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Bayesian analysis of a correlated binomial model
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Abstract. In this paper a Bayesian approach is applied to the correlated bi-
nomial model, CB(n,p,ρ), proposed by Luceño (Comput. Statist. Data Anal.
20 (1995) 511–520). The data augmentation scheme is used in order to over-
come the complexity of the mixture likelihood. MCMC methods, including
Gibbs sampling and Metropolis within Gibbs, are applied to estimate the pos-
terior marginal for the probability of success p and for the correlation coeffi-
cient ρ. The sensitivity of the posterior is studied taking into account several
reference priors and it is shown that the posterior characteristics appear not to
be influenced by these prior distributions. The article is motivated by a study
of plant selection.

1 Introduction

Data in the form of frequencies are generally analyzed under a conventional bino-
mial distribution or under a Poisson model. If we assume that the variance of re-
sponse exceeds the nominal variance, it seems wise to consider alternative models
for over-dispersion [Hinde and Demetrio (2000)]. The binomial and Poisson dis-
tributions have been generalized in several ways to handle the problem of overdis-
persion, which can usually occur due to the presence of some sort of correlation
between events. For instance, as in plant selection study, an example that moti-
vated this article, where there is evidence of the presence of correlation among
any two plants in each pot when competing about the quantity of nutrients and
the interest resides in the calculation of the probability of selecting a good plant.
The binomial distribution has been generalized in various ways. Rudolfer (1990),
Madsen (1993) and Luceño and Ceballos (1995) have summarized most of these
generalizations. Among these extensions there are the multiplicative and the ad-
ditive generalized binomial distributions which were derived by Altham (1978).
The probability density function (PDF) of the multiplicative case is a multiplica-
tion of the PDF of a conventional binomial by a factor. It makes the variance greater
or less than the corresponding binomial variance depending on the factor values.
On the other hand, the consequential distribution of the additive case is a mix-
ture of three conventional binomials. Kupper and Haseman (1978) developed the

Key words and phrases. Correlated binomial distribution, data augmentation method, Bayesian
inference, MCMC methods.

Received April 2006; accepted August 2008.

68

http://www.imstat.org/bjps
http://dx.doi.org/10.1214/08-BJPS014
http://www.redeabe.org.br/


Bayesian analysis of a correlated binomial model 69

correlated binomial model. This distribution was derived by correcting the conven-
tional binomial model via a method suggested by Bahadur (1961) to allow for de-
pendency among the Bernoulli variables. A three-parameter binomial distribution
was derived by Paul (1985, 1987), which is a generalization of the conventional
binomial, the beta-binomial distribution and the correlated binomial distribution
proposed by Kupper and Haseman (1978). Ng (1989) developed the modified bi-
nomial distributions. In this approach, the conventional binomial distribution is
modified sequentially and the resulting distribution becomes more spread out (in-
dicating positive correlation among the Bernoulli variables), or more peaked (indi-
cating negative correlation among the Bernoulli variables), than the conventional
binomial distribution. A four-parameter binomial distribution was derived by Fu
and Sproule (1995). This new distribution assumes that the underlying Bernoulli
trials take on the values α or β where α < β , rather than the usual values 0 or 1.
Luceño (1995) and Luceño and Ceballos (1995) proposed a generalized binomial
distribution which is discussed in detail in this paper.

Considering the possibility of introducing prior information concerning the pa-
rameters into the model, in this paper the Luceño correlated binomial distribution,
CB(n,p,ρ), is studied from the Bayesian point of view using the data augmenta-
tion method [Tanner and Wong (1987), Diebolt and Robert (1994)].

2 A Bayesian approach for the correlated binomial model

The generalized binomial distribution derived by Luceño (1995), denoted as cor-
related binomial distribution or the CB(n,p,ρ) model, is obtained by supposing
that the variable Y , the number of successes in n trials of Bernoulli, is the sum
of equicorrelated binary responses with probability of success constant p and a
correlation coefficient equals ρ.

Formally, let Y = W1 + · · · + Wn, where Wr , r = 1, . . . , n, is a binary variable
with E(Wr) = p, Var(Wr) = p(1 − p) and Corr(Wr,Ws) = ρ, r �= s; ρ > 0.

