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The reliability of statistical functions in four software
packages freely used in numerical computation
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Abstract. This work presents a comparison of results about the accuracy
of statistical routines from four statistical software packages that are freely
used: Octave, academic Ox, Python, and R. Having extensive functional
libraries for statistical computing with applications in image processing, these
software packages are useful for data analysis and visualization. The National
Institute of Standards and Technology datasets and McCullough’s methodol-
ogy are used for assessing these packages. As to the statistical analysis herein
performed, R yielded the best results and had the most comprehensive library.

1 Introduction

Estimators with good properties are only half the way to the practice of good data
analysis. They need to be implemented with care in order to provide dependable
results on a variety of situations. This requirement is valid even for simple estima-
tors as, for example, measures of the mean, standard deviation, and autocorrelation
coefficient.

These estimators may be used in principal component analysis (PCA) or in com-
puting statistical distances (Fukunaga (1990)). They are also commonly employed
in texture extraction, image segmentation, and image classification. Autocorrela-
tion functions and histogram features are some examples of the measures used to
classify textures.

The importance of accuracy in statistical packages can be observed in ecosys-
tem monitoring software, which uses remote sensing imagery to assess the impact
of global changes on land surface attributes. Most of these changes are digitally
detected using satellite images that determine the type and extent of the damage
to the environment (Coppin et al. (2004)). Satellite imagery is more efficient than
visual determination since, among other reasons, the visual assessment of changes
is difficult to replicate: different interpreters usually produce different results. Fur-
thermore, visual detection is costly. Differently, digital methods can incorporate
features from the nonoptical parts of the electromagnetic spectrum.

Change detection methods pose some challenges, such as detecting modifica-
tions, monitoring rapid or abrupt changes, and understanding and correcting sta-
tistical estimates derived from remote sensing data at different spatial resolutions.
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These challenges require accurate software in order to obtain good and reliable
results. There is a wide variety of change detection algorithms for ecosystem mon-
itoring. They usually combine procedures for change extraction (change detection
algorithms) and change classification routines. Algorithms applied to change de-
tection are based on methods that use per-pixel classifiers and pixel-based change
information contained in the domains of the images so as to pinpoint changes be-
tween images.

Coppin et al. (2004) present a survey comparing algorithms for change detection
and highlight the need for accurate software. Some have suggested reducing scene-
dependent effects and using band-to-band normalization before differentiating data
in order to yield bands with comparable means and standard deviations. Other
algorithm proposals use linear data transformation techniques based on PCA. Most
of the proposals in Coppin et al. (2004) suggest taking into account the accuracy
of statistical measures used to produce the results.

In view of the importance of accuracy in any quantitative research, such as in
image processing and remote sensing, this sort of analysis is crucial.

In order to measure the accuracy of statistical functions, McCullough (1998)
and Knüsel (1989, 1998) developed the first thorough studies in this field. Their
work has lent support to several other studies aimed at finding accuracy errors in
statistical computation and proposing guidelines for the selection of reliable sta-
tistical software (see, for instance, McCullough and Wilson (1999); McCullough
(2000); Altman (2002); McCullough and Wilson (2002); McCullough and Wil-
son (2005); Bustos and Frery (2006); Keeling and Pavur (2007); Yalta and Yalta
(2007); Yalta (2007)). All of these authors illustrate the need for improved accu-
racy and pinpoint situations in which packages failed.

Recent works by McCullough and Heiser (2008) and Yalta (2008) conduct ac-
curacy tests in Microsoft Excel 2007. They show that Excel 2007 keeps failing
to give good answers and advises that each new version must be tested since Mi-
crosoft did not correct the errors of older tested versions (McCullough and Wilson
(1999, 2002, 2005)).

We analyzed the numeric quality of four well-known software packages that can
be freely used. These software packages are Octave (version 2.9.12), Ox (free
academic version 4.10a), Python (version 2.5.2), and R (version 2.6.2). This ap-
proach differs from previous studies in that it shows the results of assessing the
accuracy of statistical routines in four packages widely used for numerical compu-
tation and that are compatible with most operating systems (Windows, Unix-like,
and Macintosh). Some older versions have already been tested for accuracy. We
used the latest stable versions available for each package.

