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ON HARDY-TYPE INEQUALITIES FOR WEIGHTED MEANS
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Communicated by J. Bonet

Abstract. Our aim in this article is to establish weighted Hardy-type inequal-
ities in a broad family of means. In other words, for a fixed vector of weights
(λn)

∞
n=1 and a weighted mean M, we search for the smallest extended real

number C such that
∞∑

n=1

λnM
(
(x1, . . . , xn), (λ1, . . . , λn)

)
≤ C

∞∑
n=1

λnxn for all x ∈ `1(λ).

The main results provide a complete answer in the case when M is monotone
and satisfies the weighted counterpart of the Kedlaya inequality. In particular,
this is the case if M is symmetric, concave, and the sequence ( λn

λ1+···+λn
)∞n=1 is

nonincreasing. In addition, we prove that if M is a symmetric and monotone
mean, then the biggest possible weighted Hardy constant is achieved if λ is the
constant vector.

1. Introduction

In the first decades of the twentieth century, Hilbert conjectured that the so-
called averaging operator is a bounded linear map acting on the sequence space
`p for p > 1. Motivated by this conjecture, in an equivalent form, several authors
proved that

∞∑
n=1

Pp(x1, . . . , xn) ≤ C(p)
∞∑
n=1

xn, (1.1)
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for every sequence (xn)
∞
n=1 with positive terms, where Pp denotes the pth power

mean (extended to the limiting cases p = ±∞) and

C(p) :=


1, p = −∞,

(1− p)−1/p, p ∈ (−∞, 0) ∪ (0, 1),

e, p = 0,

∞, p ∈ [1,∞].

Furthermore, this constant is sharp; that is, it cannot be diminished.
The first result of this type with a nonoptimal constant was established by

Hardy [12] in his seminal paper. Later it was improved and extended by Landau
[20], Knopp [17], and Carleman [3], whose results are summarized in inequality
(1.1). Meanwhile, Copson [4] adopted Elliott’s proof in [11] of the Hardy inequality
to show (in an equivalent form) that if Pp(x, λ) denotes the pth λ-weighted power
mean of a vector x, then

∞∑
n=1

λnPp

(
(x1, . . . , xn), (λ1, . . . , λn)

)
≤ C(p)

∞∑
n=1

λnxn (1.2)

for all p ∈ (0, 1), and sequences (xn)
∞
n=1 and (λn)

∞
n=1 with positive terms. More

about the history of the developments related to Hardy-type inequalities is
sketched in engaging surveys by Pečarić and Stolarsky [36], Duncan and McGre-
gor [10], and in a relatively recent work by Kufner, Maligranda, and Persson [19].

In a more general setting, for a given mean M :
⋃∞

n=1 I
n → I (where I is a real

interval with inf I = 0), let H(M) denote the smallest nonnegative extended real
number, called the Hardy constant of M, such that

∞∑
n=1

M(x1, . . . , xn) ≤ H(M)
∞∑
n=1

xn

for all sequences (xn)
∞
n=1 belonging to I. If H(M) is finite, then we say that M

is a Hardy mean. In this setup, a pth power mean is a Hardy mean if and only if
p ∈ [−∞, 1) and H(Pp) = C(p) for all p ∈ [−∞,∞].

For our investigation of the Hardy property of means, we recall several notions
that were partly introduced and used in [34]. Let I ⊆ R be an interval, and let
M :

⋃∞
n=1 I

n → I be an arbitrary mean. We say that M is symmetric, (strictly)
increasing, and Jensen convex (concave) if, for all n ∈ N, the n variable restriction
M|In is a symmetric, (strictly) increasing in each of its variables, and Jensen con-
vex (concave) on In, respectively. It is worth mentioning that means are locally
bounded functions; therefore, the so-called Bernstein–Doetsch theorem (see [1,
p. 515]) implies that Jensen convexity (concavity) is equivalent to ordinary con-
vexity (concavity). If I = R+, then we can analogously define the notion of
homogeneity of M. Finally, the mean M is called repetition-invariant if, for all
n,m ∈ N and (x1, . . . , xn) ∈ In, the following identity is satisfied:

M(x1, . . . , x1︸ ︷︷ ︸
m-times

, . . . , xn, . . . , xn︸ ︷︷ ︸
m-times

) = M(x1, . . . , xn).
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With these definitions in hand, let us recall the main theorems of [34, Theo-
rems 3.4, 3.5, Corollary 3.5]. The first result provides a lower estimation of the
Hardy constant.

