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Abstract. This paper presents analytical pseudo-likelihood (PL) equations
for Potts Markov random field (MRF) model parameter estimation on higher-
order neighborhood systems by expanding the derivative of the log-PL
function based on the enumeration of all possible contextual configuration
patterns given a neighborhood system. The proposed equations allow the
modeling of less restrictive neighborhood systems in a large number of MRF
applications in a computationally feasible way. To evaluate the proposed esti-
mation method we propose a hypothesis testing approach, derived by approx-
imating the asymptotic variance of MPL parameter estimators using the ob-
served Fisher information. The definition of the asymptotic variance, together
with the test size α and p-values, provide a complete framework for quantita-
tive analysis. Experiments with synthetic images generated by Markov chain
Monte Carlo simulation methods assess the accuracy of the proposed estima-
tion method, indicating that higher-order neighborhood systems reduce the
MPL estimator asymptotic variance and improve estimation performance.

1 Introduction

Since the beginning of statistical physics, scientists were interested in studying
systems of particles arranged on a 2-D lattice (Ising (1925); Herisenberg (1928)).
Those physical systems of particles were completely characterized by a global en-
ergy function (Hamiltonian), through the definition of the joint Boltzmann/Gibbs
distribution. However, for a long time, the use of spatial models was restricted to
theoretical analysis of those physical entities.

Later, with important advances on probability and statistics, as the Hammersley–
Clifford theorem (Hammersley and Clifford (1971)) and the development of
Markov chain Monte Carlo simulation (MCMC) (Metropolis et al. (1953); Ge-
man and Geman (1984); Swendsen and Wang (1987); Wolff (1989)) together with
relaxation algorithms for combinatorial optimization (Besag (1986); Marroquin,
Mitter and Poggio (1987); Yu and Berthod (1995)), Markov random field (MRF)
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theory became a central topic with applications in fields including image process-
ing, pattern recognition, computer vision and game theory. Those advances have
led to a huge number of novel methodologies, especially in statistical applications
regarding contextual modeling and spatial data analysis.

Among the existing MRF models, the Potts model is certainly the most studied
and applied one. Basically, the Potts MRF model tries to represent the way indi-
vidual elements (e.g., atoms, animals, image pixels, etc.) modify their behavior to
conform to the behavior of other individuals in their vicinity. It is a model used to
study collective effects based on consequences of local interactions. It has a major
role in several research areas such as mathematics (Wu (1995); Adams (1994); Ge,
Hu and Wang (1996); Jim and Zhang (2004)), physics (Montroll (1941); Enting
and Guttmann (2003)), biology (Ouchi et al. (2003); Merks and Glazier (2005)),
computer science (Berthod et al. (1996); Li (2001); Won and Gray (2004)) and
even sociology (Liu, Luo and Shao (2001)).

However, one of the main difficulties relies exactly on MRF parameter estima-
tion. Traditional methods, as maximum likelihood (ML), cannot be applied due
to the existence of the partition function in the joint Gibbs distribution, which is
computationally intractable. A solution proposed by Besag (1974) is to use the lo-
cal conditional density functions (LCDF) to perform maximum pseudo-likelihood
(MPL) estimation. Our motivations for employing this approach are:

• MPL estimation is a computationally feasible method.
• From a statistical perspective, MPL estimators have a series of desirable and

interesting properties, such as consistency and asymptotic normality (Jensen and
Künsh (1994); Winkler (2006)). Thus, it is possible to completely characterize
their behavior in the limiting case.

A serious limitation of this approach has been the use of extremely restricted
neighborhood systems. Actually, methods for Potts MRF model parameter estima-
tion through MPL often consider only first-order neighborhood systems. A recent
result in MRF literature (Frery, Correia and Freitas (2007)), based on a expansion
of the log-pseudo-likelihood function on all possible spatial configuration patterns
given a neighborhood system, shows a 67 term analytic expression for Potts model
MPL estimation on second-order systems, employing a considerably larger num-
ber of terms than the result we propose here.

This paper presents an explicit derivation of Potts model pseudo-likelihood
equations for higher-order neighborhood systems, more precisely, second and third
orders, leading to feasible MRF parameter estimation. The proposed equations al-
low the representation of less restrictive contextual systems in a large number of
MRF applications, such as image restoration and contextual classification. Fur-
thermore, we also propose a hypothesis testing approach to validate the obtained
results. Our objective is to propose an approximation to the asymptotic variance of
maximum pseudo-likelihood estimators of Potts model parameters, using the ob-
served Fisher information. The definition of test statistics, together with P -values,
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calculated using our approximation for the asymptotic variance, provide a com-
plete framework for quantitative analysis in Potts MRF model parameter estima-
tion in image processing applications.

The remainder of the paper is organized as follows. Section 2 introduces the
Potts MRF model and presents the derived pseudo-likelihood equations for second
and third-order neighborhood systems. Section 3 describes asymptotic properties
of the MPL estimation and the proposed approximation for the asymptotic vari-
ance of the Potts model MPL estimator. The hypothesis testing framework for
quantitative analysis of Potts MRF model parameter estimation, the experiments
and results are shown on Section 4. Finally, Section 5 presents the conclusion and
final remarks.

2 Pseudo-likelihood equations on higher-order neighborhood systems

The fundamental notion associated with Markov property is the conditional inde-
pendence, since the knowledge of a local region isolates a single element from
the entire field. Let � denote the integer lattice in the Euclidean R

2 space, where
points can be represented by pairs of integers (m,n). The 2-D indexing scheme can
be easily transformed to a 1-D scheme by using a lexicographic notation. A MRF
defined on � is a collection of random variables for which the probability of a
given site value given the entire lattice is equal to the probability of the site value
given a finite support region of the lattice, called neighborhood (Waks, Tretiak and
Gregoriou (1990)).