In order to assess the reliability of the packages, McCulloughs’ procedures were
employed in three kinds of tests: linear and nonlinear models, random number
generation, and statistical distributions. It must be emphasized that only prede-
fined routines were considered when determining the statistical measures: mean,
standard deviation, autocorrelation coefficient, ANOVA, and linear and nonlinear
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regressions. We did not implement any routine to certify the fidelity of the platform
analysis.
Octave (www.octave.org) is an interpreted programming language. It is avail-

able as Free Software under the terms of the Free Software Foundation’s GNU
General Public License in source code. It provides a command line interface for
performing numerical experiments. It has extensive tools for solving common
numerical linear algebra problems, finding the roots of nonlinear equations,
integrating ordinary functions, manipulating polynomials, and integrating ordinary
differential and differential-algebraic equations. It is easily extensible and custo-
mizable via user-defined functions written in Octave’s own language, or using dy-
namically loaded modules written in other languages like C++, C, and Fortran.
Ox (www.doornik.com) is an object-oriented language. It is considered a power-

ful matrix platform and includes a library containing comprehensive mathematical
and statistical functions. Some of its best features are high performance, well-
designed syntax, and graphical facilities. Ox syntax is very similar to C, C++, and
Java. It can be used as a front end for languages such as C and C++. Most versions
are free for educational purposes and academic research.
Python (www.python.org) is a remarkably dynamic programming language.

It can be used in numerical work, statistical computing, and visualization. It has
an open source license by the Python Software Foundation. It can be freely used
and distributed, even for commercial purposes. Python’s syntax is clear, with an
indented structure and an interface with languages such as C and C++. The code
can interact with R functions, allowing data to be manipulated using its tools.
R (www.r-project.org) is a well-known environment for statistical computing

and graphics. Like Octave, it is also available as Free Software under the terms
of the Free Software Foundation’s GNU General Public License in source code. A
wide variety of statistical and graphical functions are provided by this platform, in-
cluding storage facilities and a suite of operators on arrays functions, especially on
matrices. It has its own programming language. R can call C, C++, and Fortran
code at runtime.

The next section presents the methodology adopted for the purpose of this pa-
per. Section 3 brings the main results, as follows: Section 3.1 presents the results
on univariate summary statistics, while Sections 3.2 and 3.3 discuss the results on
analysis of variance and regression, respectively. The quantiles for tail probabili-
ties of the Gaussian, χ2, F , and t-student distributions are analyzed in Section 3.4.
Section 3.5 briefly discusses the pseudorandom number generators and their al-
gorithms. Finally, Section 4 discusses the results and lays down some general re-
marks.

2 Methodology

In order to assess the reliability of each software, we have followed the method-
ology suggested by McCullough (1998, 2000) and by McCullough and Wilson

http://www.octave.org
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(1999, 2002). The Statistical Reference Data sets (StRD) used were provided by
the National Institute of Standards and Technology (NIST (2000)). Each dataset in-
cludes either generated or “real world” data and certified (correct) values of mean,
standard deviation, first lag correlation, etc. These datasets are classified in three
levels of difficulty denoted in the tables by ‘L’ (low), ‘A’ (average), and ‘H’ (high).

The statistical measures of interest are the mean, the standard deviation, the
coefficient of autocorrelation (first lag), and the ANOVA F-statistic. Additionally,
linear regression, nonlinear least squares regression, and the quantiles for the tail
probabilities of frequently used distributions are computed. When performing re-
gression on multiple variables several coefficients are estimated. We adopt the
metodology employed by McCullough and Wilson (1999) and by Bustos and Frery
(2006), which consists of a pessimistic assessment based on the worst estimated
parameter. The pseudorandom number generators are also discussed.

