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Abstract. For the first time, we derive explicit closed-form expressions for
moments of some beta generalized distributions including the beta gamma,
beta normal, beta beta, beta Student t and beta F distributions. These expres-
sions are given as infinite weighted sums of well-known special functions for
which numerical routines for computation are available.

1 Introduction

Generalized distributions have been widely studied in statistics and numerous
authors have developed various classes of these distributions. Eugene, Lee and
Famoye (2002) first proposed a general class of distributions for a random vari-
able defined from the logit of the beta random variable by employing two param-
eters whose role is to introduce skewness and to vary tail weights. In this paper,
we derive explicit closed-form expressions for the moments of this class of dis-
tributions. The expressions take the form of infinite sums of well-known special
functions which are very simple to be implemented in practice for several beta
generalized distributions. In fact, we derive closed-form expressions for the mo-
ments of the beta gamma, beta normal, beta beta, beta Student t and beta F dis-
tributions. The reason that we choose these special distributions (gamma, normal,
beta, Student t and F ) is because they are perhaps the most popular distributions
in statistics and various applied areas, and they possess finite moments to ensure
existence of the moments of the associated beta generalized distributions. Similar
results could in principle be derived for other beta generalized distributions. These
closed-form expressions can be used to obtain the same for functions of moments,
for example, moment generating function, cumulant generating function, charac-
teristic function, factorial and central moments, etc.

The calculations in this article involve some special functions, including the
well-known incomplete gamma function defined by

γ (α, x) =
∫ x

0
wα−1e−w dw, α > 0,
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the error function erf(·) defined by

erf(x) = 2√
π

∫ x

0
exp(−t2) dt,

the beta function (�(·) is the gamma function) given by

B(a, b) =
∫ ∞

0
wa−1(1 − w)b−1 dw = �(a)�(b)

�(a + b)
,

the incomplete beta function ratio, that is, the cumulative distribution function
(cdf) of the beta distribution with parameters a and b, defined by

Ix(a, b) = 1

B(a, b)

∫ x

0
wa−1(1 − w)b−1 dw,

the confluent hypergeometric function defined by

1F1(a;b; z) =
∞∑
i=0

(a)iz
i

(b)ii! ,

where (a)i is the ascending factorial defined by (with the convention that (a)0 = 1)

(a)i = a(a + 1) · · · (a + i − 1),

the Gaussian hypergeometric function defined by

2F1(a, b; c; z) =
∞∑
i=0

(a)i(b)iz
i

(c)ii! ,

the Lauricella function of type A [Exton (1978); Aarts (2000)] defined by

F
(n)
A (a;b1, . . . , bn; c1, . . . , cn;x1, . . . , xn)

(1.1)

=
∞∑

m1=0

· · ·
∞∑

mn=0

(a)m1+···+mn(b1)m1 · · · (bn)mn

(c1)m1 · · · (cn)mn

x
m1
1 · · ·xmn

n

m1! · · ·mn! ,

and the generalized Kampé de Fériet function [Exton (1978); Mathai (1993); Aarts
(2000); Chaudhry and Zubair (2002)] defined by

FA:B
C:D

(
(a) : (b1); . . . , (bn); (c) : (d1); . . . , (dn);x1, . . . , xn

)
(1.2)

=
∞∑

m1=0

· · ·
∞∑

mn=0

((a))m1+···+mn((b1))m1 · · · ((bn))mn

((c))m1+···+mn((d1))m1 · · · ((dn))mn

x
m1
1 · · ·xmn

n

m1! · · ·mn! ,

where a = (a1, a2, . . . , aA), bi = (bi,1, bi,2, . . . , bi,B) for i = 1,2, . . . , n, c =
(c1, c2, . . . , cC), di = (di,1, di,2, . . . , di,D) for i = 1,2, . . . , n, and

((f ))k = ((f1, f2, . . . , fp))k = (f1)k(f2)k · · · (fp)k
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denotes the product of ascending factorials. Numerical routines for the direct com-
putation of functions (1.1) and (1.2) are available; see Exton (1978) and Mathe-
matica [Trott (2006)].

The rest of the paper is organized as follows. Section 2 defines the class of beta
generalized distributions. Section 3 gives general expansions for calculating the
moments of beta generalized distribution as infinite weighted sums of probability
weighted moments (PWMs) of the parent distribution. Closed-form expressions
for moments of the beta gamma and beta normal distributions are given in Sec-
tions 4 and 5, respectively. In Sections 6, 7 and 8 we give closed-form expressions
for moments of the beta beta, beta Student t and beta F distributions, respectively.
Section 9 provides some numerical calculations for these moments. Section 10
ends with some conclusions.