Traditionally, two groups have developed extensions of 1-D Markov process for
2-D data. The first approach adopts most ideas and tools from statistical mechan-
ics and expresses the Markov nature of a random field in a non-causal way. The
other group’s primary goal is to extend 1-D hidden Markov models (HMM) to 2-D
causal MRF models (Won and Gray (2004)). The chief obstacle for this extension
is the lack of a natural ordering for a 2-D grid. As a result, an artificial ordering
must be assumed.

Neighborhood systems are characterized by its shape (causal or non-causal)
and extension (order). A neighborhood structure is causal if all elements of the
neighborhood region of support belong to a half of the plane (asymmetrical), that
is, if the field can be reordered into a 1-D random vector that satisfies the Markov
property (Zhang, Fieguth and Wang (2000)). Otherwise, in case of symmetrical
region of supports regarding the central element, the neighborhood is called non-
causal. Non-causal neighborhood systems are referred as zero-order, first-order
(4 neighbors), second-order (8 neighbors) and so on. Let Nk

i be the non-causal
neighborhood system of order k for the pixel xi . The finite support regions for
pixel xi from first to fifth-order non-causal neighborhood systems are shown in
Figure 1.
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Figure 1 Finite support regions representing several non-causal neighborhood systems.

2.1 Bayesian estimation in stochastic image processing

In stochastic image processing, the Bayesian paradigm defines an elegant mathe-
matical framework to reduce the solution space in several ill-posed problems by
incorporating prior knowledge in the form of a priori probabilities, P(x). Bayesian
estimation consists in choosing the estimate which minimizes the expected cost
(Bayes risk) taken with respect to the posterior probability distribution. The most
frequently used cost function is the uniform function. It is known that in this case,
the optimal Bayes estimate is obtained by the MAP (Maximum a Posteriori) crite-
rion. The main advantages of the MAP criterion can be summarized as:

• Since maximizing the posterior probability P(x|y) is equivalent to maximizing
P(y|x)P (x), which means, the likelihood function (provided by the observa-
tions) and the a priori probability, it is possible to systematically incorporate
information about the image formation and prior knowledge.

• The MAP estimate can be understood as a regularization procedure. Often, in
image processing applications, maximum likelihood solutions are not reason-
able due to the presence of ill-posed behavior.

One of the most widely used prior models is the Potts MRF pairwise interaction
model. Two fundamental characteristics of the Potts model considered here are: it
is both isotropic and stationary. According to Hammersley and Clifford (1971), the
Potts MRF model can be equivalently defined in two manners: by a joint Gibbs dis-
tribution (global model) or by a set of local conditional density functions (LCDFs).
For a general kth order neighborhood system Nk

i , we define the former by the fol-
lowing expression:

Pβ(X = x) = 1

Zβ

exp
{ ∑

r,s∈�:s∈Nk
r

β[1 − δ(xr , xs)]
}
, (2.1)

where δ(xr , xs) equals 0 if xr = xs and 1 if xr �= xs . However, for mathe-
matical tractability and computational reasons we will adopt a local description
of the probability model through the LCDFs of the Potts pairwise interaction
model. The Potts model LCDF for a single observation is (Yamazaki and Gingras
(1995)):

Pβ(xi = mi |Nk
i ) = exp{βUi(mi)}∑M

�=1 exp{βUi(�)}
, (2.2)
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where Ui(�) is the number of neighbors of the ith element having label equal
to �, β ∈ R is the spatial dependency parameter, also known as inverse temper-
ature, because from statistical mechanics β = 1/kBT , where kB is the Boltz-
mann constant, and � ∈ G, G = {1,2, . . . ,M}, where M is the total number of
labels.

2.2 Maximum pseudo-likelihood estimation

The main advantage of maximum pseudo-likelihood estimation is its computa-
tional simplicity. Fortunately, as the maximum likelihood (ML) estimator, the MPL
estimator has also a series of desirable properties, such as consistency and asymp-
totic normality (Jensen and Künsh (1994)). The pseudo-likelihood function for the
Potts MRF model is defined as

PL(β) = ∏
s∈�

p(xs = ms |Nk
s ) = ∏

s∈�

exp{βUs(ms)}∑M
�=1 exp{βUs(�)}

. (2.3)

Taking logarithms, differentiating on the parameter and setting the result to zero,
leads to the following expression, that is the basis for the derivation of the proposed
equations:

∂

∂β
log PL(β) = �(β)

(2.4)

= ∑
s∈�

Us(ms) − ∑
s∈�

[∑M
�=1 Us(�) exp{βUs(�)}∑M

�=1 exp{βUs(�)}
]

= 0,

where ms denotes the observed value for the sth element of the field.
The objective of this paper is to generalize the estimation of Potts’ β parameter

for higher-order neighborhood systems in a computationally tractable way, by ex-
panding equation (2.4) based on the number of occurrences of possible contextual
configuration patterns, given a neighborhood system. Note that, as the first term
of (2.4) is independent of β , we have to expand only the second term.

In first-order neighborhood systems, the enumeration of all possible configura-
tion patterns is straightforward, since there are only five different cases, as shows
Figure 2, from zero agreement (4 different labels) to total agreement (4 identi-
cal labels). These configurations can be represented by vectors, as presented in

Figure 2 Contextual configuration patterns for Potts MRF model in first-order neighborhood sys-
tems.
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relations (2.5), indicating the number of occurrences of each label around the cen-
tral element. In the Potts model, location information is irrelevant, since it is an
isotropic model:

�v0 = [1,1,1,1]; �v1 = [2,1,1,0]; �v2 = [2,2,0,0];
(2.5)

�v3 = [3,1,0,0]; �v4 = [4,0,0,0].