Theorem 1.1. Let I ⊂ R+ be an interval with inf I = 0, and let M :
⋃∞

n=1 I
n → I

be a mean. Then for all nonsummable sequences (xn)
∞
n=1 in I,

H(M) ≥ lim inf
n→∞

x−1
n ·M(x1, x2, . . . , xn).

In particular,

H(M) ≥ sup
y∈I

lim inf
n→∞

n

y
·M

(y
1
,
y

2
, . . . ,

y

n

)
=: C(M).

Under stronger assumptions for the mean M, the lower estimate obtained above
becomes an equality by the following result.

Theorem 1.2. For every increasing, symmetric, repetition-invariant, and Jensen
concave mean M :

⋃∞
n=1 Rn

+ → R+, the equality H(M) = C(M) holds. If, in
addition, M is also homogeneous, then

H(M) = lim
n→∞

n ·M
(
1,

1

2
, . . . ,

1

n

)
.

In particular, this limit exists.

Upon taking M to be a power mean in the above theorem, the Hardy–Landau–
Knopp–Carleman inequality (1.1) can easily be deduced. (For the details, see [34].)
A deeper look into [34] shows that Theorem 1.2 could be split into two parts with
an intermediate state of a so-called Kedlaya mean. The mean M :

⋃∞
n=1 I

n → I
(I is an interval) is a Kedlaya mean if

A
(
x1,M(x1, x2), . . . ,M(x1, x2, . . . , xn)

)
≤ M

(
x1,A(x1, x2), . . . ,A(x1, x2, . . . , xn)

)
(1.3)

for every n ∈ N and x ∈ In. Here and throughout this article, A will stand for
the standard (or weighted) arithmetic mean.

The motivation for the above terminology came from Kedlaya [15], where he
proved that the geometric mean satisfies the inequality above; that is, it is a Ked-
laya mean. This result provided an affirmative answer to a conjecture by Holland
[14]. A more general theorem has recently been established by the authors.

Theorem 1.3 ([34, Theorem 2.1]). Every symmetric, Jensen concave, and repeti-
tion-invariant mean is a Kedlaya mean.

Moreover, in the proof of Theorem 1.2 the main tool was the following (nowhere
explicitly formulated) statement.

Proposition 1.4. For every monotone Kedlaya mean M :
⋃∞

n=1 I
n → I (where

I is an interval with inf I = 0), the equality H(M) = C(M) holds.

Obviously, Theorem 1.3, along with Proposition 1.4, implies the first part of
Theorem 1.2. To prove the second part, we need to show that the mentioned limit
exists.
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Recently, the authors presented an approach to weighted Kedlaya inequalities
in [35]. In particular, we established a weighted counterpart of Theorem 1.3 (see
the notation of V (Q) and V (R) below). It motivated us to look for a weighted
analogue of Proposition 1.4. The result obtained in this direction will be presented
in Theorem 4.1.

2. Weighted means

We now introduce the notion of weighted means. First, we stress that there is
no broad agreement about the definition of weighted means. The one presented
below was introduced in [35] in the process of reverse engineering. The main idea
was to cover most of the known weighted means (i.e., power, quasiarithmetic,
deviation, and quasideviation means) in the abstract setting. This consideration
led us to introduce the following new definition.

Definition 2.1 (Weighted means). Let I ⊂ R be an arbitrary interval, let R ⊂ R
be a ring, and, for n ∈ N, define the set of n-dimensional weight vectors Wn(R)
by

Wn(R) :=
{
(λ1, . . . , λn) ∈ Rn

∣∣ λ1, . . . , λn ≥ 0, λ1 + · · ·+ λn > 0
}
.

A weighted mean on I over R or, in other words, an R-weighted mean on I is a
function

M :
∞⋃
n=1

In ×Wn(R) → I

satisfying the conditions (i)–(iv) presented below. Elements belonging to I will
be called entries ; elements from R will be called weights.

(i) Null homogeneity in the weights : For all n ∈ N, for all (x, λ) ∈ In×Wn(R),
and t ∈ R+,

M(x, λ) = M(x, t · λ).
(ii) Reduction principle: For all n ∈ N and for all x ∈ In, λ, µ ∈ Wn(R),

M(x, λ+ µ) = M(x� x, λ� µ),

where � is a shuffle operator 1 defined as

(p1, . . . , pn)� (q1, . . . , qn) := (p1, q1, . . . , pn, qn).