For the univariate summary statistics, NIST provides real world data: Lew, Lot-
tery, Mavro, and Michelso. They differ from each other in the number of observa-
tions and in their range. Lew has 200 integer observations ranging from −579 to
300, Lottery 218 integer observations ranging from 4 to 999, Mavro 50 observa-
tions with five leading digits ranging from 2.00130 to 2.00270, and Michelso 100
observations ranging from 299.620 to 300.070.

Generated data for univariate summary statistics are NumAcc1, NumAcc2,
NumAcc3, NumAcc4, and PiDigits. The dataset NumAcc1 has only the values
10000001, 10000003, and 10000002. In NumAcc2 there are 1001 observations ar-
ranged as follows: the value 1.2, 500 occurrences of the value 1.1 alternating with
500 occurrences of the value 1.3. In NumAcc3 there is one value 1000000.2, 500
occurrences of the value 1000000.1 alternating with 500 occurrences of the value
1000000.3. NumAcc4 has the value 10000000.2, 500 occurrences of the value
10000000.1 alternating with 500 occurrences of the value 10000000.3. Finally,
dataset PiDigits is made up of the first 5000 digits of the number π .

To assess the accuracy of ANOVA (F-statistic) calculations, NIST provides
eleven datasets, nine generated and two observed (“real world” data) ordered by
level of difficulty (Low, Average, and High). NIST also provides several datasets
to evaluate linear and nonlinear regression functions that have been used in each
package. For linear regression, the datasets differ from each other in the conver-
gence level of difficulty (Low, Average, and High) and in the class of the model (3
linear, 1 quadratic, 6 polynomial, and 1 multilinear). Similarly, there are datasets
with different convergence levels of difficulty and different classes of models (16
exponential, 7 miscellaneous, and 4 rational) to evaluate nonlinear regression. Ta-
bles 4, 5, and 6 show the results for ANOVA, linear regression, and nonlinear
regression, respectively.

The datasets for nonlinear least squares evaluation have two sets of starting
values in addition to the certified solution: start 1, far from the certified solution,
making the problem more difficult to solve, and start 2, near to the certified solu-
tion, making the problem easier to solve. Only start 1 values were used to arrive
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at the solution, since these values represent the worst case. Following McCullough
and Wilson (1999), the start 2 set is used only when start 1 does not converge to
an approximate solution.

Several statistical tests, such as hypothesis testing, need exact values of the tail
probabilities and quantiles of cumulative distribution functions, the Gaussian, F ,
χ2, and t-student laws among them. As the significance level decreases, the critical
region is reduced. This can lead to numerical difficulties in obtaining the quantiles
(p-values) and the equivalent tail probabilities. These numbers are usually ob-
tained through routines which compute the quantile functions of the above laws.
The ELV program (Knüsel (1989)) computes probabilities and quantiles for cu-
mulative distribution functions, among others. It provides certified values that can
be used to assess the accuracy of the routines computed by each package analyzed
herein. Six significant digits are used to compute tail probabilities at 2.10−7.

It is suggested in McCullough (1998) that LRE (base-10 logarithm of the rela-
tive error) and LAR (base-10 logarithm of the absolute error) be computed so as
to assess the accuracy of the functions. LRE indicates the number of significant
digits that match when one compares certified values to those obtained for each
evaluated function.

Let x be the result of evaluation function and c the correspondent certified value.
LRE, when c �= 0, is given by

LRE(x, c) = − log10

( |x − c|
|c|

)
.

The notation “NA”, which appears in some tables, indicates that the function did
not return any numeric value. When the certified value is zero, we apply the LAR
function defined as

LAR(x) = − log10 |x|.
For expositional ease, as in McCullough’s works, no distinction will be made be-
tween LRE and LAR, referring to both or either as LRE, since LRE and LAR values
are comparable.

Although the results of LRE usually yield a real number, only its integer part
is considered to indicate the number of matching digits. LRE = 0 means that no
correct digit was found. The symbol “–” was employed to indicate that the result
is very far from the certified value and that LRE function cannot be used.

All the tests were implemented on the same hardware platform: an i386 com-
puter with a 32-bit processor running the GNU/Linux Ubuntu 7.10 (Kernel 2.6.22-
14-generic) operating system was used to perform the calculations.