2.2.1 Calculating the number of configuration patterns. Let N be the number of
elements in the neighborhood (i.e., N = 4,8,12, . . .). For each L = 1, . . . ,N , let

AN(L) =
{
(a1, . . . , aL) such that ai ∈ {1,2, . . . ,N},

(2.6)

a1 ≤ a2 ≤ · · · ≤ aL,

N∑
i=1

ai = N

}

and nN(L) the number of elements of the set AN(L). Then, the number of possible
configuration patterns λ, is given by λ = nN(1) + · · · + nN(L).

The solution vectors were found by exhaustive searching, isolating one variable
and searching on the subspace spanned by the remainder variables. In order to
reduce the computational burden due to high-dimensional vectors (for large neigh-
borhood systems), we introduced a heuristic by restricting the search to the first
quadrant of the subspace, since symmetrical vectors lead to identical solutions
(i.e., [7,1,0,0,0,0,0,0] ≡ [1,7,0,0,0,0,0,0]). Table 1 presents the number of
contextual configuration patterns, λ, and the elapse time for their generation for
several neighborhood system orders, more precisely from first to fifth orders. Ta-
ble 2 shows the solution vectors representing the possible configuration patterns
on second-order neighborhood systems.

Given the complete set of contextual configuration patterns for a neighbor-
hood system, it is possible to expand the second term of equation (2.4). We

Table 1 Number of strategy configuration patterns for five different neighborhood systems

Number of configuration
Neighborhood system patterns (λ) Elapsed time (sec.)1

First order 5 0.01
Second order 22 0.21
Third order 77 4.47
Fourth order 637 29.31
Fifth order 1575 1517.24

1All experiments were executed in an Athlon X2 Dual Core 2.21Ghz processor with 2GB of RAM.
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Table 2 Solution vectors representing all contextual configuration patterns on second-order neigh-
borhood systems

[1,1,1,1,1,1,1,1] [2,1,1,1,1,1,1,0] [3,1,1,1,1,1,0,0] [2,2,1,1,1,1,0,0]
[4,1,1,1,1,0,0,0] [3,2,1,1,1,0,0,0] [2,2,2,1,1,0,0,0] [5,1,1,1,0,0,0,0]
[4,2,1,1,0,0,0,0] [3,3,1,1,0,0,0,0] [3,2,2,1,0,0,0,0] [2,2,2,2,0,0,0,0]
[6,1,1,0,0,0,0,0] [5,2,1,0,0,0,0,0] [4,3,1,0,0,0,0,0] [4,2,2,0,0,0,0,0]
[3,3,2,0,0,0,0,0] [4,4,0,0,0,0,0,0] [5,3,0,0,0,0,0,0] [6,2,0,0,0,0,0,0]

[7,1,0,0,0,0,0,0] [8,0,0,0,0,0,0,0]

can regard the numerator as a simple inner product of two vectors �Us and �ws ,
where �Us represents the contextual configuration vector for the current pixel (i.e.,
�Us = [5,2,1,0,0,0,0,0] in case of a second-order neighborhood system) and �ws

is a vector such that ws[n] = exp{βUs[n]}. Similarly, the denominator is the inner
product of �ws with the identity column vector �r = [1,1, . . . ,1]. Thus, the second
term of equation (2.4) can be expanded as a summation of λ terms, each one as-
sociated with a possible configuration pattern. However, as it involves the sum on
all elements of the MRF, we define constants Ki , i = 1,2, . . . , λ, representing the
number of occurrences of each possible configuration pattern along the entire field.
The basic idea is that the set of Ki coefficients defines a contextual histogram, that
is, instead of indicating the distribution of individual pixel gray levels, this set
shows the distribution of spatial patterns, defined in terms of the neighborhood
system order, along the random field. For instance, in image analysis applications,
smooth images, with many homogeneous regions, tend to present little variation
in these contextual patterns because of the high correlation between neighboring
pixels, while noisy images tend to present more variability on these spatial config-
uration patterns.

It is worthwhile noting that symmetrical configuration patterns offer the same
contribution to the pseudo-likelihood equation, since the inner product between
two vectors does not depend on the order of the elements. In other words, what
effectively contributes for the pseudo-likelihood equation is only the configuration
of the neighboring pixels regardless the central pixel value. The complete analyti-
cal expression for a second-order system is given by equation (2.7). Note that the
resulting equation is transcendental, which means that it has no closed-form so-
lution. Note also that in the case of a reduced number of labels, the equation is
further simplified, since many Ki coefficients, i = 1,2, . . . , λ, are zero, simply be-
cause many contextual configuration patterns are impossible. For instance, in the
case of only two possible labels (0–1 spins, the Ising model), equation (2.7) only
has five terms instead of the 22 original ones. Thus, a reduction on the number of
possible individual labels M represents a constraint in the total number of contex-
tual configuration patterns, decreasing the computational cost of Potts MRF model
parameter estimation. Note that in a physical interpretation, we are using the pro-
posed equations to estimate a quantity called inverse temperature in a system of
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particles arranged on a 2-D lattice, using only pairwise interactions:

∂

∂β
log PL(β)

= ∑
s∈�

Us(ms) − 8e8β̂

e8β̂ + M − 1
K1 − 7e7β̂ + eβ̂

e7β̂ + eβ̂ + M − 2
K2

− 6e6β̂ + 2e2̂β

e6β̂ + e2β̂ + M − 2
K3 − 6e6β̂ + 2eβ̂

e6β̂ + 2eβ̂ + M − 3
K4

− 5e5β̂ + 3e3β̂

e5β̂ + e3β̂ + M − 2
K5 − 5e5β̂ + 2e2β̂ + eβ̂

e5β̂ + e2β̂ + eβ̂ + M − 3
K6

− 5e5β̂ + 3eβ̂

e5β̂ + 3eβ̂ + M − 4
K7 − 8e4β̂

2e4β̂ + M − 2
K8

− 4e4β̂ + 3e3β̂ + eβ̂

e4β̂ + e3β̂ + eβ̂ + M − 3
K9 − 4e4β̂ + 4e2β̂

e4β̂ + 2e2β̂ + M − 3
K10

(2.7)