Theorem 1. The probability distribution of Y is obtained by the mixture of the dis-
tributions of two variables. One of them follows a binomial distribution, B(n,p),
with mixing probability (1−ρ), and the other one follows a modified Bernoulli dis-
tribution, MBern(p), taking values 0 or n [Fu and Sproule (1995)], rather than the
conventional values 0 or 1, with mixing probability ρ. The probability distribution
of Y , given n, p, ρ, is, then, given by

P(Y = y|n,p,ρ) =
(

n

y

)
py(1 − p)n−y(1 − ρ)IA1(y)

(1)
+ py/n(1 − p)(n−y)/nρIA2(y),

where A1 = {0,1, . . . , n}, A2 = {0, n}, y = 0, . . . , n and 0 ≤ ρ ≤ 1.
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Proof. Given in the Appendix. �

The mean and variance of this model are E(Y ) = np and Var(Y ) = p(1 −
p){n+ρn(n− 1)}, which accommodates extra-binomial variation for ρ �= 0. Note
that the CB(n,p,ρ) model is equivalent to the binomial model for ρ = 0. A natu-
ral extension of the model (1) would be to consider coefficient of correlation ρr,s ,
0 ≤ ρr,s ≤ 1, for any two binary variables Wr and Ws .

A set of questionable properties associated with the CB(n,p,ρ) model is pre-
sented in Luceño (1995) and Luceño and Ceballos (1995), among them, there is
one that affects the large properties of the maximum likelihood estimator of the
correlation coefficient ρ. The first order derivative, with respect to ρ, of the loglike-
lihood function provided by the CB(n,p,ρ) model yields an absolute maximum
with nonvanishing.

Suppose that y1, y2, . . . , yk represent a random sample from the CB(n,p,ρ)

distribution, then from (1), the likelihood function for p and ρ is given by

L(p,ρ|n,y1, y2, . . . , yk)

=
k∏

i=1

{(
n

yi

)
pyi (1 − p)n−yi (1 − ρ)IA1(yi) (2)

+ pyi/n(1 − p)(n−yi)/nρIA2(yi)

}
.

The complexity of the mixture likelihood (2) due to the presence of products
of sums is a natural barrier to determine the conditional posterior distributions for
the Metropolis-within-Gibbs algorithm. However, the data augmentation scheme
[Tanner and Wong (1987), Diebolt and Robert (1994)] overcomes this problem by
simplifying the conditional posterior distributions required for the MCMC meth-
ods.

2.1 Latent variable

A latent variable Zi, i = 1, . . . , k, is introduced in the model indicating to which
component of the CB(n,p,ρ) model the observation yi, i = 1, . . . , k, belongs to,
that is,

Zi =
{

1, if the observation yi belongs to the MBern(p) component,
0, if the observation yi belongs to the B(n,p) component,

and, conditionally on the observation yi , the probability of success of the variable
Zi is given by

τi = P(Zi = 1|Yi = yi, n,p,ρ) = P(Yi = yi |Zi = 1)P (Zi = 1)

P (Yi = yi)

= ρpyi/n(1 − p)(n−yi)/nIA2(yi)

ρpyi/n(1 − p)(n−yi)/nIA2(yi) + (1 − ρ)
(n
yi

)
pyi (1 − p)n−yi IA1(yi)

,
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where A1 = {0,1, . . . , n}, A2 = {0, n} and yi = 0, . . . , n; i = 1, . . . , k.
Thus,

P(Zi = zi |Yi = yi, n,p,ρ)

= τ
zi

i (1 − τi)
1−zi

= (
ρpyi/n(1 − p)(n−yi)/nIA2(yi)

)zi

(3)

×
(
(1 − ρ)

(
n

yi

)
pyi (1 − p)n−yi IA1(yi)

)1−zi

×
(
ρpyi/n(1 − p)(n−yi)/nIA2(yi)

+ (1 − ρ)

(
n

yi

)
pyi (1 − p)n−yi IA1(yi)

)−1

.