3 Results

The following subsections show the results obtained in this study. One should no-
tice that, except for univariate analysis, some tables do not contain all the software
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evaluation. This is due to the absence of such a function in the official site of the
software. The best function results for each table are highlighted using boldface
font.

3.1 Univariate summary statistics

Tables 1, 2, and 3 present the LREs for the univariate summary statistics. The
accuracy results for the mean can be seen in Table 1, and it is noticeable that the
packages provide excellent accuracy for computed mean functions. The functions
that compute the mean are all termed “mean” and in Python it is provided by the
stats library of scipy package.

For standard deviation accuracy, as shown in Table 2, Ox presented poor behav-
ior as opposed to the other ones which yielded very good results. This could mean
that for the second-order or higher moments, the Ox function moments used to
compute standard deviation was not accurate. Octave, Python, and R provide
the functions std, stdev (from scipy.stats library), and sd (from stats
package), respectively.

Table 1 LREs for computed mean

Dataset Octave Ox Python R

Lew (L) 15 15 15 15
Lottery (L) 15 15 15 15
Mavro (L) 15 15 15 15
Michelso (L) 15 15 15 15
NumAcc1 (L) 15 15 15 15
PiDigits (L) 15 15 15 15
NumAcc2 (A) 15 15 14 15
NumAcc3 (A) 15 15 15 15
NumAcc4 (H) 14 15 14 15

Table 2 LREs for computed standard deviation

Dataset Octave Ox Python R

Lew (L) 15 2 15 15
Lottery (L) 15 2 15 15
Mavro (L) 15 1 13 15
Michelso (L) 15 2 13 15
NumAcc1 (L) 15 0 15 15
PiDigits (L) 14 4 14 15
NumAcc2 (A) 15 3 14 15
NumAcc3 (A) 9 3 9 15
NumAcc4 (H) 8 3 8 15
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Table 3 LREs for computed autocorrelation coeffi-
cient

Dataset Octave Ox Python R

Lew (L) 5 14 2 15
Lottery (L) 4 14 2 15
Mavro (L) 4 13 1 13
Michelso (L) 8 13 3 13
NumAcc1 (L) 0 15 – 15
PiDigits (L) 3 15 3 13
NumAcc2 (A) 7 15 3 14
NumAcc3 (A) 3 12 – 14
NumAcc4 (H) 3 11 2 14

Table 4 ANOVA: F-statistic

Dataset Octave Python R

SiRstv (L) 12 8 13
SmLs01 (L) 14 13 15
SmLs02 (L) 13 11 15
SmLs03 (L) 12 11 15
AtmWtAg (A) 8 0 9
SmLs04 (A) 8 0 10
SmLs05 (A) 8 – 10
SmLs06 (A) 6 – 10
SmLs07 (H) 2 – 4
SmLs08 (H) 2 – 4
SmLs09 (H) – – 4

Table 3 shows the results for the autocorrelation coefficient. Ox presents very
good results as opposed to Octave function corrcoef and Python function
pearsonr (from scipy.stats). R provides for this measure the acf (from
stats) function. It should be noted that R gives the best results for all three
measures.

3.2 Analysis of variance

Table 4 shows the ANOVA results. One notes that Python produces unacceptable
results with the function f_oneway way (from scipy.stats) while Octave
(anova function) and R (aov function from stats) presented very good results,
except for SmLs07 (H), SmLs08 (H), and SmLs09 (H) datasets, which pose con-
siderable difficulty for this measure. However, if one compares these last results to
the ones given in other commercial platforms (Keeling and Pavur (2007)), they are
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competitive. It should also be noted that the R version used here provides better
results to those obtained with version 1.9.1 in the previous cited work.

3.3 Regression

In this section, the results obtained for linear and nonlinear regression are pre-
sented. It should be mentioned that the datasets provided by NIST for linear re-
gression are different from the datasets provided for nonlinear regression, and the
models are linear, quadratic, polynomial, and multilinear. For nonlinear regression
NIST provides the exponential and rational models among others. Moreover, the
degree of difficulty for each dataset may be Low, Average, or High.