2 The class of beta generalized distributions

Let G be the cdf of a random variable. The function F(x) given by

F(x) = IG(x)(a, b) = 1

B(a, b)

∫ G(x)

0
ωa−1(1 − ω)b−1 dω, (2.1)

defines the cdf of the class of beta G distributions, where a > 0 and b > 0 are
two additional parameters whose role is to introduce skewness and to vary tail
weights, and IG(x)(a, b) is the incomplete beta function ratio evaluated at G(x).
Application of X = G−1(V ) to V following the beta B(a, b) distribution yields X

with cdf (2.1). Several authors introduced and studied particular members of this
class of distributions over the last years, mainly after the works of Eugene, Lee
and Famoye (2002) and Jones (2004a).

The beta normal (BN) distribution introduced by Eugene, Lee and Famoye
(2002) is obtained by taking G(x) to be the cdf of the normal distribution. This
distribution can be unimodal and bimodal. Some expressions for the moments of
the BN distribution were derived by Gupta and Nadarajah (2004a). Nadarajah and
Kotz (2004) introduced the beta Gumbel distribution by taking G(x) to be the cdf
of the Gumbel distribution and provided closed form expressions for the moments
and discussed the asymptotic distribution of the extreme order statistics and the
maximum likelihood estimation procedure. Nadarajah and Gupta (2004) proposed
the beta Fréchet distribution by taking G(x) to be the Fréchet distribution, derived
the analytical shapes of the density and hazard rate functions and calculated the
asymptotic distribution of the extreme order statistics. Nadarajah and Kotz (2006)
obtained the moment generating function, the first four cumulants and the asymp-
totic distribution of the extreme order statistics for the beta exponential distribution
and examined maximum likelihood estimation of its parameters.

The probability density function (pdf) corresponding to (2.1) has a very simple
form

f (x) = g(x)

B(a, b)
G(x)a−1{1 − G(x)}b−1, (2.2)
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where g(x) = dG(x)/dx is the density of the baseline distribution. The density
f (x) will be most tractable when both functions G(x) and g(x) = dG(x)/dx

have simple analytic expressions. Except for some special choices for G(x) in
equation (2.1), it would appear that the density (2.2) will be difficult to deal with
in generality. If g(x) is a symmetric distribution around zero, then f (x) will also
be a symmetric distribution when a = b.

3 General formulae for the moments

For b > 0 real noninteger, we have the power series

{1 − G(x)}b−1 =
∞∑
i=0

(−1)i
(

b − 1
i

)
G(x)i,

where the binomial coefficient is defined for any real b. From the above expansion
and equation (2.2), we can express the density of the beta G as

f (x) = g(x)

∞∑
i=0

wiG(x)a+i−1, (3.1)

where

wi = wi(a, b) =
(−1)i

(
b−1

i

)
B(a, b)

.

If b is an integer, the index i in the previous sum stops at b−1. If a is an integer,
equation (3.1) gives the pdf of the beta G as an infinite power series expansion of
cdf’s of G. Otherwise, if a is real noninteger, we can expand G(x)a+i−1 as follows:

G(x)a+i−1 = [1 − {1 − G(x)}]a+i−1 =
∞∑

j=0

(−1)j
(

a + i − 1
j

)
{1 − G(x)}j

and then

G(x)a+i−1 =
∞∑

j=0

j∑
r=0

(−1)j+r

(
a + i − 1

j

)(
j

r

)
G(x)r .

Hence, we can write from equation (2.2)

f (x) = g(x)

∞∑
i,j=0

j∑
r=0

wi,j,rG(x)r , (3.2)

where the coefficients

wi,j,r = wi,j,r (a, b) =
(−1)i+j+r

(
a+i−1

j

)(
b−1

i

)(
j
r

)
B(a, b)
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are constants. Expansion (3.2), which holds for any real noninteger a, gives the
pdf of the beta G as an infinite power series expansion of cdf’s of G. If b is an
integer, the index i in equation (3.2) stops at b − 1. Equations (3.1) and (3.2) are
used to derive closed form expressions for the moments of the beta gamma, beta
normal, beta beta, beta Student t and beta F distributions valid for a integer and a

real noninteger, respectively. We have

∞∑
i=0

wi = 1 and
∞∑

i,j=0

j∑
r=0

wi,j,r = 1.