Let Z = (Z1,Z2, . . . ,Zk)
′ be a vector of latent variables, the joint distribution

of Z is given by

P(Z = z|Y = y, n,p,ρ)

=
k∏

i=1

τ
zi

i (1 − τi)
1−zi

=
k∏

i=1

[
(ρpyi/n(1 − p)(n−yi)/nIA2(yi))

zi

(4)

×
(
(1 − ρ)

(
n

yi

)
pyi (1 − p)n−yi IA1(yi)

)1−zi

×
(
ρpyi/n(1 − p)(n−yi)/nIA2(yi)

+ (1 − ρ)

(
n

yi

)
pyi (1 − p)n−yi IA1(yi)

)−1]
.

The joint distribution of the augmented data (Yi,Zi), i = 1, . . . , k, is given
by

P(Yi = yi,Zi = zi |n,p,ρ)

= ρzipyizi/n(1 − p)(n−yi)zi/n(1 − ρ)1−zi (5)

×
(

n

yi

)1−zi

pyi(1−zi)(1 − p)(n−yi)(1−zi).
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Therefore, with the latent variable, the complete data likelihood function is de-
fined as

L(p,ρ|n,y, z)

=
(

k∏
i=1

{P(y|n,p,ρ)}
)(

k∏
i=1

{P(z|y, n,p,ρ)}
)

= ρ
∑k

i=1 zi (1 − ρ)
∑k

i=1(1−zi)p
∑k

i=1{ziyi/n+(1−zi )yi} (6)

× (1 − p)
∑k

i=1{zi (n−yi)/n+(1−zi )(n−yi)}

×
k∏

i=1

(
n

yi

)(1−zi)

.

Note that the likelihood function (6) based on the latent data becomes more
tractable than the usual likelihood function (2), facilitating the Bayesian analysis.

A Bayesian approach is applied to the correlated binomial model assuming n

known and prior independence among the parameters p and ρ. It is considered a
prior Beta(α,β), with known hyperparameters α and β , for p and a prior U(0,1)

for ρ. Hence, the joint prior distribution for (p,ρ) is given by π(p,ρ) ∝ pα−1(1−
p)β−1.

Combining (6) with π(p,ρ), the joint posterior distribution for (p,ρ) given n,
α, β , y and z is

π(p,ρ|n,α,β,y, z)

∝ ρ
∑k

i=1 zi (1 − ρ)
∑k

i=1(1−zi)p
∑k

i=1{ziyi/n+(1−zi )yi}+(α−1) (7)

× (1 − p)
∑k

i=1{zi (n−yi)/n+(1−zi )(n−yi)}+(β−1)
k∏

i=1

{(
n

yi

)(1−zi)
}
.

The posterior conditional distributions for the parameters p and ρ are given by

π(p|n,ρ,α,β,y, z)

∼ Beta

(
k∑

i=1

{
ziyi

n
+ (1 − zi)yi

}
+ α; (8)

k∑
i=1

{
zi(n − yi)

n
+ (1 − zi)(n − yi)

}
+ β

)

and

π(ρ|n,p,α,β,y, z) ∼ Beta

(
1 +

k∑
i=1

zi;1 +
k∑

i=1

(1 − zi)

)
. (9)
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3 Simulation study

In order to verify the sensibility of the posterior distribution with respect to differ-
ent prior distributions for p, several samples of the marginal posterior distribution
for parameters p and ρ are generated from (8) and (9) using the Gibbs sampling
algorithm. Four specifications of α and β used to express noninformative prior
distributions [see Smith (1991)] are considered. These values are (α,β) = (0,0),
(0,1), (1

2 , 1
2), (1,1). It is easy to show in these cases that the posterior distribu-

tion (7) is a proper distribution even through the prior π(p,ρ) is an improper
distribution.

The considered data set is a random sample yi , i = 1, . . . ,30, from a BC(20,

0.5,0.8). In implementing the Gibbs sampler for this specific data set, chains
of 70,000 iterations for p and ρ with a burn-in of 10,000 samples are gener-
ated. The posterior samples are based on the sets of 6000 observations obtained
by accepting every 10th iteration from the others 60,000 samples in each chain.
The characteristics of the marginal posterior distribution obtained via the Gibbs
algorithm are shown in Table 1. The convergence diagnostics were performed via
CODA [Best, Cowles and Vines (1995)]. The results showed that all the chains
converged.