3.3.1 Linear regression. Table 5 shows the results for linear regression. It can
be noted that only the R package produces good results for the residual standard
deviation, except for dataset Filip. R uses the function lm that belongs to library
stats in order to fit linear models.
Octave uses the function regress. This is the only high-level Octave

available function for the computation of linear regression. This function shows se-
rious problems when it is used to calculate the residual standard deviation, giving
values blatantly far from the best results obtained with other commercial packages
evaluated in previous studies.
Ox uses the PcFiml class which provides methods for obtaining some specific

values other than the residual standard deviation value. For this reason, one cannot
extract the displayed values (with 6 digits) and compare them to the certified ones.
Unfortunately, it was not possible to evaluate Python due to the fact that it does
not furnish specific functions for linear regression. In general, R gives the best

Table 5 LREs for the least accurate coefficient β̂ and resid-
ual standard deviation RSD

Octave Ox R

Datasets β̂ RSD β̂ RSD β̂ RSD

Norris (L) 12 1 13 5 12 13
Pontius (L) 11 1 1 0 12 12
NoInt1 (A) 14 2 14 5 14 14
NoInt2 (A) 15 2 15 4 15 15
Filip (H) 7 1 NA NA NA NA
Longley (H) 7 0 12 4 12 14
Wampler1 (H) 8 8 NA NA 9 9
Wampler2 (H) 12 12 NA NA 12 14
Wampler3 (H) 8 0 9 4 9 14
Wampler4 (H) 7 0 9 4 8 14
Wampler5 (H) 5 0 9 4 6 14



Reliability of statistical functions 115

Table 6 LREs for the least acurate coefficient β̂ and resid-
ual standard deviation RSD in R

Datasets β̂ RSD Datasets β̂ RSD

Chwirut1 (L) 5 6 Mgh17∗ (A) 5 5
Chwirut2 (L) 4 5 Misra1c (A) 8 6
Danwood (L) 8 7 Misra1d (A) 6 6
Gauss1 (L) 6 6 Roszman1 (A) 5 6
Gauss2 (L) 6 6 Nelson∗ (A) 5 5
Lanczos3 (L) 6 4 Bennett5 (H) 5 4
Misra1a (L) 6 6 Boxbod∗ (H) 5 5
Misra1b (L) 6 6 Eckerle4∗ (H) 7 7
Enso (A) 4 5 Mgh09 (H)∗ 4 4
Gauss3 (A) 6 5 Mgh10 (H)∗ 6 6
Hahn1 (A) 6 6 Rat42∗ (H) 7 6
Kirby2 (A) 6 6 Rat43∗ (H) 5 5
Lanczos1 (A) NA NA Thurber (H) 5 4
Lanczos2 (A) 7 –

results and Octave the worst. In some models, Ox and R could not compute the
numeric values.

3.3.2 Nonlinear regression. Table 6 shows the results for nonlinear regression.
Unfortunately, Octave, Ox, and Python have no predefined functions that com-
pute nonlinear regression. Only R provides a function (nls from stats) to this
end. McCullough (1998) says that reasonable values for LRE have a four or five-
digit accuracy. Table 6 shows that R yields very good results for nearly all datasets,
except for Lanczos1 (A), in which the value could not be computed, and for the
standard deviation of dataset Lanczos2 (A). Most of them were computed from the
start 1 value while eight datasets (the ones marked with an “∗”) were computed
from the start 2 value.