(iii) Mean value property : For all n ∈ N and for all (x, λ) ∈ In ×Wn(R),

min(x1, . . . , xn) ≤ M(x, λ) ≤ max(x1, . . . , xn).

(iv) Elimination principle: For all n ∈ N, for all (x, λ) ∈ In ×Wn(R), and for
all j ∈ {1, . . . , n} such that λj = 0,

M(x, λ) = M
(
(xi)i∈{1,...,n}\{j}, (λi)i∈{1,...,n}\{j}

)
,

that is, entries with a zero weight can be omitted.

1This definition comes from the theory of computation. Perhaps the most famous (folk) result
states that the shuffling of two regular languages is again regular (see, e.g., [2]).
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From now on, I is an arbitrary interval and R stands for an arbitrary subring
of R. Let us introduce some natural properties of weighted means. A weighted
mean M is said to be symmetric if, for all n ∈ N, x ∈ In, λ ∈ Wn(R), and σ ∈ Sn,

M(x, λ) = M(x ◦ σ, λ ◦ σ).
We will call a weighted mean M Jensen concave if, for all n ∈ N, x, y ∈ In, and
λ ∈ Wn(R),

M
(x+ y

2
, λ

)
≥ 1

2

(
M(x, λ) +M(y, λ)

)
. (2.1)

A weighted mean M is said to be continuous in the weights if, for all n ∈ N and
x ∈ In, the mapping λ 7→ M(x, λ) is continuous on Wn(R). Finally, a weighted
mean M is monotone if, for all n ∈ N, x ∈ In, and λ ∈ Wn(R), the mapping
xi 7→ M(x, λ) is increasing for all i ∈ {1, . . . , n}.

For the sake of convenience, we will use the sum-type abbreviation. If M is an
R-weighted mean on I, n ∈ N, and (x, λ) ∈ In ×Wn(R), then we denote

n

M
i=1

(xi, λi) := M
(
(x1, . . . , xn), (λ1, . . . , λn)

)
.

Let us recall some basic properties of weighted means defined in this way. The
first result binds nonweighted, repetition-invariant means and Z-weighted means.

Theorem 2.2 ([35, Theorem 2.3]). If M is a repetition-invariant mean on I,
then the formula

M̃
(
(x1, . . . , xn), (λ1, . . . , λn)

)
:= M(x1, . . . , x1︸ ︷︷ ︸

λ1 entries

, . . . , xn, . . . , xn︸ ︷︷ ︸
λn entries

) (2.2)

defines a weighted mean on I over Z. Conversely, if M̃ is a Z-weighted mean on
I, then

M(x1, . . . , xn) := M̃
(
(x1, . . . , xn), (1, . . . , 1︸ ︷︷ ︸

n entries

)
)

(2.3)

is a repetition-invariant mean on I. Furthermore, these transformations are
inverses of each other.

Moreover, the following two easy statements were explicitly worded.

Theorem 2.3. If M is a symmetric repetition-invariant mean on I, then the
function M̃ defined by the formula (2.2) is a symmetric weighted mean on I

over Z. Conversely, if M̃ is a symmetric Z-weighted mean on I, then the function
M defined by (2.3) is a symmetric repetition-invariant mean on I.

Theorem 2.4. If M is a Jensen concave repetition-invariant mean on I, then
the function M̃ defined by the formula (2.2) is a Jensen concave weighted mean
on I over Z. Conversely, if M̃ is a Jensen concave Z-weighted mean on I, then
the function M defined by (2.3) is a Jensen concave repetition-invariant mean
on I.

We will also need an extension theorem from [35, Theorem 2.2].
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Theorem 2.5. Let I be an interval, let R ⊂ R be a ring, and let M be a weighted
mean defined on I over R. Then there exists a unique mean M̃ defined on I over
R∗ (which denotes the quotient field of R) such that

M̃|⋃∞
n=1 In×Wn(R) = M.

Moreover, if M is symmetric/monotone, then so is M̃.

