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Unusual strong laws for arrays of ratios of order statistics

André Adler
Illinois Institute of Technology

Abstract. Let {Xn,k,1 ≤ k ≤ mn,n ≥ 1} be independent random variables
from the Pareto distribution. Let Xn(k) be the kth largest order statistic from
the nth row of our array, where Xn(1) denotes the largest order statistic from
the nth row. Then set Rn,in,jn

= Xn(jn)/Xn(in) where jn < in. This pa-
per establishes limit theorems involving weighted sums from the sequence
{Rn,in,jn

, n ≥ 1}, where for the first time we allow jn → ∞, but only at a
slow rate.

1 Introduction

Consider independent random variables {Xn,kn,1 ≤ kn ≤ mn,n ≥ 1} with density
f (x) = pnx

−pn−1I (x ≥ 1), where pn > 0. Let Xn(kn) be the knth largest order
statistic from each row of our array. Hence Xn(mn) ≤ Xn(mn−1) ≤ · · · ≤ Xn(2) ≤
Xn(1). Next define Rn = Rn,in,jn = Xn(jn)/Xn(in) where jn < in, which implies
that Xn(jn) ≥ Xn(in), or equivalently Rn ≥ 1. Thus the density of Rn is

fRn(r) = pn(in − 1)!
(in − jn − 1)!(jn − 1)!r

−pnjn−1(1 − r−pn)in−jn−1I (r ≥ 1).

It’s important to note that the density of Rn is free of mn. In this paper we
will examine strong laws involving weighted sums of {Rn,n ≥ 1}. This paper is a
natural extension of Adler [2] and Adler [1]. In Adler [2] all our sequences mn, jn

and in were fixed. In Adler [1], we were allowed to let mn and in grow, but jn was
fixed. Finally, in this paper we allow all our subscripts to grow, but the distance
between in and jn is fixed. This case is by far the most difficult, as we will show
via the proofs. The growth of jn cannot be very fast. It turns out that in order to
obtain our unusual Strong Laws, which is our goal, we need a logarithmic growth
rate for jn. In some instances we allow in to move away from jn, however that is
not the norm. Hence we will set � = in − jn, which determines how far apart our
order statistics are. We are forced to fix �, hence there isn’t any �n.

If pnjn exceeds one, then ERn is finite and the associated theorems are straight-
forward and unremarkable; see Theorems 6, 7 and 8 from Adler [1]. If pnjn < 1,
then these limit theorems fail to exist; see Theorem 5 from Adler [1]. The most
interesting case of all occurs when pnjn = 1. Strange and unusual limit theorems
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occur when examining random variables that barely do or do not have a first mo-
ment which is what happens when pnjn = 1. These unusual limit theorems are
also part of the fair games phenomenon such as the St. Petersburg Game. For more
on this and similar topics, see Feller [4], page 251.

The Pareto is a very important distribution. It’s used in many settings, such as
in modeling in ageing populations. But, the point of this paper is to complete a
missing piece in limit theorems for weighted sums of ratios of these type of ran-
dom variables. It was established in previous papers when laws of large numbers
for weighted sums of Pareto random variables exist and also when similar limit
theorems for weighted sums of these ratios exist. But in all those cases we were
very restricted in the rates of growth of our order statistics. Here we allow much
greater freedom in how our order statistics are selected.

In all our theorems we partition
∑N

n=1 anRn/bN into the following three terms:∑N
n=1 anRn

bN

=
∑N

n=1 an[RnI (1 ≤ Rn ≤ cn) − ERnI (1 ≤ Rn ≤ cn)]
bN

+
∑N

n=1 anRnI (Rn > cn)

bN

+
∑N

n=1 anERnI (1 ≤ Rn ≤ cn)

bN

,

where an are our weights, bn our norming sequence and cn = bn/an. We use the
usual Khintchine–Kolmogorov convergence theorem argument; see Chow and Te-
icher [3], page 113, to show that the first term converges to zero almost surely.
The second term is similarly negligible via the Borel–Cantelli lemma. Hence
we just need to show that the appropriate sums are finite. However each case
greatly differs in the sometimes difficult calculation of our truncated expectation,
ERnI (1 ≤ Rn ≤ cn), which dictates our final limit.

2 Main results

Our first theorem establishes an unusual strong law where � = 1. In this case we
have complete freedom in our choice of jn. But, do note that in = jn + 1 and
pn = 1/jn. In the event that jn = pn = 1, for all n ≥ 1, then our underlying density
is just f (x) = x−2I (x ≥ 1). And in that case our unusual strong laws will involve
the ratio of the two largest order statistics from each row of our array. As always,
we define lgx = log(max{e, x}) and lg2 x = lg(lgx). Also we use the constant C

to denote a generic real number that is not necessarily the same in each appearance.