3.4 Quantiles functions

Table 7 shows the results for quantiles of tail probabilities. The assessment was
based on the predefined functions given by each package. The values used for tail
probabilities were the same for all packages: 2.10−7 for Gaussian, χ2 (1 degree
of freedom), and t-student (1 degree of freedom) distributions and 10−5 for F
(1 and 1 degrees of freedom). Python does not provide any predefined functions
to compute quantiles and was not evaluated in this case. The other packages pre-
sented good results regarding the inverse gaussian and χ2 distributions. R and Ox
also have produced good results for the t-student and F inverse cumulative distri-
butions functions. Unlikewise, Octave presented numerical problems for these
last two distributions. These results led us to conclude that, for applications like
hypothesis testing, the most adequate packages are R and Ox.
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Table 7 LREs for the packages quantiles functions

Octave Ox R

Function LRE Function LRE Function LRE

norminv 6 quann 6 qnorm 6
probit 6 quanf 6 qf 6
tinv 0 quant 4 qt 6
chi2inv 0 quanchi 3 qchisq 3

3.5 Pseudorandom number generation

The packages analyzed in this paper provide several algorithms for pseudorandom
number generation. According to Marsaglia (Marsaglia and Tsang (2002)) most
of them would pass in quite a few difficult randomness tests. R gives the user the
choice between several kinds of algorithms with the Mersenne-Twister generator
(MT, Matsumoto and Nishimura (1998)) as the default. The classical Wichman–
Hill algorithm (Wichmann and Hill (1982, 1984)) is also available. The user can
also supply his self-developed algorithm. MT is a 623-dimensionally equidis-
tributed uniform pseudorandom number generator that has a period of 219937 and a
624-dimensional set of 32-bit integers seed. It passes the Diehard tests (Marsaglia
(1998)).
Octave, Ox, and Python also provide the MT algorithm. Ox provides the

user with KISS and a multiply-with-carry (MWC) generator (Marsaglia (2003))
with periods of 231, 260, and 28222. The MWC with a period of 231 is a modi-
fied version of Park and Miller generator (Park and Miller (1988)). The number
of seeds depends on the generator used. One of the main advantages of MWC is
its high speed. All of them have passed the Diehard tests. These algorithms do
not suffer from problems of undesired structures in high dimensionality found in
linear congruential and Fibonacci generators. Although the latter fail to pass hard
randomness tests, they can be useful when combined with some of the above algo-
rithms (MWC, MT, or KISS).

4 Conclusions

One of the main goals of this paper was to assess the reliability of statistical com-
puting in a completely free software environment, including the operating system
and software applications themselves. Given the fundamental role of statistical
software in image processing, this article analyzes the accuracy of four well-known
freely used tools which are frequently used by practitioners of image and signal
processing and analysis. The choice of a platform that is the most suitable for a
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specific application depends on the measures that each researcher is more inter-
ested in.

In a brief overview of univariate summary statistical functions, all software ap-
plications yield reliable values computing the sample mean. The Ox moments
function shows the poorest results when employed to compute standard deviation.
Octave corrcoef and Python pearsonr functions do not provide good ac-
curacy when computing the autocorrelation coefficient. The Python f_oneway
function has serious problems with the F -statistic of ANOVA in nearly all average
and highly complex datasets. Differently, Octave anova and R aov functions
give good results. R 2.6.2 introduces improvements over previous versions (see
Keeling and Pavur (2007)). For linear regression, Octave regress function
presents unacceptable results; bad results were also obtained with Ox (with the
PcFiml class), although slightly better. As expected when using high quality
software, R offers no local solutions for nonlinear regression when the initial-
ized parameters are substandard. In this latter case, the software needs a new
start point closer to the solution. If we proceed accordingly, wrong results are
avoided.

We must emphasize that only the R package has presented predefined functions
obtained from the official site (www.r-project.org) to all the measures used for
accuracy evaluation, yielding satisfactory results in most cases. Octave also pro-
duces good results in most cases, but with problems in quantile functions. Octave
has no predefined functions for nonlinear regression. Phyton also lacks several
important predefined functions as, for instance, for nonlinear regression and quan-
tiles. We found it extremely difficult to uncover freely official documentation about
functions in Octave, Ox, and Python, as opposed to the well-documented R
platform. The pseudorandom number generators used by all the packages were
deemed reliable and did pass the most difficult tests of randomness.

This research will be useful for future developments of new versions of statis-
tical functions. It helps users choose among the statistical free software packages
currently available. In order to improve the platforms, some functions not yet sup-
ported by the official sites should be added in the next versions as, for instance,
nonlinear regression in Octave, Ox, and Python.
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