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Markovian classification of SAR images using G0
I model
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Abstract. When processing synthetic aperture radar (SAR) images, there is
a strong need for statistical models of scattering to take into account multi-
plicative noise. For instance, the classification process needs to be based on
the use of statistics. Our main contribution is the choice of an accurate model
for SAR images over urban areas and its use in a Markovian classification al-
gorithm. Clutter in SAR images becomes non-Gaussian when the resolution
is high or when the area is manmade. Many models have been proposed to
fit with non-Gaussian scattering statistics (K, Weibull, Log-normal, etc.), but
none of them is flexible enough to model all kinds of surfaces. Frery et al.
[IEEE Transactions on Geoscience and Remote Sensing 35 (1997) 648–659]
proposed a new class of distributions, G distribution, arising from the multi-
plicative model. Classical distributions such as K are particular cases of this
new class. A special case of this class called G0 is shown able to model ex-
tremely heterogeneous clutter, such as that of urban areas. The quality of the
classification obtained by mixing this model and a Markovian segmentation
is high.

1 Introduction

Classification of land cover is one of the primary objectives in the remotely sensed
data analysis. In synthetic aperture radar (SAR) data, the accuracy of pixel-based
classifiers is affected by a fading effect called speckle, which manifests itself as
a strong granularity in detected images. To combat the effect of speckle on the
pixel-based classifiers, neighborhood, or contextual information is often incorpo-
rated into the classification methodology. Markov Random Fields (MRF) are fre-
quently employed to model neighborhood and class label structure for the classi-
fication of remotely sensed data. Using MRF models in the classification of SAR
data allows us to obtain better results than non-contextual classification methods
(Solberg, Taxt and Jain (1996); Vieira (1996)). The MRF-based classifier requires:
(1) to choose a suitable model to the observed image, (2) to incorporate the a pri-
ori spatial information, and (3) to obtain an initial class image. In relation to the
first point, there exist many different models for SAR images, such as K (Jakeman
and Pusey (1976); Oliver (1984)), Beta (Lopes, Laur and Nezry (1990)), Weibull
(Menon (1963); Oliver (1993)), and Nakagami–Rice (Dana and Knepp (1986)).
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None of them provide a good solution, mainly because they do not have a suffi-
ciently large field of applications. Tison et al. (2004) proposed the Fisher model for
high-resolution SAR images over urban areas. They obtained excellent results in
classification. In order to take into account the entire diversity of the scene, Frery
et al. (1997) proposed the �−1 and �−1/2 distributions for the intensity (X) and
amplitude (

√
X) backscatter, respectively. These new models, when used along-

side the classical one for the speckle noise, yield new distributions for the return,
called G0

I and G0
A. The advantage of these distributions is that they model not only

extremely heterogeneous areas, such as cities, but also moderately heterogeneous
areas such us forests, or homogeneous areas such us pastures. The K distribution
fails to model many situations where the return is extremely heterogeneous (Mejail
et al. (2001); Müller et al. (2000)).

Moreover, as the ground data can be characterized by the G0
I parameters, their

estimation for each pixel may lead to estimated parameter maps that, in turn, can
be used as the input for a non-contextual classification method. Using these ideas
and G0

A distribution (for amplitude image), Mejail et al. (2003) showed that this
classification scheme produces better results than a classical method (Lee filter
and Gaussian classification).

Based on these results, we propose a MRF-based classification scheme for in-
tensity images that uses the G0

I distribution to model the observed image and the
estimated parameter maps to obtain an initial class image. We hope to achieve
a classification algorithm more efficient than the one proposed by Mejail et al.
(2003) by using a suitable model for the observed data in a Bayesian classification
scheme and incorporate the spatial context in a Markovian framework. The classi-
fication process is described in Section 4. The full process has been tested on real
and simulated radar images. The results are presented in Section 5, and a critical
discussion of results and methodology concludes the paper (see Section 6).