From now on we assume X following the pdf of any parent G distribution and Y

the pdf of the beta G distribution. The sth moment of Y can be expressed in terms
of the (s, r)th PWM of X, say τs,r = E{XsG(X)r}. For a integer, we obtain

μ′
s =

∞∑
r=0

wrτs,r+a−1, (3.3)

whereas for a real noninteger we have

μ′
s =

∞∑
i,j=0

j∑
r=0

wi,j,rτs,r . (3.4)

Equations (3.3) and (3.4) are of very simple forms and constitute the main results
of this section. Hence, we can calculate the moments of the beta G distribution in
terms of infinite weighted sums of PWMs of G.

4 Moments of the beta gamma

A random variable X has a gamma G(α,β) distribution with parameters α > 0
and β > 0 if its cdf is

G(x) = γ (α,βx)

�(α)
, x > 0.

For s > 0, we have E(Xs) = �(s + α)/�(βsα). A random variable Y has a beta
gamma BG(a, b,α,β) distribution if its pdf is

f (x) = βαxα−1e−βx

B(a, b)�(α)a+b−1 γ (α,βx)a−1{�(α) − γ (α,βx)}b−1, x > 0.

Some properties of the beta gamma distribution are discussed in Kong, Lee and
Sepanski (2007). We obtain τs,r using the series expansion for the incomplete
gamma function. We have

G(x) = (βx)α

�(α)

∞∑
m=0

(−βx)m

(α + m)m! ,
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and then

τs,r = βα

�(α)

∫ ∞
0

xs+α−1 exp(−βx)

{
(βx)α

�(α)

∞∑
m=0

(−βx)m

(α + m)m!
}r

dx

= β−s

�(α)r+1

∫ ∞
0

us+α−1 exp(−u)

{
uα

∞∑
m=0

(−u)m

(α + m)m!
}r

du.

The last integral can be obtained from equations (24) and (25) of Nadarajah (2008)
as

τs,r = β−sα−r�(s + α(r + 1))

�(α)r+1
(4.1)

× F
(r)
A

(
s + α(r + 1);α, . . . , α;α + 1, . . . , α + 1;−1, . . . ,−1

)
.

Hence, the moments of the beta gamma distribution can be written as infinite
weighted sums of the Lauricella functions of type A from equations (3.3) and (4.1)
for a integer and from (3.4) and (4.1) for a real noninteger, respectively.

5 Moments of the beta normal

The BN distribution, introduced by Eugene, Lee and Famoye (2002), is obtained by
taking G(x) to be the cdf of the normal distribution in equation (2.1). The density
of the BN(a, b,μ,σ 2) distribution is given by

f (x) = σ−1

B(a, b)
φ

(
x − μ

σ

){
�

(
x − μ

σ

)}a−1{
1 − �

(
x − μ

σ

)}b−1

, (5.1)

where x ∈ R, μ ∈ R is a location parameter, σ > 0 is a scale parameter, a and b

are shape parameters, and φ(·) and �(·) are the standard normal pdf and cdf, re-
spectively. For μ = 0 and σ = 1, we obtain the beta (standard) normal distribution.
Plots of the beta (standard) normal for selected parameter values are given in Fig-
ure 1.

We can work with the beta standard normal distribution in generality, since
we can obtain the moments of Y ∼ BN(a, b,μ,σ ) from the moments of Z ∼
BN(a, b,0,1) using E(Y r) = E[(μ+ σZ)r ] = ∑r

t=0 μr−t σ rE(Zr). The standard
normal cdf can be written as

�(x) = 1

2

{
1 + erf

(
x√
2

)}
, x ∈ R.

We can obtain the moments of the beta (standard) normal from equations (3.3)
and (3.4) for a integer and a real noninteger, respectively, if we calculate

τs,r =
∫ ∞
−∞

xsφ(x)�(x)r dx
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Figure 1 Plots of the BN density for some parameter values.

for s and r integers. Using the binomial expansion and interchanging terms, we
have

τs,r = 1

2r
√

2π

r∑
l=0

(
r

l

)∫ ∞
−∞

xs exp(−x2/2) erf
(

x√
2

)r−l

dx.

Using the series expansion for the error function erf(·)

erf(x) = 2√
π

∞∑
m=0

(−1)mx2m+1

(2m + 1)m! ,

we can solve the last integral following equations (9)–(11) of Nadarajah (2008).
We can obtain when s + r − l is even

τs,r = 2s/2π−(r+1/2)

×
r∑

l=0
(s+r−l) even

(
r

l

)
2−lπ l�

(
s + r − l + 1

2

)
(5.2)

× F
(r−l)
A

(
s + r − l + 1

2
; 1

2
, . . . ,

1

2
; 3

2
, . . . ,

3

2
;−1, . . . ,−1

)
.