With this, we can extend means defined in Theorem 2.2 to the field Q. Let us
recall that the weighted power mean Pp :

⋃∞
n=1Rn

+ ×Wn(R) → R+ is defined for
all p ∈ R by

Pp(x, λ) :=

{
(
λ1x

p
1+λ2x

p
2+···+λnx

p
n

λ1+λ2+···+λn
)1/p if p 6= 0,

(xλ1
1 x

λ2
2 · · ·xλn

n )1/(λ1+λ2+···+λn) if p = 0,

and admits all properties (i)–(iv).
In a more general setting, in the spirit of [13], we can define weighted quasiarith-

metic means as follows. If I is an arbitrary interval and f : I → R is continuous
and monotone, then the weighted quasiarithmetic mean Af :

⋃∞
n=1 I

n×Wn(R) →
I is a function such that for all n ∈ N and a pair x ∈ In with weights λ ∈ Wn(R),

Af (x, λ) := f−1
(λ1f(x1) + λ2f(x2) + · · ·+ λnf(xn)

λ1 + λ2 + · · ·+ λn

)
.

This sequence of generalization could be continued to Bajraktarević means, to
deviation (Daróczy) means, and to quasideviation means. Investigating these
families, however, lies outside the scope of this paper and we refer the reader
to a series of papers by Losonczi [21]–[26] (for Bajraktarević means); by Daróczy
[5], [6], Daróczy and Losonczi [7], and Daróczy and Páles [8], [9] (for deviation
means); and by Páles [27]–[33] (for deviation and quasideviation means).

2.1. Weighted Kedlaya property. As in [35], we introduce the notion of the
weighted Kedlaya inequality. To have a weighted counterpart of the Kedlaya
inequality, we have to take weight sequences λ from R with a positive first mem-
ber. Therefore, for a given ring R, we define

W 0(R) := {λ ∈ RN | λ1 > 0, λ2, λ3, . . . ≥ 0}.

For a weight sequence λ ∈ W 0(R), we say that a weighted mean M :
⋃∞

n=1 I
n ×

Wn(R) → I satisfies the λ-weighted Kedlaya inequality (or λ-Kedlaya inequality
for short) if

n

A
k=1

( k

M
i=1

(xi, λi), λk

)
≤

n

M
k=1

( k

A
i=1

(xi, λi), λk

)
(n ∈ N, x ∈ In).

In fact, the nonincreasingness of the ratio sequence ( λi

λ1+···+λi
) will be a key

assumption for Kedlaya-type inequalities; therefore, we also set

V (R) :=
{
λ ∈ W 0(R)

∣∣∣ ( λi
λ1 + · · ·+ λi

)∞

i=1
is nonincreasing

}
.
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Actually, in 1999 Kedlaya [16] proved that the geometric mean satisfies the
λ-weighted Kedlaya inequality for all λ ∈ V (R). This result has been general-
ized recently by the authors [35, Corollary 3.2, Proposition 3.7] to the family
of symmetric, Jensen concave means. More precisely, the following theorem has
been established.

Theorem 2.6. Every symmetric and Jensen concave Q-weighted mean (resp.,
R-weighted mean which is continuous in the weights) satisfies the λ-weighted Ked-
laya inequality for all λ ∈ V (Q) (resp., λ ∈ V (R)).

In fact, we will sometimes assume that a mean is a λ-Kedlaya mean, and the
above theorem delivers us a sufficient condition (cf. Theorem 4.1 and related
Corollaries 4.2, 4.3).

2.2. Weighted Hardy property. As in [34], the Kedlaya inequality leads us to
the Hardy property (with an optimal constant). Nevertheless, to take advantage
of the weighted Kedlaya inequality in dealing with the Hardy property, we need
to define its weighted counterpart. Such a definition is a natural extension of the
nonweighted setup.

Definition 2.7 (Weighted Hardy property). Let I be an interval with inf I = 0,
and let R ⊂ R be a ring. For an R-weighted mean M on I and weights λ ∈ W 0(R),
let C be the smallest extended real number such that, for all sequences (xn) in I,

∞∑
n=1

λn ·
n

M
i=1

(xi, λi) ≤ C ·
∞∑
n=1

λnxn.

We call C the λ-weighted Hardy constant of M (or λ-Hardy constant of M for
short) and denote it by Hλ(M). Whenever this constant is finite, then M is called
a λ-weighted Hardy mean or simply a λ-Hardy mean.