Table 1 shows that there are only minor differences in the results reached using
the four reference priors. That is, summaries like the posterior means and posterior
medians appear not to be influenced by the prior distributions.

Others data sets were also considered, such as from BC(20,0.5,0.2), BC(20,

0.1,0.2) and BC(20,0.9,0.2), and they reached similar conclusions.

Table 1 Summaries of the marginal posterior of p and ρ, with an artificial data set from a
BC(n = 20,p = 0.5, ρ = 0.8)

Posterior Posterior Posterior Credibility
Priori mean variance median region (95%)

Beta(0,0) for p 0.4994 0.0018 0.4994 [0.4175, 0.5807]
U(0,1) for ρ 0.7804 0.0051 0.7859 [0.6250, 0.9039]

Beta(0,1) for p 0.4964 0.0017 0.4963 [0.4157, 0.5773]
U(0,1) for ρ 0.7824 0.0051 0.7859 [0.6294, 0.9025]

Beta( 1
2 , 1

2 ) for p 0.5001 0.0017 0.5003 [0.4186, 0.5812]
U(0,1) for ρ 0.7811 0.0052 0.7872 [0.6263, 0.9058]

Beta(1,1) for p 0.4998 0.0018 0.4999 [0.4183, 0.5812]
U(0,1) for ρ 0.7818 0.0051 0.7880 [0.6259, 0.9022]
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4 Empirical analysis

In this section a numerical example is given to illustrate the proposed Bayesian
method. The example involves a commercial soybean selection.

The recommended density for commercial soybean crops is 20 plants per plot
of 60 × 100 cm (i.e., one plant per 360 cm2). Under greenhouse conditions, an
experiment was carried out with the Glycine max (cultivar IAC23) plant in order
to investigate the competition effect of nutrients on the contents of lipids, pro-
tein, water and carbohydrates. For this purpose, 240 seeds were disinfected with
sodium hypochlorite (NaOCl). Groups of ten seeds were placed on a “two-layer”
moistened paper in a Petri glass dish and were allowed to germinate. The best
120 one-week-old seedlings of a soybean type were selected and transferred to a
6-liter pot filled with soil and a surface area of 320 cm2. The set of 120 IAC23
seedlings were divided into 20 subsets of 6 seedlings each, resulting in a final
density of 6 seedlings per 320 cm2. To eradicate soilborne pathogens, 150 liters
of red latosoil were sterilized in autoclave for 20 minutes at 120◦C. Six soybean
seedlings were equidistantly transplanted in each pot and daily irrigated to a 80%
field capacity. Fifteen days after transplanting, the best plants of each pot, accord-
ing to phenotypes of the plants, were selected and the contents of proteins, car-
bohydrates, water and lipids were determined. In a statistical point of view, the
researcher has two main interests in this problem. One of them is to calculate the
probability of selecting a “good” plant and the other is to calculate the correla-
tion among any two plants which are competing with each other concerning the
nutrients. Table 2 presents the original data set.

The presence of correlation among any two plants in each pot due to the com-
petition of nutrients is a natural problem for the ordinary binomial fit. Thus, to
analyze these data it is assumed that the BC(6,p,ρ) model is adequate in this
case. Considering the Bayesian methods presented in the previous sections, chains
of 80,000 iterations for p and ρ with a burn-in of 15,000 samples were generated.
The posterior samples are based on sets of 6500 observations obtained by accept-
ing every 10th iteration from the others 65,000 samples in each chain. The iteration
numbers were sufficient to reach convergence in this case.