2 The multiplicative model

Only univariate signals will be discussed here. Any reader interested in multivari-
ate SAR statistical modeling may refer to Freitas, Frery and Correia (2005).

Goodman (1985) provided one of the first rigorous statistical frameworks,
known as the “Multiplicative Model”, for dealing with speckle noise in the context
of laser imaging. The use of such a framework has led to the most successful tech-
niques for SAR data processing and analysis. This phenomenological model states
that the observation in every pixel is the outcome of a random variable Z :� → R

+
that, in turn, is the product of two independent random variables: X :� → R

+,
the ground truth or backscatter, related to the intrinsic dielectric properties of the
target, and Y :� → R

+, the speckle noise, obeying a unitary mean Gamma law.
The distribution of the return, Z = XY , is completely specified by the distribu-
tions of X and Y . The univariate multiplicative model began as a single distribu-
tion, namely the Rayleigh law, was extended by Yueh et al. (1989) to accomodate



168 M. Picco and G. Palacio

the K law, and later improved further by Frery et al. (1997) to the G distribution
that generalizes all the previous probability distributions. The density function that
describes the behavior of the speckle noise in intensity images is �(L;L), where
L is the number of looks, a parameter related to the visual quality of the image that
can be controlled to a certain extent during the generation of the data.

The most successful models for the backscatter are particular cases of the gen-
eralized inverse Gaussian distribution (Frery et al. (1997)), being the main ones
a constant (c), the Gamma �(α,λ), Reciprocal of Gamma �−1(α, γ ) and Inverse
Gaussian IG(ω,σ ) laws (for the last one see Müller et al. (2000)). These mod-
els for the backscatter yield the following distributions for the return Z, respec-
tively: �(L,L/c), K(α,λ,L), G0

I (α, γ,L), and GH
I (ω,σ,L) (for more details see

Moschetti et al. (2006)). Müller et al. (2000) showed that the last two models are
more appropriate for areas with different degrees of heterogeneity. Mejail et al.
(2003) obtained excellent results using the analogous model (G0

A) for the ampli-
tude return.

3 Supervised statistical classification

A classification process transforms the original image into another one of the same
size in which the value of each pixel is a label that identifies the assigned category
to this pixel, that is, data are transformed into thematic information. In a super-
vised classification, the identity and location of specific sites in the image that rep-
resent homogeneous examples of land-cover types are a priori known. These areas
are called training sites because their spectral characteristics are used to train the
classification algorithm for eventual land-cover mapping of the remainder of the
image (Jensen (2005)). Maximum likelihood Gaussian (MLG) is the most widely
used supervised classification algorithm. This algorithm assumes that the training
data statistics for each class are normally distributed (Gaussian) and each class is
characterized by the value of their parameters. The MLG rule calculates the proba-
bility of a pixel belonging to each of m classes and assigns each pixel to the class of
highest probability. This algorithm classifies each pixel individually without taking
into account the contextual information. However, neighboring pixels tend to have
similar class labels. For example, if a pixel has label sky, there is high probability
that the neighboring pixels also have the same label. Modeling this dependence is
crucial to achieve good classification accuracy. MRF-based classification methods
incorporate this spatial dependence and therefore have been successfully used in
image restoration (Bustos, Frery and Ojeda (1998); Carnevalli, Coletti and Patar-
nello (1985); Geman and Geman (1984); Winkler (2006)).

3.1 Classification based on Markov random fields

Let Z = (Zs)s∈S be the observed image and L = (Ls)s∈S the unknown class im-
age. Here, we suppose that the random variables Z = (Zs)s∈S are conditionally
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independent with respect to L and that the distribution of each Zs conditional on
L is equal to its distribution conditional on Ls . The restoration method proposed
by Geman and Geman (1984) assumes that the a priori distribution of L can be
modeled by a Markov process, that is,

P
(
Ls = ls/(Lt = lt )t∈S,t �=s

) = P
(
Ls = ls/(Lt = lt )t∈Vs

)
, (3.1)

where Vs denote a neighborhood of the pixel s, that is, the probability that the pixel
s belongs to a certain class ls conditional on the classes attributed to the pixels in
the rest of the image is equal to the probability of ls conditional on the classes of
the pixels in the neighborhood Vs .

