distributed, then φn(o) = n
2 E[dist(o,X1)

2]. Accordingly, if
0 < E[dist(o,X1)

2] < ∞ then the conditions 1 and 5 of Theorem 4 hold trivially.
Moreover,

H̃n = H̃ = E[H1(o)]/E[dist(o,X1)
2]

and

Vn = V = E[�o,X1]/E[dist(o,X1)
2],

where �x,y is the self-adjoint linear operator on Tx(M) defined by

�x,y :v �→ 〈Exp−1
x (y), v〉Exp−1

x (y). (5.13)

Hence, the following is a direct consequence of Theorem 4.

Corollary 3. Suppose that X1, X2, . . . is a sequence of independent and identi-
cally distributed random variables on M with finite E[dist(x,X1)

2]. Suppose that o
is the local Fréchet mean of X1 and that P[X1 ∈ Co] = 0. Let xn = E (X1, . . . ,Xn)

be a measurable choice of local empirical Fréchet means such that xn → o in
probability. Assume that

(i)

lim
ρ→0

E

[
sup

x∈ball(o,ρ)

‖
x′,oH1(x
′) − H1(o)‖

]
= 0;

(ii) E[‖H1(o)‖2] < ∞;
(iii) E[H1(o)]−1 exists.

Then we have the following weak convergence as n → ∞:

√
nExp−1

o (xn)
d−→ MVN(0, H̃−1

E[�o,X1]H̃−1),

where the limit is the multivariate normal distributaion with zero mean and
variance–covariance matrix H̃−1

E[�o,X1]H̃−1.

If there exists a local coordinate chart ψ(x) = (x1(x), . . . , xd(x)) with a domain
which contains the support of the distribution of X1, then let us write (ξ1, . . . , ξd)

and (ζ n
1 , . . . , ζ n

d ) respectively for the coordinates of Exp−1
o (X1) and Exp−1

o (xn)

with respect to the basis (∂x1, . . . , ∂xd
) in To(M). The following result is the version

of Corollary 3 in terms of these coordinates.
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Corollary 4. Write ζ n = (ζ n
1 , . . . , ζ n

d )
. In the case of Corollary 3,

√
nζ n d−→MVN(0, (E[Hψ ])−1GVψG(E[Hψ ])−1) as n → ∞,

where G = (〈∂xj
, ∂xk

〉), Vψ = (E[ξj ξk]) and Hψ is the matrix of the linear opera-
tor H1(o) under the coordinate chart ψ with

H
ψ
�k = − ∂ξ�

∂xk

−
d∑

j=1

��
kj ξj

and with �k
ij being the Christoffel symbols for the chosen coordinate chart.

If the coordinates ψ are normal coordinates centred at o corresponding to
an orthonormal basis (e1, . . . , ed) of To(M), then G = I , and (ξ1, . . . , ξd) and
(ζ n

1 , . . . , ζ n
d ) become the normal coordinates, centred at o, of X1 and xn, respec-

tively. Moreover, under a normal coordinate system, all the Christoffel symbols
disappear at the centre o and ξk = −1

2∇ek
dist(x,X1)

2|x=o, where ∇ek
acts on the

first variable of dist2 under normal coordinates, Corollary 4 recovers the result of
Bhattacharya and Patrangenaru (2005) at the Fréchet mean o.

Finally, if M either has constant sectional curvature κ or is a Kähler manifold
of constant holomorphic sectional curvature κ then the operator Hi(x) defined by
(5.4) can be expressed explicitly. In the former case

Hi(x) :v �→ 1 − fκ(dist(x,Xi))

dist(x, y)2 �x,Xi
(v) + fκ(dist(x,Xi))v

and, in the latter,

Hi(x) :v �→ fκ(dist(x,Xi))v + 1 − fκ/4(dist(x,Xi))

dist(x,Xi)2 �x,Xi
(v)

+ fκ(dist(x,Xi)) − fκ/4(dist(x,Xi))

dist(x,Xi)2 �
j
x,Xi

(v),

where

fκ(s) =
⎧⎨⎩
√|κ|s Cκ(s)

Sκ(s)
, κ 
= 0,

1, κ = 0,
Sκ(s) =

⎧⎨⎩
sin

(√
κs

)
, κ > 0,

s, κ = 0,
sinh

(√−κs
)
, κ < 0,

Cκ(s) = S′
κ(s)/

√|κ|, and where j is the tensor field of isometries jx of the tan-
gent spaces Tx(M) such that j2

x = −id, �x,y is defined by (5.13) and �
j
x,y is also

defined by (5.13) but with Exp−1
x there replaced by jx ◦ Exp−1

x . Note that the con-
sequent expression for the operator E[Hi(o)] was obtained in Bhattacharya and
Bhattacharya (2008) when M has constant curvature and an upper bound has also
been given in the same paper for general M in term of the bound of its curvature.
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