− 4e4β̂ + 2e2β̂ + 2eβ̂

e4β̂ + e2β̂ + 2eβ̂ + M − 4
K11 − 4e4β̂ + 4eβ̂

e4β̂ + 4eβ̂ + M − 5
K12

− 6e3β̂ + 2e2β̂

2e3β̂ + e2β̂ + M − 3
K13 − 6e3β̂ + 2eβ̂

2e3β̂ + 2eβ̂ + M − 4
K14

− 3e3β̂ + 4e2β̂ + eβ̂

e3β̂ + 2e2β̂ + eβ̂ + M − 4
K15 − 3e3β̂ + 2e2β̂ + 3eβ̂

e3β̂ + e2β̂ + 3eβ̂ + M − 5
K16

− 3e3β̂ + 5eβ̂

e3β̂ + 5eβ̂ + M − 6
K17 − 8e2β̂

4e2β̂ + M − 4
K18

− 6e2β̂ + 2eβ̂

3e2β̂ + 2eβ̂ + M − 5
K19 − 4e2β̂ + 4eβ̂

2e2β̂ + 4eβ̂ + M − 6
K20

− 2e2β̂ + 6eβ̂

e2β̂ + 6eβ̂ + M − 7
K21 − 8eβ̂

8eβ̂ + M − 8
K22 = 0.

Similarly, the pseudo-likelihood equation for third-order neighborhood systems
is obtained by expanding equation (2.4) on the seventy-seven configuration pat-
terns obtained by solving the equations generated by equation (2.6) for N = 12.
The complete expression for the pseudo-likelihood equation for the Potts model
using third-order neighborhood systems is given by equation (3.4).

In all the experiments along this paper, the MPL estimator is obtained by find-
ing the zero of the derived pseudo-likelihood equation using a numerical method.
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We chose Brent’s method (Brent (1973)), a numerical algorithm that does not re-
quire the computation (or even the existence) of derivatives or analytical gradi-
ents. In this case, the computation of derivatives of the objective function would
be prohibitive, given the large extension of the expressions. The advantages of this
method can be summarized by: it uses a combination of bisection, secant and in-
verse quadratic interpolation methods, leading to a very robust approach and also
it has superlinear convergence rate.

3 On the asymptotic variance of Potts MRF MPL estimator

Unbiasedness is not granted by either ML or MPL estimation. Actually, there is
no method that guarantees the existence of unbiased estimators for a fixed N -size
sample. Often, in the exponential family, MLE coincide with UMVU (Uniform
Minimum Variance Unbiased) estimators because they are functions of complete
sufficient statistics (if MLE is unique, then it is a function of sufficient statistics).
Also, there are several characteristics that make ML estimation a reference method
(Lehmann (1983); Bickel (1991); Casella and Berger (2002)). Making the sample
size grow infinitely (N → ∞), MLE becomes asymptotically unbiased and effi-
cient. Unfortunately, there is no result showing that the same occurs in MPL esti-
mation. In this section, we propose an approximation for the asymptotic variance
of Potts MRF model MPL estimator in terms of expressions for observed Fisher
information using both first and second derivatives.

3.1 Observed Fisher information

Often, in practice, it is not possible to calculate the expected Fisher information,
I (β). In such cases, we can adopt the observed Fisher information, Iobs(β) instead.
Furthermore, it has been shown (Efron and Hinkley (1978)) that the use of the
observed information number is superior to the expected information number, as
it appears in the Cramér–Rao lower bound. The observed Fisher information, in
terms of the pseudo-likelihood function, is defined by

Iobs(β) =
[

∂

∂β
log PL(X;β)

]2

, (3.1)

and can be estimated by the following, justified by the law of large numbers:

Î 1
obs(β) = 1

N

N∑
i=1

[
∂

∂β
logp(xi;β)

]2∣∣∣∣
β=β̂

, (3.2)

since I (β) = E[Î 1
obs(β)], making Î 1

obs(β) ≈ I (β). Similarly, Iobs(β) can be esti-
mated using the second derivative of the likelihood function

Î 2
obs(β) = − 1

N

N∑
i=1

[
∂2

∂β2 logp(xi;β)

]∣∣∣∣
β=β̂

, (3.3)
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∂

∂β
log PL(β)