Bayes’ rule and the Hammersley–Clifford theorem allow us to write the a pos-
teriori probability as

P(L = l/Z = z) = 1

W
exp

(∑
s∈S

logfls , (zs) − U(l)

)
, (3.2)

where W is a normalizing factor, the first term inside the exponential function is
the component of MLG algorithm, and the second one is the component of the
context, which measures the influence of neighboring classes.

The objective is, given an image Z, to determine the configuration L that max-
imizes (3.2). Since the space of configurations is too large it is not possible to
determine L directly. Metropolis and Gibbs sampler algorithms allow us to obtain
realizations of L from local characteristics of the field

P
(
Ls = ls/Zs = zs, (Lt = lt )t∈Vs

)
(3.3)

= 1

W ′
s

exp
(−Us(ls, (lt )t∈Vs ) + logfls (zs)

)
.

For simplicity, we restrict our attention to the Potts model, four-connectivity and
cliques of type C2 (Winkler (2006)), where Us(ls, (lt )t∈Vs ) represents the number
of pixels t ∈ Vs for which lt �= ls minus the number of pixels for which lt = ls ,
multiplied by a regularity parameter λ.

In this work we will use the Gibbs sampler algorithm with decreasing tempera-
ture (simulated annealing).

4 Algorithm of classification proposed

Classification methods based on Markov Random Fields require an initial class
image, the knowledge of the density of the observed image conditional on the
class image and a probability measure in the configuration space (a priori distri-
bution). Classically, the initial image is the result of k-means algorithm or MLG.
Generally the k-means class image is very irregular due to the speckle (Fjortoft et
al. (2003)), while the MLG one is of low quality, since the Gaussian model is not
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suitable to SAR images. Frery et al. (1997) proposed the G0
A distribution show-

ing it is a good model for SAR amplitude images. Since the ground data can be
characterized by the parameters α and γ , their estimation for each pixel may lead
to estimated parameter maps that, in turn, can be used as the input for classifica-
tion methods, among other applications. Using these ideas and the G0

A distribution
Mejail et al. (2003) proposed a classification scheme for amplitude images based
on feature extraction, followed by MLG classification, obtaining very good results.
The algorithm proceeds as follows:

• Obtain the α̂ and γ̂ images using a 7 × 7 sliding window and replace the value
of the central pixel with the estimation of the corresponding parameter (G0

A dis-
tribution).

• Use the α̂ and γ̂ images as inputs for a MLG method.

Although this algorithm outperforms the results obtained with a classical scheme
(Lee filter and Gaussian classification), it does not take into account the contextual
information. Moreover, the parameter estimations may be affected by the presence
of pixels of different classes and hence the resulting value does not represent the
ground truth.

In this paper, we propose a classification scheme which aims to take the advan-
tages of the algorithm proposed by Mejail et al. (2003) improving its performance
by incorporating the contextual information. This classification method includes
the following steps:

• We start from initial class image L0 obtained as Mejail et al. (2003) (using G0
I

distribution).
• We sweep the image repeatedly until convergence. For each iteration q and for

each pixel s:

(a) the local a posteriori distribution given by (3.2) is computed;
(b) the pixel is attributed to a class randomly drawn according to this distri-

bution in the following way: we consider the interval [0,1] and we attribute to
each class a subinterval where the width is equal to the probability of this class.
A uniformly distributed random number in [0,1] is generated, and the class is
selected according to the subinterval in which this random number falls.

To evaluate the performance of the proposed methodology, the following four
classification methods will be compared:

• M1: Lee-filtered data classified with Gaussian maximum likelihood (classical
method).

• M2: (α̂, γ̂ ) data classified with Gaussian maximum likelihood (the algorithm
proposed by Mejail et al. (2003)).