Expressions for the integral and then for terms in τs,r vanish when s + r − l is
odd. Hence, equations (3.3) and (5.2) for a integer and (3.4) and (5.2) for a real
noninteger can be applied to calculate the moments of the beta normal distribution.

6 Moments of the beta beta

The beta distribution is the most flexible family of distributions. It has relationships
with several of the well-known univariate distributions. Beta distributions are very
versatile and a variety of uncertainties can be usefully modeled by them. Many
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of the finite range distributions encountered in practice can be easily transformed
into the standard beta distribution. In reliability and life testing experiments, many
times the data are modeled by finite range distributions; see, for example, Bar-
low and Proschan (1975). In recent years, beta distributions have been used in
modeling distributions of hydrologic variables. Many generalizations of the beta
distribution involving algebraic, exponential and hypergeometric functions have
been proposed in the literature; see the book of Gupta and Nadarajah (2004b) for
detailed accounts.

The pdf and cdf of the beta B(α,β) distribution with parameters α > 0
and β > 0 are simply g(x) = xα−1(1 − x)β−1/B(α,β) and G(x) = Ix(α,β) =
B(α,β)−1 ∫ x

0 tα−1(1 − t)β−1 dt for 0 < x < 1. In this section, an enlargement of
the beta family of distributions on (0,1) is presented. We introduce, for the first
time, the so-called four parameter beta beta BB(a, b,α,β) distribution with den-
sity (for 0 < x < 1) given by

f (x) = xα−1(1 − x)β−1

B(α,β)B(a, b)
Ix(α,β)a−1{1 − Ix(α,β)}b−1. (6.1)

The PWM of the B(α,β) distribution is

τs,r = 1

B(α,β)

∫ 1

0
xs+α−1(1 − x)β−1Ix(α,β)r dx.

Using the incomplete beta function expansion for β real noninteger

Ix(α,β) = xα

B(α,β)

∞∑
m=0

(1 − β)mxm

(α + m)m! ,

and the fact (f )k = �(f + k)/�(f ), the last integral can be obtained from the
algebraic developments made by Nadarajah [(2008), Section 5] which convert the
function I (k, l) defined in equation (28) to the expression (30) of his paper written
in terms of the generalized Kampé de Fériet function. Hence, we obtain

τs,r = α−rB(α,β)−(r+1)B
(
β, s + α(r + 1)

)
× F 1:2

1:1
((

s + α(r + 1)
)

: (1 − β,α); . . . ; (1 − β,α) : (6.2)(
β + s + α(r + 1)

)
: (α + 1); . . . ; (α + 1);1, . . . ,1

)
.

The moments of the beta beta distribution follow immediately as infinite sums of
the generalized Kampé de Fériet functions from equations (3.3) and (6.2) for a

integer and from (3.4) and (6.2) for a real noninteger.

7 Moments of the beta Student t

The Student t distribution is the second most popular continuous distribution in
statistics, second only to the normal distribution. The density of the Student tν
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distribution with ν > 0 degrees of freedom is (for −∞ < x < ∞)

g(x) = 1√
νB(1/2, ν/2)

(
1 + x2

ν

)−(ν+1)/2

.

For any real x, the cdf of the Student tν distribution is simply G(x) = Iy(1/2, ν/2),

where y = (x+√
x2 + ν)/(2

√
x2 + ν). The density of the beta Student BS(a, b, ν)

distribution with parameters ν, a and b is then given by (for any x)

f (x) = (1 + x2/ν)−(ν+1)/2
√

νB(a, b)B(1/2, ν/2)

× {
I
(x+

√
x2+ν)/(2

√
x2+ν)

(1/2, ν/2)
}a−1 (7.1)

× {
1 − I

(x+
√

x2+ν)/(2
√

x2+ν)
(1/2, ν/2)

}b−1
.

The beta Student is then symmetric around zero only when a = b.
Since the pdf of the Student tν distribution is symmetric around zero, the (s, r)th

PWM of the Student tν distribution can be expressed as

τs,r =
∫ ∞

0
xsG(x)rg(x) dx + (−1)s

∫ ∞
0

xs{1 − G(x)}rg(x) dx.

For k, n and m positive integers, we now define

A(k,n,m) =
∫ ∞

0
xkG(x)m−1{1 − G(x)}n−mg(x)dx

and rewrite τs,r as

τs,r = A(s, r + 1, r + 1) + (−1)sA(s, r + 1,1).