This definition is an extension of the Hardy constant (and consequently, the
Hardy property). Indeed, by null homogeneity in the weights, we may assume
without loss of generality that 1 ∈ R, whenever it is useful. In this setup for
1 := (1, 1, 1, . . .), by Theorem 2.2, the R-weighted mean M̃ with weights 1 could
be associated with the nonweighted mean M, and (in the setting of this theorem)
the equality

H1(M̃) = H(M).

is valid. A question naturally arises: What is a relation between being λ-Hardy and
1-Hardy? Luckily, we have a simple (in its wording) property which generalizes
the result (1.2) of Elliott [11] and Copson [4].

Theorem 2.8. For every symmetric and monotone mean M on I over R, we
have

H1(M) = sup
λ∈W 0(R)

Hλ(M).

The technical and quite lengthy proof of this theorem is deferred to the last
section. As an immediate consequence, we obtain the following.
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Corollary 2.9. Let M̃ be a symmetric and monotone mean on I over R. Then
the following conditions are equivalent:

(i) M̃ is a λ-Hardy mean for all λ ∈ W 0(R);
(ii) M̃ is a 1-Hardy mean;
(iii) M defined by (2.3) is a Hardy mean.

3. Auxiliary results

In this section, we prove a number of technical lemmas which will be useful
in the forthcoming sections. We first establish a purely analytic fact. This is
then followed by results that are directly related to the weighted Hardy property.
Throughout this section, let λ ∈ W 0(R), and set Λn := λ1 + · · ·+ λn for n ∈ N.

Lemma 3.1. The series
∑
λn and

∑
λn/Λn are equiconvergent (either both con-

vergent or both divergent).

Indeed, if
∑∞

n=1 λn < ∞, then
∑∞

n=1 λn/Λn ≤
∑∞

n=1 λn/Λ1 < ∞. The reverse
implication is due to Abel [18, p. 125].

Now we turn to results directly related to means. The first two statements
are about properties of the Hardy constant, while the last one is a sort of rear-
ranging property of a weighted mean in the case of a nonincreasing function.
The following lemma is somehow related to the so-called Hardy sequence (cf. [34,
Proposition 3.1]).

Lemma 3.2. Let M be an R-weighted mean on I. Then for all n ∈ N and x ∈ In,

n∑
i=1

λi ·
i

M
j=1

(xj, λj) ≤ Hλ(M)
n∑

i=1

λixi. (3.1)

Proof. Take ε ∈ I and xm := min(ε/(λm2
m), ε) for m > n. Then we have

n∑
i=1

λi ·
i

M
j=1

(xj, λj) ≤
∞∑
i=1

λi ·
i

M
j=1

(xj, λj) ≤ Hλ(M)
∞∑
i=1

λixi

≤ Hλ(M)
( n∑

i=1

λixi +
∞∑

i=n+1

ε

2i

)
≤ Hλ(M)

(
ε+

n∑
i=1

λixi

)
.

Now we can pass the limit ε→ 0 to obtain (3.1). �

With this already proved, we can present a weighted analogue of [34, Theo-
rem 3.3]. Stolz’s theorem (see [37, pp. 173–175]) allows for a significantly short-
ened proof.

Lemma 3.3. Let M be an R-weighted mean on I. If
∑∞

n=1 λnxn = ∞, then

Hλ(M) ≥ lim inf
n→∞

1

xn

n

M
i=1

(xi, λi).
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Proof. By Stolz’s theorem and Lemma 3.2, we have

Hλ(M) ≥ lim inf
N→∞,λN>0

∑N
n=1 λn ·M

n
i=1(xi, λi)∑N

n=1 λnxn

≥ lim inf
n→∞,λn>0

λnM
n
i=1(xi, λi)

λnxn
≥ lim inf

n→∞
M

n
i=1(xi, λi)

xn
,

which was to be shown. �

4. Main results

In this section, we will prove an important relation between the λ-Kedlaya and
λ-Hardy properties. With this in hand, we will use the notation of V (R) and
V (Q) to present a handy characterization of the λ-Hardy property. In fact, a lot
of statements will depend on the summability of the weight sequence (λn).

Theorem 4.1. Let M be an R-weighted mean on I, and let λ ∈ W 0(R). Define

Cλ(M) := sup
y>0

lim inf
n→∞

λ1 + λ2 + · · ·+ λn
y

·
n

M
k=1

( y

λ1 + λ2 + · · ·+ λk
, λk

)
.