= ∑
s∈�

Us(ms) − 12e12β̂

e12β̂ + M − 1
K1 − 11e11β̂ + eβ̂

e11β̂ + eβ̂ + M − 2
K2

− 10e10β̂ + 2e2β̂

e10β̂ + e2β̂ + M − 2
K3 − 9e9β̂ + 3e3β̂

e9β̂ + e3β̂ + M − 2
K4

− 8e8β̂ + 4e4β̂

e8β̂ + e4β̂ + M − 2
K5 − 7e7β̂ + 5e5β̂

e7β̂ + e5β̂ + M − 2
K6

− 12e6β̂

2e6β̂ + M − 2
K7 − 12e4β̂

3e4β̂ + M − 3
K8

− 5e5β̂ + 4e4β̂ + 3e3β̂

e5β̂ + e4β̂ + e3β̂ + M − 3
K9 − 10e5β̂ + 2e2β̂

2e5β̂ + e2β̂ + M − 3
K10

− 6e6β̂ + 6e3β̂

e6β̂ + 2e3β̂ + M − 3
K11

− 6e6β̂ + 4e4β̂ + 2e2β̂

e6β̂ + e4β̂ + e2β̂ + M − 3
K12

6e6β̂ + 5e5β̂ + eβ̂

e6β̂ + e5β̂ + eβ̂ + M − 3
K13

− 7e7β̂ + 3e3β̂ + 2e2β̂

e7β̂ + e3β̂ + e2β̂ + M − 3
K14

− 7e7β̂ + 4e4β̂ + eβ̂

e7β̂ + e4β̂ + eβ̂ + M − 3
K15 − 8e8β̂ + 4e2β̂

e8β̂ + 2e2β̂ + M − 3
K16

− 8e8β̂ + 3e3β̂ + eβ̂

e8β̂ + e3β̂ + eβ̂ + M − 3
K17

− 9e9β̂ + 2e2β̂ + eβ̂

e9β̂ + e2β̂ + eβ̂ + M − 3
K18

10e10β̂ + 2eβ̂

e10β̂ + 2eβ̂ + M − 3
K19

− 12e3β̂

4e3β̂ + M − 4
K20 − 4e4β̂ + 6e3β̂ + 2e2β̂

e4β̂ + 2e3β̂ + e2β̂ + M − 4
K21

− 8e4β̂ + 4e2β̂

2e4β̂ + 2e2β̂ + M − 3
K22

8e4β̂ + 3e3β̂ + eβ̂

2e4β̂ + e3β̂ + eβ̂ + M − 4
K23

− 5e5β̂ + 3e3β̂ + 4e2β̂

e5β̂ + e3β̂ + 2e2β̂ + M − 4
K24 (3.4)
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− 5e5β̂ + 6e3β̂ + eβ̂

e5β̂ + 2e3β̂ + eβ̂ + M − 4
K25 − 5e5β̂ + 4e4β̂ + 2e2β̂ + eβ̂

e5β̂ + e4β̂ + e2β̂+eβ̂+M−4
K26

− 10e5β̂ + 2eβ̂

2e5β̂ + 2eβ̂ + M − 4
K27 − 6e6β̂ + 6e2β̂

e6β̂ + 3e2β̂ + M − 4
K28

− 6e6β̂ + 3e3β̂ + 2e2β̂ + eβ̂

e6β̂ + e3β̂ + e2β̂+eβ̂+M−4
K29 − 6e6β̂ + 4e4β̂ + 2eβ̂

e6β̂ + e4β̂ + 2eβ̂ + M − 4
K30

− 7e7β̂ + 4e2β̂ + eβ̂

e7β̂ + 2e2β̂ + eβ̂ + M − 4
K31 − 7e7β̂ + 3e3β̂ + 2eβ̂

e7β̂ + e3β̂ + 2eβ̂ + M − 4
K32

− 8e8β̂ + 2e2β̂ + 2eβ̂

e8β̂ + e2β̂ + 2eβ̂ + M − 4
K33 − 9e9β̂ + 3eβ̂

e9β̂ + 3eβ̂ + M − 4
K34

− 6e3β̂ + 6e2β̂

2e3β̂ + 3e2β̂ + M − 5
K35 − 9e3β̂ + 2e2β̂ + eβ̂

3e3β̂ + e2β̂ + eβ̂ + M − 5
K36

− 4e4β̂ + 8e2β̂

e4β̂ + 4e2β̂ + M − 5
K37 − 4e4β̂ + 3e3β̂ + 4e2β̂ + eβ̂

e4β̂ + e3β̂ + 2e2β̂+eβ̂+M−5
K38

− 4e4β̂ + 6e3β̂ + 2eβ̂

e4β̂ + 2e3β̂ + 2eβ̂ + M − 5
K39 − 8e4β̂ + 2e2β̂ + 2eβ̂

2e4β̂ + e2β̂ + 2eβ̂ + M − 5
K40

− 5e5β̂ + 6e2β̂ + eβ̂

e5β̂ + 3e2β̂ + eβ̂ + M − 5
K41 − 5e5β̂ + 3e3β̂ + 2e2β̂ + 2eβ̂

e5β̂ + e3β̂ + e2β̂+2eβ̂+M−5
K42

− 5e5β̂ + 4e4β̂ + 3eβ̂

e5β̂ + e4β̂ + 3eβ̂ + M − 5
K43 − 6e6β̂ + 4e4β̂ + 2eβ̂

e6β̂ + 2e2β̂ + 2eβ̂ + M − 5
K44

− 6e6β̂ + 3e3β̂ + 3eβ̂

e6β̂ + e3β̂ + 3eβ̂ + M − 5
K45

7e7β̂ + 2e2β̂ + 3eβ̂

e7β̂ + e2β̂ + 3eβ̂ + M − 5
K46

− 8e8β̂ + 4eβ̂

e8β̂ + 4eβ̂ + M − 5
K47 − 12e2β̂

6e2β̂ + M − 6
K48

− 3e3β̂ + 8e2β̂ + eβ̂

e3β̂ + 4e2β̂ + eβ̂ + M − 6
K49 − 6e3β̂ + 4e2β̂ + 2eβ̂

2e3β̂ + 2e2β̂ + 2eβ̂ + M − 6
K50

− 9e3β̂ + 3eβ̂

3e3β̂ + 3eβ̂ + M − 6
K51 − 4e4β̂ + 6e2β̂ + 2eβ̂

e4β̂ + 3e2β̂ + 2eβ̂ + M − 6
K52
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− 4e4β̂ + 3e3β̂ + 2e2β̂ + 3eβ̂