Theorem 1. If pnjn = 1, � = 1 and α > −2, then

lim
N→∞

∑N
n=1 ((lgn)α/n)Rn

(lgN)α+2 = 1

α + 2
almost surely.
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Proof. The density for the ratio of our adjacent order statistics, that is, � = 1,
is fRn(r) = r−2I (r ≥ 1). Here an = (lgn)α/n, bn = (lgn)α+2 and cn = n(lgn)2.
The first term vanishes almost surely since

∞∑
n=1

c−2
n ER2

nI (1 ≤ Rn ≤ cn) =
∞∑

n=1

c−2
n

∫ cn

1
dr <

∞∑
n=1

c−1
n =

∞∑
n=1

1

n(lgn)2 < ∞.

The second term vanishes almost surely since
∞∑

n=1

P {Rn > cn} =
∞∑

n=1

∫ ∞
cn

r−2 dr =
∞∑

n=1

c−1
n =

∞∑
n=1

1

n(lgn)2 < ∞.

As for the third term

ERnI (1 ≤ Rn ≤ cn) =
∫ cn

1
r−1 dr = lg cn ∼ lgn.

Thus ∑N
n=1 anERnI (1 ≤ Rn ≤ cn)

bN

∼
∑N

n=1 (lgn)α+1/n

(lgN)α+2 → 1

α + 2

concluding the proof. �

Next we look at � > 1. In this case we need to approximate the coefficient to
our density. Using Stirling’s formula and letting pnjn = 1 we have

pn(in − 1)!
(in − jn − 1)!(jn − 1)! = (in − 1)!

(in − jn − 1)!jn!
= (jn + � − 1)!

(� − 1)!jn!

∼
√

2π(jn + � − 1)jn+�−1/2e−jn−�+1

√
2πj

jn+1/2
n e−jn(� − 1)!

= (jn + � − 1)jn+�−1/2e−�+1

j
jn+1/2
n (� − 1)!

=
(

jn + � − 1

jn

)jn
(

(jn + � − 1)�−1/2

j
1/2
n

)(
e−�+1

(� − 1)!
)

=
(

1 + � − 1

jn

)jn
(

(jn + � − 1)�−1/2

j
1/2
n

)(
e−�+1

(� − 1)!
)

∼ e�−1
(

j
�−1/2
n

j
1/2
n

)(
e−�+1

(� − 1)!
)

= j�−1
n

(� − 1)! .
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The focus of this paper is to explore the growth of our sequence jn. It turns out
that the optimal growth for jn is lgn; see Theorem 3. By optimal, we mean that we
are allowed to obtain these unusual types of Strong Laws when our rates of growth
are logarithmic. These are indeed unusual limit theorems since we are able to take
ratios of weighted sums of nonintegrable random variables and divide them by a
sequence of constants and show that this limit is almost surely a constant. Our next
theorem explores what happens when jn grows slower than lgn.

Theorem 2. If pnjn = 1, jn = o(lgn), � ≥ 2 and α > −2, then

lim
N→∞

∑N
n=1 ((lgn)α/(nj�−1

n ))Rn

(lgN)α+2 = 1

(α + 2)(� − 1)! almost surely.

Proof. Here an = (lgn)α/(nj�−1
n ), bn = (lgn)α+2 and cn = nj�−1

n (lgn)2. The
first two terms vanish since

∞∑
n=1

c−2
n ER2

nI (1 ≤ Rn ≤ cn) < C

∞∑
n=1

j�−1
n

c2
n

∫ cn

1
dr

< C

∞∑
n=1

j�−1
n

cn

= C

∞∑
n=1

1

n(lgn)2 < ∞

and
∞∑

n=1

P {Rn > cn} < C

∞∑
n=1

j�−1
n

∫ ∞
cn

r−2 dr = C

∞∑
n=1

j�−1
n

cn

< ∞.

Next, we turn our attention to the third term. Thus

ERnI (1 ≤ Rn ≤ cn)

∼ j�−1
n

(� − 1)!
∫ cn

1
r−1(1 − r−1/jn)�−1 dr

= j�−1
n

(� − 1)!
∫ cn

1
r−1

�−1∑
k=0

(
� − 1

k

)
(−1)kr−k/jn dr

= j�−1
n

(� − 1)!
[∫ cn

1
r−1 dr +

�−1∑
k=1

(
� − 1

k

)
(−1)k

∫ cn

1
r−k/jn−1 dr

]

= j�−1
n

(� − 1)!
[

lg cn + jn

�−1∑
k=1

(�−1
k

)
(−1)k+1

kc
k/jn
n

+ jn

�−1∑
k=1

(�−1
k

)
(−1)k

k

]

∼ j�−1
n lgn

(� − 1)!
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since lg cn ∼ lgn, jn = o(lgn) and c
−1/jn
n = o(1). Hence

∑N
n=1 anERnI (1 ≤ Rn ≤ cn)

bN

∼
N∑

n=1

((lgn)α/(nj�−1
n )) · (j�−1

n lgn/(� − 1)!)
(lgN)α+2

=
∑N

n=1 (lgn)α+1/n

(� − 1)!(lgN)α+2

→ 1

(α + 2)(� − 1)!
concluding this proof. �

Next we explore the situation of jn ∼ lgn.