For x ≥ 0, we have G(x) = 1
2 + 1

2Ix2/(ν+x2)(1/2, ν/2). Following Nadarajah
(2007), setting y = x2/(ν + x2) and using the incomplete beta function expan-
sion and the fact (f )k = �(f + k)/�(f ), we calculate the integral A(k,n,m) in
terms of the generalized Kampé de Fériet function. Then, from equation (7) of
his paper we can obtain A(s, r + 1, r + 1) and A(s, r + 1,1). Combining these
expressions, we reach the formula

τs,r = νs/2

2r+1

r∑
p=0

p even

(
r

p

)
2p+1B−1−p(1/2, ν/2)B

(
ν − s

2
,
s + p + 1

2

)

×F 1:2
1:1

((
s + p + 1

2

)
:
(

1 − ν

2
,

1

2

)
; . . . ;

(
1 − ν

2
,

1

2

)
; (7.2)

(
ν + p + 1

2

)
:
(

3

2

)
; . . . ;

(
3

2

)
;1, . . . ,1

)
.

Hence, the moments of the beta Student t distribution can be written as infinite
weighted sums of the generalized Kampé de Fériet functions from equations (3.3)
and (7.2) for a integer and from (3.4) and (7.2) for a real noninteger.
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Figure 2 Plots of the beta F density for some parameter values.

8 Moments of the beta F

The F distribution arises frequently as the null distribution of a test statistic, es-
pecially in likelihood ratio tests, perhaps most notably in the analysis of variance.
Consider the F(2α,2β) distribution with degrees of freedom 2α and 2β and pdf
and cdf for x > 0, α > 0 and β > 0 given by

g(x) = ααxα−1

βαB(α,β)(1 + αx/β)α+β
(8.1)

and G(x) = Iαx/(αx+β)(α,β), respectively. The existence of the ordinary moments
of (8.1) requires the condition that the order of the moment be smaller than β .

The density of the beta F distribution BF(a, b,2α,2β) with parameters
a, b,2α and 2β , can be written (for any x > 0) as

f (x) = ααxα−1

βαB(α,β)(1 + αx/β)α+βB(a, b)
(8.2)

× Iαx/(αx+β)(α,β)a−1{
1 − Iαx/(αx+β)(α,β)

}b−1
.

The (s, r)th PWM of the F(2α,2β) distribution can be expressed as

τs,r = αα

βαB(α,β)

∫ ∞
0

xα+s−1

(1 + αx/β)α+β
Iαx/(αx+β)(α,β)r dx.

Setting y = αx/(αx + β), we obtain

τs,r = βs

αsB(α,β)

∫ 1

0
yα+s−1(1 − y)β−s−1Iy(α,β)r dy.
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Using the series expansion

Iy(α,β) = yα

B(α,β)

∞∑
m=0

(1 − β)mym

(α + m)m! ,

the last integral can be expressed for s < β as∫ 1

0
yα+s−1(1 − y)β−s−1

{
yα

B(α,β)

∞∑
m=0

(1 − β)mym

(α + m)m!
}r

dy

=
∫ 1

0

∞∑
m1=0

· · ·
∞∑

mr=0

(
(1 − β)m1 · · · (1 − β)mr

× ys+α(r+1)+m1+···+mr−1(1 − y)β−s−1

/
(
B(α,β)r(α + m1) · · · (a + mr)m1! · · ·mr !))dy

=
∞∑

m1=0

· · ·
∞∑

mr=0

(1 − β)m1 · · · (1 − b)mr

× B
(
s + α(r + 1) + m1 + · · · + mr,β − s

)
/
(
B(α,β)r(α + m1) · · · (α + mr)m1! · · ·mr !).

Using (f )k = �(f + k)/�(f ) and the definition of the generalized Kampé de
Fériet function in equation (1.2), we can write τs,r (for s < b) as

τs,r = βs

αs+rB(α,β)r+1 B
(
β − s, s + α(r + 1)

)
× F 1:2

1:1
((

s + α(r + 1)
) : (1 − β,α); . . . ; (1 − β,α); (8.3)(

β + α(r + 1)
) : (α + 1); . . . ; (α + 1);1, . . . ,1

)
.

It is easy to verify that that this expression exists for s < β . Hence, the moments
of the beta F distribution can be written as infinite weighted sums of the gener-
alized Kampé de Fériet functions from equations (3.3) and (8.3) for a integer and
from (3.4) and (8.3) for a real noninteger.