e4β̂ + e3β̂ + e2β̂+3eβ̂+M−6
K53 − 8e4β̂ + 4eβ̂

2e4β̂ + 4eβ̂ + M − 6
K54

− 5e5β̂ + 4e2β̂ + 3eβ̂

e5β̂ + 2e2β̂ + 3eβ̂ + M − 6
K55 − 5e5β̂ + 3e3β̂ + 4eβ̂

e5β̂ + e3β̂ + 4eβ̂ + M − 6
K56

− 6e6β̂ + 2e2β̂ + 4eβ̂

e6β̂ + e2β̂ + 4eβ̂ + M − 6
K57 − 7e7β̂ + 5eβ̂

e7β̂ + 5eβ̂ + M − 6
K58

− 10e2β̂ + 2eβ̂

5e2β̂ + 2eβ̂ + M − 7
K59 − 3e3β̂ + 6e2β̂ + 3eβ̂

e3β̂ + 3e2β̂ + 3eβ̂ + M − 7
K60

− 6e3β̂ + 2e2β̂ + 4eβ̂

2e3β̂ + e2β̂ + 4eβ̂ + M − 7
K61 − 4e4β̂ + 4e2β̂ + 4eβ̂

e4β̂ + 2e2β̂ + 4eβ̂ + M − 7
K62

− 4e4β̂ + 3e3β̂ + 5eβ̂

e4β̂ + e3β̂ + 5eβ̂ + M − 7
K63 − 5e5β̂ + 2e2β̂ + 5eβ̂

e5β̂ + e2β̂ + 5eβ̂ + M − 7
K64

− 6e6β̂ + 6eβ̂

e6β̂ + 6eβ̂ + M − 7
K65 − 8e2β̂ + 4eβ̂

4e2β̂ + 4eβ̂ + M − 8
K66

− 3e3β̂ + 4e2β̂ + 5eβ̂

e3β̂ + 2e2β̂ + 5eβ̂ + M − 8
K67 − 6e3β̂ + 6eβ̂

2e3β̂ + 6eβ̂ + M − 8
K68

− 4e4β̂ + 2e2β̂ + 6eβ̂

e4β̂ + e2β̂ + 6eβ̂ + M − 8
K69 − 5e5β̂ + 7eβ̂

e5β̂ + 7eβ̂ + M − 8
K70

− 6e2β̂ + 6eβ̂

3e2β̂ + 6eβ̂ + M − 9
K71 − 3e3β̂ + 2e2β̂ + 7eβ̂

e3β̂ + e2β̂ + 7eβ̂ + M − 9
K72

− 4e4β̂ + 8eβ̂

e4β̂ + 8eβ̂ + M − 9
K73 − 4e2β̂ + 8eβ̂

2e2β̂ + 8eβ̂ + M − 10
K74

− 3e3β̂ + 9eβ̂

e3β̂ + 9eβ̂ + M − 10
K75 − 2e2β̂ + 10eβ̂

e2β̂ + 10eβ̂ + M − 11
K76

− 12eβ̂

12eβ̂ + M − 12
K77 = 0.

3.2 Asymptotic variance of MPL estimators

Asymptotic evaluations uncover the most fundamental properties of a mathemati-
cal procedure, providing a powerful and general tool for statistical analysis. From
statistical inference theory it is known that both MLE and MPLE share two impor-
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tant properties: consistency and asymptotic normality. However, differently from
the ML estimator, there is no result showing the asymptotic efficiency of MPL es-
timators. In this section, we obtain an expression for the asymptotic variance of
Potts MPL parameter estimators as the ratio of expected Fisher information cal-
culated using first and second derivatives of the pseudo-likelihood function. The
starting point is to use the expression for the asymptotic covariance matrix of MPL
estimators defined in (Liang and Yu (2003)):

C( �β) = H( �β)−1K( �β)H( �β)−1, (3.5)

where the matrices H( �β) and K( �β) are defined as

H( �β) = Eβ[∇2F(X; �β)] and (3.6)

K( �β) = Varβ[∇F(X; �β)], (3.7)

with F(X; �β) denoting the logarithm of the pseudo-likelihood function. Since β is
a scalar in the Potts MRF model, we can simplify expressions (3.6) and (3.7) and
define the asymptotic variance as

C(β) = VN(β) = Varβ[ ∂
∂β

logL(X;β)]
E2

β [ ∂2

∂β2 logL(X;β)] . (3.8)

By applying the definition of variance and using the observed Fisher informa-
tion to approximate the expected values, equation (3.8) is further simplified to

VN(β) = Eβ[( ∂
∂β

logL(X;β))2]
E2

β[ ∂2

∂β2 logL(X;β)] , (3.9)

since

Eβ

[
∂

∂β
logL(X;β)

]
≈ 1

N

N∑
i=1

∂

∂β
logp(xi |Nk

i , β)

∣∣∣∣
β=β̂

= 1

N

∂

∂β
log

N∏
i=1

p(xi |Nk
i , β)

∣∣∣∣
β=β̂

(3.10)

= 1

N

∂

∂β
logL(X;β)

∣∣∣∣
β=β̂

= 0.

3.3 Approximating the asymptotic variance

In this section we derive expressions for observed Fisher information using both
first and second derivatives of the logarithm of the pseudo-likelihood function in
order to compute an approximation to the asymptotic variance, given by equa-
tion (3.9).
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3.3.1 Observed Fisher information using the first derivative. From the LCDF of
the Potts MRF model

∂

∂β
logpβ(xi |Nk

i ) =
{
Ui(mi) −

∑M
�=1 Ui(�)e

βUi(�)∑M
�=1 eβUi(�)

}
. (3.11)

Thus, according to equation (3.2) we have the following approximation for the
numerator of the asymptotic variance:

Eβ

[(
∂

∂β
logL(X;β)

)2]
≈ 1

N

N∑
i=1

{[
Ui(mi) −

∑M
�=1 Ui(�)e

βUi(�)∑M
�=1 eβUi(�)

]2}
, (3.12)

which, after some few algebraic manipulations, becomes

Eβ

[(
∂

∂β
logL(X;β)

)2]
≈ Î 1

obs(β̂MPL)

(3.13)

= 1

N

N∑
i=1

{ [∑M
�=1(Ui(mi) − Ui(�))e

βUi(�)]2

[∑M
�=1 eβUi(�)]2

}
.