Theorem 3. If pnjn = 1, jn ∼ lgn, � ≥ 2 and α > −2, then

lim
N→∞

∑N
n=1 ((lgn)α/(nj�−1

n ))Rn

(lgN)α+2 = γ�

(α + 2)(� − 1)! almost surely,

where

γ� =
�−1∑
k=1

(�−1
k

)
(−1)k+1e−k

k
−

�−1∑
k=2

1

k

or, if one wishes

γ� = 1 +
�−1∑
k=1

(�−1
k

)
(−1)k(1 − e−k)

k
,

where naturally, if � = 2 we have
∑�−1

k=2
1
k

= 0.

Proof. Here an = (lgn)α−�+1/n, bn = (lgn)α+2 and cn = n(lgn)�+1. The first
two terms disappear since

∞∑
n=1

c−2
n ER2

nI (1 ≤ Rn ≤ cn) < C

∞∑
n=1

j�−1
n

c2
n

∫ cn

1
dr

< C

∞∑
n=1

j�−1
n

cn

< C

∞∑
n=1

1

n(lgn)2 < ∞

and
∞∑

n=1

P {Rn > cn} < C

∞∑
n=1

j�−1
n

∫ ∞
cn

r−2 dr = C

∞∑
n=1

j�−1
n

cn

< ∞.
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Before we attack the final term in our partition it is important to note that c
−1/jn
n →

e−1 as n → ∞. Thus

ERnI (1 ≤ Rn ≤ cn)

∼ j�−1
n

(� − 1)!
∫ cn

1
r−1(1 − r−1/jn)�−1 dr

= j�−1
n

(� − 1)!
∫ cn

1
r−1

�−1∑
k=0

(
� − 1

k

)
(−1)kr−k/jn dr

= j�−1
n

(� − 1)!
[∫ cn

1
r−1 dr +

�−1∑
k=1

(
� − 1

k

)
(−1)k

∫ cn

1
r−k/jn−1 dr

]

= j�−1
n

(� − 1)!
[

lg cn + jn

�−1∑
k=1

(�−1
k

)
(−1)k+1

kc
k/jn
n

+ jn

�−1∑
k=1

(�−1
k

)
(−1)k

k

]

∼ (lgn)�−1

(� − 1)!
[

lgn + lgn

�−1∑
k=1

(�−1
k

)
(−1)k+1e−k

k
+ lgn

�−1∑
k=1

(�−1
k

)
(−1)k

k

]

= (lgn)�

(� − 1)!
[

1 +
�−1∑
k=1

(�−1
k

)
(−1)k+1e−k

k
+

�−1∑
k=1

(�−1
k

)
(−1)k

k

]

= (lgn)�

(� − 1)!
[

1 +
�−1∑
k=1

(�−1
k

)
(−1)k+1e−k

k
−

�−1∑
k=1

1

k

]

= (lgn)�

(� − 1)!
[

�−1∑
k=1

(�−1
k

)
(−1)k+1e−k

k
−

�−1∑
k=2

1

k

]

= γ�(lgn)�

(� − 1)! ,

where we used a combinatorial result from Riordan [5], page 5. Hence

∑N
n=1 anERnI (1 ≤ Rn ≤ cn)

bN

∼
∑N

n=1((lgn)α/(nj�−1
n )) · (γ�(lgn)�/(� − 1)!)
(lgN)α+2

∼ γ�

∑N
n=1 (lgn)α+1/n

(� − 1)!(lgN)α+2

→ γ�

(α + 2)(� − 1)!
concluding this proof. �
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Finally, we examine the situation where jn is larger than lgn. This case proves
to be extremely difficult, as we will show via the ensuing and very helpful lemma.

Lemma. If 1 < a < 2, then

lim
x→∞

1 + 3x−1 lgx + xa−1[(exx3)−1/xa − 1]
x1−a

= 1/2.

Proof. It is easy to see that (exx3)−1/xa → 1 as x → ∞. Next we need the deriva-
tive of (exx3)−1/xa

. Using logarithms we obtain

d

dx
(exx3)−1/xa = (exx3)−1/xa [(a − 1)x−a − 3x−a−1 + 3ax−a−1 lgx].