9 Numerical applications

In this section we provide numerical values for the moments of some beta gener-
alized distributions. We compute Lauricella function of type A using the formula
[Erdélyi (1936), page 696, equation (1)]

F
(n)
A [α,β1, . . . , βn;γ1, . . . , γn;x1, . . . , xn]

(9.1)

= 1

�(α)

∫ ∞
0

tα−1 exp(−t)1F1(β1;γ1;x1t) · · · 1F1(βn;γn;xnt) dt
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and the Generalized Kampé de Fériet function using the equation (2.1.5.15) given
in Exton (1978)

F 1:2
1:1

(
(a) : (c1, d1); . . . ; (cn, dn); (c) : (a + b); (f1); . . . ; (dn); s1, . . . , sn

)
= 1

B(a, b)

∫ 1

0
xa−1(1 − x)b−1 (9.2)

× 2F1(c1, d1;f1; s1x) · · · 2F1(cn, dn;fn; snx) dx.

Establishing in-built routines for these special functions can be used to compute
the moments. This can be more efficient than computing the moments by writing
say some codes in SAS or R. It can also be more accurate computationally to use
these in-built routines. Other representations for moments (e.g., integral represen-
tations) can be prone to rounding off errors among others. In fact, we compare the
numerical moments obtained using these special functions in Mathematica scripts
with those calculated from some Maple codes for direct integration of the density
functions in 350 selected choices of parameters for the beta generalized distri-
butions discussed in this section. The scripts were written and tested on Maple
version 10, and Mathematica version 5.0.0.0, to obtain numerical moments of the
beta generalized distributions. For rare selections of parameters (6.86%), Maple
fails to calculate numerical values for the moments while Mathematica succeeds
in almost all cases tested (it fails in only 2.29% of cases). Comparing the numerical
values obtained with Maple and Mathematica we found that, in almost all cases,
the results agree using both softwares.

The moments of five beta generalized distributions were computed using our
infinite weighted sums of Lauricella and Generalized Kampé de Fériet functions by
evaluating these functions from equations (9.1) and (9.2), respectively. For selected
parameter values a = 1.5 and b = 2.5, Table 1 gives some numerical values for
the ordinary moments (μ′

r , r = 1, . . . ,4), variance, skewness and kurtosis of the
beta normal, beta gamma, beta beta, beta t and beta F distributions computed
using in-built functions in Mathematica. Tables 2 and 3 do the same for a = 2.5
and b = 3.5 and a = 0.3 and b = 0.9, respectively. The parent normal (N(0,1)),
gamma (G(2,3)), beta (B(2,3)) and Student (t6) distributions were adopted in
these tables, whereas the parent F (F(2,4)) distribution was considered in Tables 1
and 2 and the F (F(2,9)) distribution in Table 3. Several other tables are computed
by Brito (2009) in her MSc Thesis. For the beta normal distribution, our numerical
results are in good agreement with the results using Maple provided by Gupta and
Nadarajah (2004a) for integers a and b. Further, for all distributions considered,
our numerical results for a = b = 1 are identical to those corresponding values of
the parent distributions. The current Mathematica scripts are given in the Appendix
for the beta normal and beta F distributions.

The numerical moments obtained from our Mathematica scripts fully agree with
the previously reported results in the literature when both parameters a and b are



26 G. M. Cordeiro and S. Nadarajah

Table 1 Moments for some beta generalized distributions for a = 1.5 and b = 2.5

Parent distribution → N(0,1) G(2,3) B(2,3) t6 F(2,4)

μ′
1 −0.38915 4.47390 0.31334 −0.43863 0.71655

μ′
2 0.62203 23.75800 0.11655 0.81558 1.13500

μ′
3 −0.63769 145.65200 0.04903 −1.12010 3.75720

μ′
4 1.17200 1010.94950 0.02266 2.79680 31.45660

Variance 0.47059 3.74240 0.01837 0.62319 0.62156
Skewness −0.09098 0.81158 0.40319 −0.43840 4.18980
Kurtosis 3.05170 3.98000 2.79380 4.27950 60.55120

Table 2 Moments for some beta generalized distributions for a = 2.5 and b = 3.5

Parent distribution → N(0,1) G(2,3) B(2,3) t6 F(2,4)

μ′
1 −0.24014 4.79300 0.33919 −0.26180 0.75933

μ′
2 0.35014 25.57150 0.12786 0.42072 0.96253

μ′
3 −0.23245 150.18740 0.05248 −0.33435 1.94650

μ′
4 0.37198 962.54130 0.02311 0.62776 6.36000

Variance 0.29247 2.59890 0.01281 0.35218 0.38595
Skewness −0.04996 0.64709 0.28978 −0.19044 2.62560
Curtose 3.03800 3.64320 2.82400 3.51970 18.66460