(i) If
∑∞

n=1 λn = ∞, then Hλ(M) ≥ Cλ(M).
(ii) If M is monotone and satisfies the λ-Kedlaya inequality, then Hλ(M) ≤

Cλ(M).

Proof. Denote the partial sum of λ1+ · · ·+λk by Λk. In the first part, Lemma 3.1
implies that

∞∑
n=1

λn ·
y

Λn

= ∞ for all y > 0.

Consequently, by Lemma 3.3,

Hλ(M) ≥ lim inf
n→∞

Λn

y

n

M
k=1

( y

Λk

, λk

)
for all y > 0.

Finally, we can take the supremum over all positive y’s and obtain Hλ(M) ≥
Cλ(M).

To prove part (ii), let x ∈ `1(λ) be a sequence of positive numbers, and let
y0 :=

∑∞
n=1 λnxn. Then

mk =
1

Λk

k∑
i=1

λi · xi ≤
y0
Λk

, k ∈ N.

The (n, λ)-Kedlaya inequality applied to the vector (x1, x2, . . . , xn) and the mono-
tonicity of M imply that

n∑
k=1

λk ·
k

M
i=1

(xi, λi) ≤ Λn ·
n

M
k=1

(mk, λk) ≤ Λn ·
n

M
k=1

( y0
Λk

, λk

)
.
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Upon taking the lim inf as n tends to ∞, we obtain
∞∑
k=1

λk ·
k

M
i=1

(xi, λi) ≤
(
lim inf
n→∞

Λn

y0
·

n

M
k=1

( y0
Λk

, λk

))
· y0 ≤ Cλ(M)

∞∑
n=1

λnxn.

Therefore, the desired inequality Hλ(M) ≤ Cλ(M) follows. �

At this moment, using Theorem 2.6, we obtain two direct consequences of
Theorem 4.1.

Corollary 4.2. Let M be a symmetric, monotone, and Jensen-concave
Q-weighted mean, and let λ ∈ V (Q). Then Hλ(M) ≤ Cλ(M). Furthermore, if∑∞

n=1 λn = ∞, then Hλ(M) = Cλ(M).

Corollary 4.3. Let M be a symmetric, monotone, and Jensen-concave
R-weighted mean which is continuous in the weights, and let λ ∈ V (R). Then
Hλ(M) ≤ Cλ(M). Furthermore, if

∑∞
n=1 λn = ∞, then Hλ(M) = Cλ(M).

We can also apply this theorem to justify the λ-Hardy property.

Corollary 4.4. Let M be an R-weighted mean on I, and let λ ∈ W 0(R).
(i) If

∑∞
n=1 λn = ∞ and Cλ(M) = ∞, then M is not a λ-Hardy mean.

(ii) If M is a monotone mean which satisfies the λ-Kedlaya inequality and
Cλ(M) is finite, then M is a λ-Hardy mean.

5. Proof of Theorem 2.8

Let us mention some further definitions and notation from [35]. Instead of
explicitly writing down weights, we can consider a function with finite range as
the argument of the given mean. Let R be a subring of R. We will denote its
quotient field (the smallest field generated by R) by R∗. We say that D ⊆ R is
an R-interval if D is of the form [a, b), where a, b ∈ R.

Given an R-interval D = [a, b), a function f : D → I is called R-simple if there
exist n ∈ N and a partition of D into R-intervals {Di}ni=1 such that supDi =
infDi+1 for i ∈ {1, . . . , n− 1} and f is constant on each subinterval Di. Then for
an R-weighted mean M on I, we define

b

M
a

f(x) dx :=
n

M
i=1

(
f |Di

, |Di|
)
= M

(
(f |D1 , . . . , f |Dn),

(
|D1|, . . . , |Dn|

))
.

In this setting, M is symmetric if and only if for every pair of R-simple functions
f, g : D → I which have the same distribution, the equality Mf(x) dx = Mg(x) dx
holds. Similarly, M is monotone if and only if for every pair of R-simple functions
f, g : D → I with f ≤ g, the inequality Mf(x) dx ≤ Mg(x) dx is valid. Further-
more, for an R-interval [p, q) ⊂ D and function f like above, we will keep all
integral-type convections. For instance,

M
[p,q)

f(x) dx =

q

M
p

f(x) dx.

Let us now present some simple results related to decreasing functions.
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Lemma 5.1. Let M be a R∗-weighted, monotone mean on I, and let a ∈ R∗ ∩
(0,∞). Then for any nonincreasing R∗-simple function f : [0, a) → I, the mapping
F : R∗ ∩ (0, a] → I given by F (u) :=M

u
0 f(t) dt is nonincreasing.