• M3: Markovian classification using the result of M1 algorithm as initial class
image (classical MRF-based method).
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• M4: Markovian classification using the result of M2 algorithm as initial class
image (algorithm proposed in this paper).

In order to ensure fair treatment of all algorithms, the majority-filter was applied
using a 11 × 11 window. For the Lee filter 7 × 7 windows size are used.

Samples from the training areas were taken to estimate the mean and the stan-
dard deviation of each class, used to determine the MLG classification rule, and
G0

I parameters, used for MRF-based classification methods.
To estimate the parameters of the G0

I distribution several techniques are avail-
able, the most remarkable ones being those based on maximum likelihood or on
sample moments.

To estimate the α and γ parameters it is necessary, then, to estimate two mo-
ments. In this work moments of order 1/2 and 1, namely m1/2 and m1 respectively,
will be used. These moments can be obtained of the following equation:

E(Zr) = �(−α − r)�(L + r)

�(−α)�(L)

(
γ

L

)r

, (4.1)

if r < −2α. These estimators are also used to get the α̂ and γ̂ images.
In our experience with simulated images (with different values of the parameters

and different seeds) we observed that the estimated value of α based on m1/2 and
m1 moments is close to the truth value, except when the area is homogeneous. In
this case, in approximately 40 percent of the times no estimated value is available
(2 percent in heterogeneous areas) while approximately 40 percent of the times
the estimation corresponds to a different type of area (5 percent in heterogeneous
areas). Hence, in homogeneous areas only 20 percent of the times the area is cor-
rectly identified, while in heterogeneous areas this occurs in 93 percent of times.

For this reason we decided to set α̂ = −20 when the estimation is not available,
rather than the median of the observed estimations in a window around the pixel
(as proposed by Mejail et al. (2003)).

5 Data analysis

One of the most important ways to assess the adequacy of a theory to reality, in this
context, is the use of stochastic simulation. In the following, an experiment involv-
ing simulation and estimation will be shown. This simulated image will be used to
test the performance of the classification procedures described above. Before the
simulated example is presented, one real SAR image will be classified with the G0

I

model and the proposed methodology.
To quantify the quality of the classification the confusion matrix is commonly

used. However, the overall analysis of their cells is difficult, in particular when the
image has several classes and we want to compare several classification methods.
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From the confusion matrix X, the estimated Kappa coefficient of agreement can
be calculated

κ̂ = X••
∑

k Xkk − ∑
k Xk•X•k

(X2••) − ∑
k Xk•X•k

. (5.1)

A κ̂ value close to one indicates agreement between the map and the truth, while
values close to zero suggest the observed agreement is due to randomness.

For simulated images, the validation is made with the entire image, whereas for
real images only a learning pixel set is used (Agresti (1990); Chuvieco (2002)).

5.1 Real image

Figure 1 shows an 370 × 370 extract of an ERS-2 three-look intensity image ob-
tained in 1997 over the city of Cordoba (−31.3; −63.7), Argentina, with the train-
ing areas marked. By prior knowledge of the area, it was decided to classify the
image into three classes. Figure 2 shows the initial classifications obtained with
M1 and M2 algorithms. In the first one, a high level of confusion exists between
the downtown area and suburb area (due to the low level of contrast between them),
and its Kappa coefficient is very low (0.512). In the second one, this value rises to
0.812. These results are consistent with those obtained by Mejail et al. (2003) for
amplitude images. Table 1 shows the estimated values of Kappa for M3 and M4
methods corresponding to different number of iterations. These results suggest
that incorporating the contextual information in Bayesian framework improves the

Figure 1 Intensity image of Cordoba (Argentina), showing the training areas as colored spots.



Markovian classification of SAR images 173

(a) (b)

Figure 2 (a) Gaussian maximum classification of the Lee-filtered image. (b) Gaussian maximum
likelihood classification of the α̂ and γ̂ image.