3.3.2 Observed Fisher information using the second derivative. Deriving equa-
tion (3.11) again in β leads to another approximation to the observed Fisher infor-
mation

−Eβ

[
∂2

∂β2 logL(X;β)

]
≈ 1

N

N∑
i=1

{ [∑M
�=1 Ui(�)

2eβUi(l)][∑M
�=1 eβUi(�)]

[∑M
�=1 eβUi(�)]2

(3.14)

− [∑M
�=1 Ui(�)e

βUi(�)]2

[∑M
�=1 eβUi(�)]2

}
.

In order to compare both expressions for Fisher information, we rewrite the
above expression. After algebraic manipulations we show that equation (3.14) re-
duces to (see the Appendix for details)

−Eβ

[
∂2

∂β2 logL(X;β)

]
≈ Î 2

obs(β̂MPL) (3.15)

= 1

N

N∑
i=1

{∑M−1
�=1 [∑M

k=�+1(Ui(�) − Ui(k))2eβ(Ui(�)+Ui(k))]
[∑M

�=1 eβUi(�)]2

}
.

The proposed approximation allows the calculation of the asymptotic variance
of the maximum pseudo-likelihood estimator of the Potts MRF model. From previ-
ous sections we have seen that the sequence of MPL estimators Tn asymptotically
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follow a normal distribution. Therefore, with the proposed equations, it is possi-
ble to completely characterize the asymptotic behavior of the MPL estimators of
the Potts MRF model. In many image processing applications, asymptotic evalu-
ations are sensible since typical random field sizes are 128 × 128, 256 × 256 and
512 × 512. The final expression for estimating the asymptotic variance in terms of
Fisher information is

V̂arN(β̂MPL) = Î 1
obs(β̂MPL)

[Î 2
obs(β̂MPL)]2

, (3.16)

where Î 1
obs(β̂MPL) and Î 2

obs(β̂MPL) denotes the observed Fisher information using
the first and the second derivatives of the logarithm of the pseudo-likelihood func-
tion, respectively.

4 Experiments and results in image analysis

In order to demonstrate the application of the asymptotic variance in testing and
evaluating the proposed pseudo-likelihood equations for Potts MRF model param-
eter estimation, we present the results obtained in experiments using Markov chain
Monte Carlo simulation methods (Dubes and Jain (1989); Landau and Binder
(2000); Chib (2004); Winkler (2006)) by comparing the values of β̂MPL, asymp-
totic variances, test statistics and P -values regarding second and third-order neigh-
borhood systems using synthetic images, representing several Potts model out-
comes.

Briefly speaking, sampling is the process of generating a realization of a random
field, given a model whose parameters have been specified or estimated (Dubes
and Jain (1989)). Markov chain Monte Carlo algorithms can be used to generate
samples from the posterior probability distributions by simulating a proper Markov
chain over all possible states.

The objective of the proposed evaluation methodology is to validate the follow-
ing hypothesis:

H : the proposed pseudo-likelihood equations provide results that are statistically
equivalent to the real parameter values, that is,

H :β = β̂MPL. (4.1)

The asymptotic distribution of the sequence of Potts model MPL estimators
Tn(β) is normal (Jensen and Künsh (1994)):

Tn(β) ≈ N(μn(β), σ 2
n (β)). (4.2)

Using the consistency property of MPL estimators and adopting our approx-
imation for the asymptotic variance, we completely characterize the asymptotic
distribution of the estimator

βn ≈ N(β̂MPL, V̂arn(β̂MPL)), (4.3)
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and then define the following test statistic:

Zn = βn − μn(β)

σ 2
n (β)

= βn − β̂MPL

V̂arn(β̂MPL)
≈ N(0,1) (4.4)

creating the decision rule: reject H if |Zn| > c.
Considering a test size α (in all experiments in this work we set α = 0.1), that

is, the maximum probability of incorrectly rejecting H is α, we have c = 1.64.
However, we want to quantify the evidence against or in favor of the hypoth-

esis H . We propose a complete analysis in terms of the test statistic, the test
size and the P -values, calculated by P(|Zn| > zobs) in this case (two-sided test).
The higher the P -values, the more evidence in favor of H . In case of a small
P -value, we should doubt of the hypothesis being tested. In other words, in order
to reject H , we should have a test size α significantly higher than the P -value.
Suppose we have observed a very high value for the test statistic (zobs). In this
case P(|Zn| > zobs), would be approximately zero, indicating that the hypothesis
should be rejected. This approach provides a statistically meaningful way to report
the results of a hypothesis testing procedure, providing a complete framework for
quantitative analysis.

For the experiments, we adopted both single spin–flip MCMC methods, Gibbs
Sampler (Geman and Geman (1984)) and Metropolis (Metropolis et al. (1953)),
and cluster-flipping MCMC methods, more precisely the Swendsen–Wang (SW)
algorithm (Swendsen and Wang (1987); Landau and Binder (2000)), to generate
several Potts model outcomes using different known β parameter values. Sim-
ulated images for second and third-order neighborhood systems were generated
and are shown in Figures 3, 4, 5 and 6. Our objective is to study and assess the
behavior of the proposed MPL estimation method (a local approach) using both
local and global simulation algorithms. The MPL estimators, obtained by the de-
rived pseudo-likelihood equations were compared with the real parameter values.
This information, together with the test statistics and P -values, obtained using the

Figure 3 Synthetic images generated by MCMC simulation algorithms using second-order neigh-
borhood systems for M = 3: Gibbs Sampler (β = 0.45), Metropolis (β = 0.5) and Swendsen–Wang
(β = 0.4), respectively.
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Figure 4 Synthetic images generated by MCMC simulation algorithms using third-order neigh-
borhood systems for M = 3: Gibbs Sampler (β = 0.45), Metropolis (β = 0.5) and Swendsen–Wang
(β = 0.4), respectively.