Table 3 Moments for some beta generalized distributions for a = 0.3 and b = 0.9

Parent distribution → N(0,1) G(2,3) B(2,3) t6 F(2,9)

μ′
1 −1.25901 1.27411 0.22010 −2.38624 0.59256

μ′
2 3.93174 3.37942 0.09290 24.20698 2.18504

μ′
3 −11.54703 12.64137 0.04985 −529.19846 26.82111

μ′
4 43.67801 61.14438 0.03046 18134.79921 9568.47986

Variance 2.34663 1.75606 0.04446 18.51284 1.83391
Skewness −0.74657 0.54745 1.04880 −4.97989 9.48695
Curtose 2.79341 7.04616 3.30838 40.30453 2827.38692

integers [see Jones (2004b); Choi (2005); and references therein]. This fact builds
confidence regarding the correctness of the presented scripts, and the ability of
the software for analytic formulae manipulation, so that implementation of similar
scripts to other density functions may be expected to produce reliable numerical
values for the moments.

Graphical representation of skewness and kurtosis for some beta generalized
distributions as a function of parameter a for fixed b, and as a function of param-
eter b for fixed a, are given in Figures 1–10. The plots of Figures 1 and 2 show
that the skewness of the beta normal distribution increases when a increases (for
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fixed b) and decreases when b increases (for fixed a), whereas the kurtosis first
decreases steadily to a minimum value and then increases when a increases for
fixed b or when b increases for fixed a. The plots of Figures 3 and 4 show that the
skewness of the beta gamma distribution decreases when a increases (for fixed b)
or when b increases (for fixed a) and the kurtosis always decreases in both cases.
Similar conclusions could be drawn for the skewness and kurtosis of the beta beta
(Figures 5 and 6), beta Student (Figures 7 and 8) and beta F (Figures 9 and 10)
distributions.

Figure 3 Plots of the skewness and kurtosis for the beta normal BN(a,3.5,0,1) as a function of a

for fixed b = 3.5.

Figure 4 Plots of the skewness and kurtosis for the beta normal BN(2.5, b,0,1) as a function of b

for fixed a = 2.5.
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Figure 5 Plots of the skewness and kurtosis for the beta gamma BG(a,3.5,2,3) as a function of a

for fixed b = 3.5.

Figure 6 Plots of the skewness and kurtosis for the beta gamma BG(2.5, b,2,3) as a function of b

for fixed a = 2.5.

10 Conclusion

Beta generalized type distributions are very versatile and a variety of uncertainties
can be usefully modeled by them. We derive closed-form expressions for moments
of some beta type generalized distributions. These expressions are provided as in-
finite weighted sums of well-known functions. Specifically, the beta gamma, beta
normal, beta beta, beta Student and beta F distributions are considered. The ex-
pressions are simple and extend some previously known results for the beta nor-
mal distribution. Similar expressions can be worked out for other distributions.
The computer code for generating these moments are available to the reader.



Moments of beta generalized distributions 29

Figure 7 Plots of the skewness and kurtosis for the beta beta BB(a,3.5,2,3) as a function of a for
fixed b = 3.5.

Figure 8 Plots of the skewness and kurtosis for the beta beta BB(2.5, b,2,3) as a function of b for
fixed a = 2.5.

Apendix

We present Mathematica scripts to calculate the moments of the beta normal and
beta F distributions for a integer and real noninteger. In the sums, ∞ was substi-
tuted by 100.

Beta normal for a integer

"Function to calculate the moments of **Beta Normal** distribution
for -a- integer";

Clear[a,r,s,l,M,w];Clear[FBN0,MOBFi,MOBNi];Clear[beta0,gamma0];
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Figure 9 Plots of the skewness and kurtosis for the beta Student BS(a,3.5,6) as a function of a for
fixed b = 3.5.

Figure 10 Plots of the skewness and kurtosis for the beta Student BS(2.5, b,6) as a function of b

for fixed a = 2.5.