Proof. Fix p, q ∈ R∗ ∩ (0, a] with q < p. As f is decreasing, we know that
f(p

q
t) ≤ f(t) for all t ∈ [0, q). Therefore, by null homogeneity in the weights

and monotonicity,

F (p) =

p

M
0

f(t) dt =

q

M
0

f
(p
q
· t
)
dt ≤

q

M
0

f(t) dt = F (q),

which was to be proved. �

By Theorem 2.5, we know that M has a unique extension to an R∗-weighted
mean on I. As the weights are fixed (and belong to R), one can assume without
loss of generality that we are dealing with a weight sequence from R∗. Conse-
quently, as it is handy, M is an R∗-weighted mean.

To verify Theorem 2.8, it suffices to prove that, for all N ∈ N, λ ∈ W 0(R∗)
and x ∈ IN , there holds

N∑
n=1

λn

n

M
i=1

(xi, λi) ≤ H1(M)
N∑

n=1

λnxn. (5.1)

Indeed, if we pass the limit N → ∞, this inequality would imply that Hλ(M) ≤
H1(M). This proof is split into two parts. In fact, each part can be formulated
as a separate lemma.

Lemma 5.2. Let M be a monotone R∗-weighted mean on I. Then for all N ∈ N
and all nonincreasing sequences x ∈ IN and weights λ ∈ W 0

N(R
∗), the inequality

(5.1) is valid.

Lemma 5.3. Let M be a symmetric and monotone R-weighted mean on I. Then
for all N ∈ N and all vectors x ∈ IN and weights λ ∈ W 0

N(R), there exist M ∈ N,
a nonincreasing sequence y ∈ IM , and a weight sequence ψ ∈ W 0

M(R) such that
N∑

n=1

λnxn =
M∑

m=1

ψmym

and
N∑

n=1

λn

n

M
i=1

(xi, λi) ≤
M∑

m=1

ψm

m

M
i=1

(yi, ψi). (5.2)

Moreover, ∑
{n : xn=t}

λn =
∑

{m : ym=t}

ψm for all t ∈ R. (5.3)

We emphasize that the fact that the sum of the λ’s and ψ’s is equal is not used
in the proof of main theorem; however, it could be potentially useful in another
setting.
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Having these two lemmas, for a given sequence x = (x1, x2, . . .) with weights
λ ∈ W 0(R∗) and N ∈ N, we can apply Lemma 5.3 and then Lemma 5.2 to a
vector y ∈ IM with corresponding weights ψ to obtain

N∑
n=1

λn

n

M
i=1

(xi, λi) ≤
M∑

m=1

ψm

m

M
i=1

(yi, ψi) ≤ H1(M)
M∑
n=1

ψnyn = H1(M)
N∑

n=1

λnxn.

Then, if we pass the limit N → ∞, we get
∞∑
n=1

λn

n

M
i=1

(xi, λi) ≤ H1(M)
∞∑
n=1

λnxn
(
λ ∈ W 0(R∗)

)
,

which obviously implies that Hλ(M) ≤ H1(M). As 1 ∈ W 0(R), the equality in
Theorem 2.8 easily follows.

In order to make the proofs more compact, define Λn := λ1 + · · · + λn for
n ∈ {1, . . . , N}. In view of the null homogeneity of the mean M, we may also
assume that ΛN = 1. Now, define the function f : [0, 1) → R as

f |[Λn−1,Λn) := xn, n ∈ {1, . . . , N}.

Then we have that
Λn

M
0

f(x) dx =
n

M
i=1

(xi, λi), n ∈ {1, . . . , N}.

Proof of Lemma 5.2. First observe that if H1(M) = ∞, then this lemma is trivial.
From now on, suppose that H1(M) is finite. Define, for j ∈ N, the function
fj : [0, 1) → I by

fj|[n/j,(n+1)/j) := f
(n
j

)
for all n ∈ {0, . . . , j − 1}.

As the sequence x is nonincreasing, thus f is nonincreasing too. Therefore, f ≤ fj
and fj is nonincreasing for every j ∈ N. Thus, by Lemma 5.1, also nonincreasing
is the function Cj : [0, 1) → I given by

Cj(t) :=

{
inf s≤t

s∈R∗ M
s
0 fj(x) dx if t ∈ (0, 1),

x1 if t = 0
(j ∈ N).