Now we apply L’Hopital’s rule twice, but some algebra is necessary in order for
our limit to come into view

lim
x→∞

1 + 3x−1 lgx + xa−1[(exx3)−1/xa − 1]
x1−a

= lim
x→∞

x1−a + 3x−a lgx + (exx3)−1/xa − 1

x2−2a

= lim
x→∞

{
(1 − a)x−a + 3x−a−1 − 3ax−a−1 lgx

(2 − 2a)x1−2a

+ (exx3)−1/xa [(a − 1)x−a − 3x−a−1 + 3ax−a−1 lgx]
(2 − 2a)x1−2a

}

= lim
x→∞

[(exx3)−1/xa − 1][(a − 1)x−a − 3x−a−1 + 3ax−a−1 lgx]
(2 − 2a)x1−2a

= lim
x→∞

[(exx3)−1/xa − 1][a − 1 − 3x−1 + 3ax−1 lgx]
(2 − 2a)x1−a

= lim
x→∞

{ [(exx3)−1/xa − 1][3x−2 + 3ax−2 − 3ax−2 lgx]
(2 − 2a)(1 − a)x−a

+ (
(exx3)−1/xa [(a − 1)x−a − 3x−a−1 + 3ax−a−1 lgx]
× [(a − 1) − 3x−1 + 3ax−1 lgx])/(

(2 − 2a)(1 − a)x−a)}

= lim
x→∞

[o(1)][o(x−a)] + [1 + o(1)][(a − 1)x−a + o(x−a)][(a − 1) + o(1)]
(2 − 2a)(1 − a)x−a

= lim
x→∞

(a − 1)2x−a

(2 − 2a)(1 − a)x−a

= 1/2
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which completes the proof of this lemma. �

Our final theorem only explores the situation of � = 2 and jn ∼ (lgn)a where
1 < a < 2. If one wishes to explore larger � and jn then the techniques used in the
proof of the following theorem will prove to be quite helpful. And that is the point
of this theorem, to show how one can increase either � or jn.

Theorem 4. If pnjn = 1, jn ∼ (lgn)a , where 1 < a < 2, � = 2 and α > −3, then

lim
N→∞

∑N
n=1 ((lgn)α/n)Rn

(lgN)α+3 = 1

2(α + 3)
almost surely.

Proof. Here an = (lgn)α/n, bn = (lgn)α+3 and cn = n(lgn)3. The first two terms
vanish since

∞∑
n=1

c−2
n ER2

nI (1 ≤ Rn ≤ cn) < C

∞∑
n=1

jn

c2
n

∫ cn

1
dr

< C

∞∑
n=1

jn

cn

< C

∞∑
n=1

(lgn)a−3

n
< ∞

since 1 < a < 2, while
∞∑

n=1

P {Rn > cn} < C

∞∑
n=1

jn

∫ ∞
cn

r−2 dr = C

∞∑
n=1

jn

cn

< ∞.

As for our third term

ERnI (1 ≤ Rn ≤ cn) ∼ jn

∫ cn

1
r−1(1 − r−1/jn) dr

= jn

∫ cn

1
(r−1 − r−1−1/jn) dr

= jn lg cn + j2
n (c−1/jn

n − 1)

∼ (lgn)a[lgn + 3 lg2 n] + (lgn)2a[[n(lgn)3]−1/(lgn)a − 1
]
.

At this point we substitute x = lgn and apply our lemma to obtain

ERnI (1 ≤ Rn ≤ cn) ∼ xa[x + 3 lgx] + x2a[[exx3]−1/xa − 1
]

= xa[x + 3 lgx] + x2a[[exx3]−1/xa − 1
]

= x2xa−1
[
1 + 3 lgx

x
+ xa−1[[exx3]−1/xa − 1

]]

∼ x2/2

= (lgn)2/2.
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Therefore the limit of our partial sums will be∑N
n=1 anERnI (1 ≤ Rn ≤ cn)

bN

∼
∑N

n=1((lgn)α/n) · ((lgn)2/2)

(lgN)α+3

=
∑N

n=1 (lgn)α+2/n

2(lgN)α+3 → 1

2(α + 3)

concluding this final proof. �

3 Conclusion

What is quite unusual about Theorem 4 is that the conclusion does not depend
on the value of a, as long as our parameter a is between one and two. There are
many other directions one could investigate at this point. Naturally, one is where
jn grows faster than (lgn)a . Another is where �n grows within each row, instead
of being fixed. All of these cases involve very delicate computations as one can
see from the results in this paper. One should note that by observing the proof of
Theorem 4. The possibilities are endless. But it is very important to note that it is
extremely difficult to have both

∞∑
n=1

P {Rn > cn}

and
∞∑

n=1

c−2
n ER2

nI (1 ≤ Rn ≤ cn)

convergent, while have ∑N
n=1 anERnI (1 ≤ Rn ≤ cn)

bN

converge to a finite nonzero constant.
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