FBN0 = Function[{kappa,r,beta0,gamma0,x1},(Gamma[kappa])^(-1)*
NIntegrate[Exp[-t]*(t^(kappa-1))*
Product[Hypergeometric1F1[beta0,gamma0,x1*t],{m,1,r}],{t,0,Infinity}]];

MOBNi =Function[{s,a,b},Sum[
((((-1)^r) *Binomial[b-1,r])/Beta[a, b])*(2^(s/2))*
((N[Pi])^(-((r+a-1)+ 1/2)))* Sum[Binomial[(r+a-1),l]*(2^(-l))*

((N[Pi])^l))* Gamma[(s+(r+a-1)-l+1)/2]*
FBN0[(s+(r+a-1)-l+1)/2,r,1/2,3/2,-1]*
If[IntegerPart[(s+(r+a-1)-l)/2]==(s+(r+a-1)-l)/2,1,0],
{l,0,(r+a-1)}],{r,0,100}]];
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Figure 11 Plots of the skewness and kurtosis for the beta F BF(a,3.5,4,8) as a function of a for
fixed b = 3.5.

Figure 12 Plots of the skewness and kurtosis for the beta F BF(2.5, b,4,8) as a function of b for
fixed a = 2.5.

Beta normal for a real noninteger

"Function to calculate the moments of ** Beta Normal ** distribution
for -a- noninteger";

Clear[a,r,s,l,M,w,kappa];Clear[FBN0,FBF1,FBN1,MOBFni,MOBNni];
Clear[beta1,gamma1];

FBN1 = Function[{kappa,r,beta1,gamma1,x1},(Gamma[kappa])^(-1)*
NIntegrate[Exp[-t]*t^(kappa-1)*
Product[Hypergeometric1F1[beta1,gamma1,x1*t],{m,1,r}],{t,0,Infinity}]];

MOBNni = Function[{s,a,b},Sum[
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Sum[Sum[((((-1)^(i+j+r))*Binomial[a+i-1,j]*Binomial[b-1,i]*
Binomial[j,r])/Beta[a,b])*(2^(s/2))*((N[Pi])^(-(r+1/2)))*
Sum[Binomial[r,l]*(2^(-l))*((N[Pi])^l)* Gamma[(s+r-l+1)/2]*
FBN1[(s+r-l+1)/2,r,1/2,3/2,-1]*
If[IntegerPart[(s+r-l)/2] == (s+r-l)/2,1,0],{l 0,r}],
{r,0,j}],{j,0,100}],{i,0,100}]];

Beta F for a integer
Clear[FBN0,FBF0];Clear[alpha0];Clear[beta0];Clear[s];Clear[a];Clear[b];

"Function to calculate the moments of **Beta F** distribution for
-a- integer";

FBF0 = Function[{z,w,r,alpha0,beta0,x},
((Beta[z,(w-z)])^(-1))*
NIntegrate[(t^(z-1))*((1-t)^(w-z-1))*
Product[Hypergeometric2F1[1-beta0,alpha0,alpha0+1,x*t],{m,1,r}],
{t,0,1}]];

MOBFi = Function[{s,a,b,alpha0,beta0},
If[s<beta0,Sum[(((-1)^r)*Binomial[b-1,r])/Beta[a,b])*

((beta0)^s)*Beta[beta0-s,s+ alpha0*(r + a)]*
N[FBF0[(s+alpha0*(r+a)),(beta0+alpha0*(r+a)),(r+a-1),alpha0,
beta0,1]])/(((alpha0)^(s+(r+a-1)))*(Beta[alpha0,beta0]^(r + a))),
{r,0,100}],"**Verify if s < beta!**"]];

Beta F for a real noninteger
"Function to calculate the moments of **Beta F** distribution for
-a- noninteger";

Clear[FBF1,MOBFi,MOBFni];Clear[alpha1];Clear[beta1];Clear[a];Clear[b];

FBF1 = Function[{z,w,r,alpha1,beta1,x1},(Beta[z,(w-z)]^(-1))*
NIntegrate[(t^(z-1))*((1-t)^(w-z-1))*
Product[Hypergeometric2F1[1-beta1,alpha1,alpha1+1,x1*t],{m,1,r}],
{t,0,1}]];

MOBFni = Function[{s,a,b,alpha1,beta1},
If[s < beta1,
Sum[Sum[Sum[((((-1)^(i+j+r))*Binomial[a+i-1,j]*Binomial[b-1,i]*
Binomial[j,r])/Beta[a,b])*((beta1)^s/(((alpha1)^(s+r))*
(Beta[alpha1,beta1]^(r+1))))*Beta[beta1-s,s+alpha1*(r+1)]*

N[FBF1[(s+alpha1*(r+1)),(beta1+alpha1*(r+1)),r,alpha1,beta1,1]],
{r,0,j}],{j,0,100}],{i,0,100}], "** Verify if s < beta! **"]].
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