Figure 5 Synthetic images generated by MCMC simulation algorithms using second-order neigh-
borhood systems for M = 4: Gibbs Sampler (β = 0.45), Metropolis (β = 0.5) and Swendsen–Wang
(β = 0.4), respectively.

Figure 6 Synthetic images generated by MCMC simulation algorithms using second-order neigh-
borhood systems for M = 4: Gibbs Sampler (β = 0.45), Metropolis (β = 0.5) and Swendsen–Wang
(β = 0.4), respectively.

proposed approximation for the asymptotic variance, provide a statistical proce-
dure to validate and assess the accuracy of he proposed estimation method. The
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Table 3 MPL estimators, observed Fisher information, asymptotic variances, test statistics and
P -values for synthetic MCMC simulated images using second-order neighborhood systems

Swendsen–Wang Gibbs Sampler Metropolis

M 3 4 3 4 3 4

β 0.4 0.4 0.45 0.45 0.5 0.5
β̂MPL 0.4460 0.4878 0.3849 0.4064 0.4814 0.4889
|β − β̂MPL| 0.0460 0.0878 0.0651 0.0436 0.0186 0.0111

Î1
obs 0.4694 0.6825 0.8450 1.3106 0.3908 0.8258

Î2
obs 3.0080 3.3181 3.8248 4.5387 2.2935 2.6436

V̂arn(β̂MPL) 0.0519 0.0620 0.0578 0.0636 0.0743 0.1182
Zn 0.2458 0.3571 0.2707 0.1729 0.0682 0.0322
p-values 0.8104 0.7264 0.7872 0.8650 0.9520 0.9760

Table 4 MPL estimators, observed Fisher information, asymptotic variances, test statistics and
P -values for synthetic MCMC simulated images using third-order neighborhood systems

Swendsen–Wang Gibbs Sampler Metropolis

M 3 4 3 4 3 4

β 0.4 0.4 0.45 0.45 0.5 0.5
β̂MPL 0.3602 0.3772 0.4185 0.4309 0.4896 0.4988
|β − β̂MPL| 0.0398 0.0228 0.0315 0.0191 0.0104 0.0012

Î1
obs 0.2738 0.5372 0.1104 0.1433 0.0981 0.1269

Î2
obs 3.5691 4.6800 1.8703 2.3416 1.4165 1.4547

V̂arn(β̂MPL) 0.0215 0.0245 0.0316 0.0261 0.0489 0.0600
Zn 0.2510 0.1456 0.1772 0.1182 0.0470 0.0049
p-values 0.8036 0.8886 0.8572 0.9044 0.9602 0.9940

obtained results for second and third-order neighborhood systems are shown in
Tables 3 and 4, respectively.

The obtained results clearly show that the asymptotic variance is reduced in
third-order neighborhood systems, increasing the P -values, suggesting that the
use of higher-order systems improves Potts model MPL estimation, since it en-
hances the accuracy of the method. Note that in all cases, the test statistic is far
below the threshold c = 1.64 and the P -values are far above the test size α = 0.1.
Considering the observed data used in the experiments, we conclude that the dif-
ferences between the real parameters and the proposed MPL estimators are not
significant. Therefore, based on statistical evidences, it is strongly recommended
that we accept the hypothesis H , assessing the accuracy of proposed methodology.
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5 Conclusion

The definition of asymptotic variance is an important tool for statistical analysis
in MRF parameter estimation. In this paper, we have addressed the problem of
characterizing the asymptotic normal distribution of maximum pseudo-likelihood
estimators of Potts MRF model parameter. First, we derived analytical pseudo-
likelihood equations for Potts model maximum pseudo-likelihood estimation on
higher-order neighborhood systems. The major contribution is that the proposed
equations allow the modeling of less restrictive neighborhood systems in a large
number of MRF applications in a computationally feasible way. We also proposed
a hypothesis testing approach for quantitative data analysis, deriving an approxi-
mation for the asymptotic variance of MPL Potts model parameter estimators using
the observed Fisher information. Our motivation was the possibility of complete
characterization of the asymptotic distribution of the Potts MPL estimator in the
limiting case, allowing interval estimation and also hypothesis testing concerning
a given statement about the model parameter. The main conclusion of this work
is that higher-order neighborhood systems can improve Potts MRF model param-
eter estimation accuracy by reducing the asymptotic variance. Future works may
include a detailed analysis of the observed Fisher information for single observa-
tions, that is, single contextual configuration patterns and also the investigation of
conditions for information equality regarding the β parameter in the Potts model.

Appendix

Simplification of the expression for observed Fisher information using sec-
ond derivative of the pseudo-likelihood function. From the numerator of equa-
tion (3.14), after some algebraic manipulations, we can write[

M∑
�=1

Ui(�)
2eβUi(�)

][
M∑

�=1

eβUi(�)

]

=
M∑

�=1

[
Ui(�)e

βUi(�)
]2 (5.1)

+
M−1∑
�=1

{
M∑

k=�+1

[(
Ui(�)

2 + Ui(k)2)
eβ(Ui(�)+Ui(k))]}.

Expanding the square in the second term of the numerator of equation (3.14) gives[
M∑

�=1

Ui(�)e
βUi(�)

]2

(5.2)

=
M∑

�=1

[
Ui(�)e

βUi(�)
]2 + 2

M−1∑
�=1

{
M∑

k=�+1

[
Ui(�)Ui(k)eβ(Ui(�)+Ui(k))]}.
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Finally, the numerator of (3.14) is reduced to

M−1∑
�=1

{
M∑

k=�+1

[(
U2

i (�) − 2Ui(�)Ui(k) + U2
k (k)

)
eβ(Ui(�)+Ui(k))]}, (5.3)

which leads to the expression presented in equation (3.15).
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