Table 1 Kappa coefficient for
Markovian classification methods
(real image)

Number of iterations

Method 10 100 300

M3 0.518 0.745 0.945
M4 0.962 0.962 0.947

classification quality. We observed that M4 method attains a Kappa coefficient of
0.962 with 10 iterations, while the M3 algorithm requires 300 iterations to achieve
a similar value of Kappa. We observed that M4 reduces slowly its Kappa coeffi-
cient when the number of iterations increases from 100 to 300, whereas one would
expect a higher value. This happens because the Kappa coefficient is estimated
from one sample; nevertheless a confidence interval shows that the difference be-
tween them is not statistically significant.

Figure 3 shows that the classification obtained with M4 is better than the one
obtained by M3 (both with 100 iterations), which indicates that using the estimated
parameter map as the input for a contextual classification method yields better
results.

5.2 Simulated image

The step based on simulation employs a simulated image using pdfs deduced from
the statistics of real data. Figure 4(a) and (b) represents an ideal class image with
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(a) (b)

Figure 3 Result of Markovian classification using two initial class image L0: (a) Gaussian maxi-
mum classification of the Lee-filtered image, (b) Gaussian maximum likelihood classification of the
α̂ and γ̂ image.

(a) (b)

Figure 4 (a) Phantom with four classes. (b) Speckled image based on the four classes and G0
I

models for the return.

four regions and its one-look speckled counterpart. The regions represent heteroge-
neous (α = −4), homogeneous (α = −10), and extremely heterogeneous (α = −2,
and α = −2.5) areas. The values of γ are selected to obtain an image with low con-
trast between regions (as noted by Chuvieco (2002), when there are different areas
with a similar reflectance, the non-contextual classification methods are not always
able to separate them).
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(a) (b)

Figure 5 (a) Gaussian maximum classification of the Lee-filtered image. (b) Gaussian maximum
likelihood classification of the α̂ and γ̂ image.

Table 2 Kappa coefficient for
Markovian classification methods
(simulated image)

Number of iterations

Method 10 100 300

M3 0.592 0.613 0.654
M4 0.884 0.912 0.921

The L = 1 case is chosen for this study since it corresponds to the noisiest class
of intensity images, namely single look where no multilook processing has been
performed. The M1 algorithm yields the map presented in Figure 5(a). This map
is unacceptable in any practical application, since the mixture of yellow and black
classes is too strong (yellow class disappears). The Kappa coefficient is 0.585.
Figure 5(b) shows the result of applying M2 method. Visually, the classification
result is far better than that given in Figure 5(a), and the Kappa coefficient, 0.867,
is significantly better. Table 2 shows the estimated values of Kappa for M3 and M4
methods corresponding to a different number of iterations. We can conclude that
the use of contextual information improves outcomes and that M4 significantly
outperforms M3 [the classified images are shown in Figure 6(a) and 6(b), respec-
tively].
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(a) (b)

Figure 6 Result of Markovian classification using two initial class image L0: (a) Gaussian maxi-
mum classification of the Lee-filtered image, (b) Gaussian maximum likelihood classification of the
α̂ and γ̂ image.

6 Conclusions

This paper has proposed a classification method based on Markovian random fields
that requires a statistical model. Classical models are not accurate enough to model
the diversity of the scenes. The use of the G0

I distribution has several advantages
over the more classical K law, from both the analytical and practical viewpoints.
Their parameters have the same interpretation as those of the K , with the advan-
tage of being easier to estimate and able to explain extremely heterogeneous data.
The estimation of its parameters, which is a simple computational task, allows the
derivation of features that can be used in a classification scheme, getting better
results than those produced by a traditional method (Lee filter and MLG classi-
fication rule). This result can be improved by incorporating the a priori spatial
information in a Bayesian classification scheme.

We propose to use G0
I distribution in two ways: first, to obtain an initial class im-

age for MRF-based classification algorithm, and second, to model the distribution
of the observed image (likelihood), which is required in a Bayesian classification
scheme. The results obtained show that the incorporation of contextual informa-
tion in a Markovian framework, and using an accurate model for observed image
produce better results than using pixel-based classification rules.
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