In Table 3 the posterior summaries for parameters p and ρ are shown. It is
apparent that there are only minor differences in the results reached using the four
reference priors. The probability of selecting a “good” plant is around to 0.58 and

Table 2 Number of IAC23 soybean plants selected

IAC23 soybean selected in each plot after 15 days

4 4 6 2 3 3 3
5 5 6 6 3 3 4
1 1 5 4 4 2
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Table 3 Summaries of the marginal posterior of p and ρ for the IAC23 soybean plant

Posterior Posterior Posterior Credibility
Priori mean variance median region (95%)

Beta(0,0) for p 0.5844 0.0025 0.5854 [0.4840, 0.6796]
U(0,1) for ρ 0.1282 0.0068 0.1158 [0.0090, 0.3182]

Beta(0,1) for p 0.5778 0.0026 0.5787 [0.4768, 0.6746]
U(0,1) for ρ 0.1307 0.0069 0.1189 [0.0096, 0.3219]

Beta( 1
2 , 1

2 ) for p 0.5836 0.0025 0.5847 [0.4833, 0.6781]
U(0,1) for ρ 0.1295 0.0068 0.1175 [0.0091, 0.3195]

Beta(1,1) for p 0.5826 0.0025 0.5833 [0.4841, 0.6773]
U(0,1) for ρ 0.1296 0.0072 0.1166 [0.0085, 0.3279]

Table 4 Fitted frequency table including the total observed frequency (O), the fitted ordinary bino-
mial frequency (EB ) and the fitted correlated binomial frequency (ECB)

# of selected plant O ECB EB

0 0 1.19 0.06
1 2 0.79 0.61
2 2 2.73 2.46
3 5 5.03 5.28
4 5 5.21 6.37
5 3 2.87 4.10
6 3 2.17 1.09

the correlation among any two plants is close to 0.13. In Table 4 the total observed
frequency, the fitted ordinary binomial frequency (EB ) and the fitted correlated
binomial frequency (ECB) are shown. These results show that the suggested model,
that is, the correlated binomial model with noninformative priors has a reasonable
overall fit when compared with the ordinary binomial model.

5 Conclusions

In this paper a Bayesian approach is applied to the correlated binomial, CB(n,

p,ρ), a model proposed by Luceño (1995). The data augmentation scheme is used
in order to overcome the complexity of the mixture likelihood. MCMC methods,
including Gibbs sampling and Metropolis within Gibbs, are applied to estimate
the posterior marginal for the probability of success p and for the correlation co-
efficient ρ. The sensitivity of the posterior is studied taking into account several
reference priors and it is shown that the posterior characteristics appear not to be
influenced in any way by these prior distributions.
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Appendix: Proof of Theorem 1

Tallis (1962) presents a probability generating function used to construct a gen-
eralized multinomial distribution. Suppose Wj, j = 1, . . . , n, are identically dis-
tributed variables with P(W = i) = πi ,

∑k
i=0 πi = 1, and Corr(Wi,Wj) = ρ,

i �= j . A probability generating function for the joint probabilities

P(W1 = a,W2 = b, . . .) = αab... (a, b, . . . = 0,1,2, . . . , k),

is given by

Gn(t) = ρ

{
k∑

i=0

πi

(
n∏

j=1

tj

)i}
+ (1 − ρ)

n∏
j=1

P(tj ), 0 ≤ ρ ≤ 1, (10)

where P(tj ) = ∑k
i=0 πit

i
j and t = (t1, t2, . . . , tn).

Considering a variable Y = W1 +W2 +· · ·+Wn, a probability generating func-
tion for Y is given by

Gn(t) =
nk∑
i=0

αit
i = ρ

k∑
i=0

πit
ni + (1 − ρ){P(t)}n, (11)

obtained from (10) with tj = t, j = 1, . . . , n. If the random variables Wj,

j = 1, . . . , n, are identically distributed variables following Bernoulli distribu-
tions, then k = 1 and from (11)

Gn(t) =
n∑

i=0

P(Y = i)t i

(12)
= ρπ0 + ρπ1t

n + (1 − ρ)(πn
0 + nπn−1

0 π1t + · · · + πn
1 tn).

Thus, by comparing the coefficients of both polynomials,

P(Y = 0) = ρπ0 + (1 − ρ)πn
0 ,

P (Y = j) = (1 − ρ)

(
n

j

)
π

j
1 π

n−j
0 , j = 1,2, . . . , n − 1, (13)

P(Y = n) = ρπ1 + (1 − ρ)πn
1 .

From the expressions presented in (13) the probability distribution (1) is ob-
tained.
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