As Cj is monotonic, it is also Riemann integrable. Using these properties, we get

λn ·
n

M
i=1

(xi, λi) = λn ·
Λn

M
0

f(x) dx ≤ λn ·
Λn

M
0

fj(x) dx

= λn · Cj(Λn) =

∫ Λn

Λn−1

Cj(Λn) dx ≤
∫ Λn

Λn−1

Cj(x) dx.

Therefore, for all j ∈ N,
N∑

n=1

λn ·
n

M
i=1

(xi, λi) ≤
∫ 1

0

Cj(x) dx. (5.4)
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We now majorize the right-hand side of this inequality. Observe first that for
all j ∈ N, ∫ 1

j

0

Cj(x) dx ≤ 1

j
· Cj(0) =

x1
j
. (5.5)

Furthermore, for all j, n ∈ N such that n < j,

∫ n+1
j

n
j

Cj(x) dx ≤ 1

j
· Cj

(n
j

)
=

1

j
·

n
j

M
0

fj(x) dx =
1

j
·

n

M
i=0

(
fj

( i
j

)
, 1
)
. (5.6)

If we now sum up (5.5) and (5.6) for all n ∈ {1, . . . , j − 1}, then we obtain, for
all j ≥ 2, ∫ 1

0

Cj(x) dx ≤ 1

j

(
x1 +

j−1∑
n=1

n

M
i=0

(
fj

( i
j

)
, 1
))
. (5.7)

However, M is a 1-weighted Hardy mean. In this setting, by [34, Proposition 3.1],
we have that the finite estimation announced in the definition of Hardy constant
remains valid for finite sequences too. That is,

j−1∑
n=1

n

M
i=0

(
fj

( i
j

)
, 1
)
≤ H1(M) ·

j−1∑
n=0

fj

(n
j

)
(j ≥ 2). (5.8)

Moreover, as f is nonincreasing, we have

1

j

j−1∑
n=0

fj

(n
j

)
=

1

j

j−1∑
n=0

f
(n
j

)
≤ x1

j
+

∫ 1

0

f(x) dx =
x1
j
+

N∑
n=1

λnxn (j ≥ 2). (5.9)

Now combining (5.4), (5.7), (5.8), and (5.9), for j ≥ 2, we obtain

N∑
n=1

λn ·
n

M
i=1

(xi, λi) ≤
∫ 1

0

Cj(x) dx ≤ 1

j

(
x1 +

j−1∑
n=1

n

M
i=0

(
fj

( i
j

)
, 1
))

≤ 1

j

(
x1 +H1(M)

j−1∑
n=0

fj

(n
j

))
≤ (1 +H1(M))x1

j
+H1(M)

N∑
n=1

λnxn.

Finally, as j → ∞, we get (5.1). �

Now we turn to the proof of Lemma 5.3. Let us stress that in this lemma, the
assumptions for the mean M are more restrictive. More precisely, we assume M

to be not only monotone but also symmetric. On the other hand, we need M

to be R-weighted instead of R∗-weighted only. However, in view of Theorem 2.5,
this difference is rather a technical one.
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Proof of Lemma 5.3. Throughout this proof, let us denote by g∗ the right contin-
uous nonincreasing rearrangement of an R-simple function g : D → R. It is easy
to observe that g∗ is again R-simple.

Without loss of generality, we may assume that the members of the sequence λ
are positive. Consider a strictly increasing sequence (Ψm)

M
m=0 ∈ RM+1 such that

Ψ0 = 0, ΨM = ΛN , (Λn)
N
n=0 is a subsequence of (Ψm)

M
m=0, and f ∗ is constant on

all intervals [Ψm−1,Ψm), where m ∈ {1, 2, . . . ,M}.
Set ψm := Ψm − Ψm−1 and ym to be the value of f ∗ on [Ψm−1,Ψm); m ∈

{1, . . . ,M}. Furthermore, for every n ∈ {0, . . . , N} there exists a unique in ∈
{0, . . . ,M} such that Ψin = Λn. As ΨM = ΛN , we obtain iN = M ; furthermore,
by Λ0 = 0 = Ψ0, we get i0 = 0.

Obviously (ym) is nonincreasing,
∑N

n=1 λn = ΛN = ΨM =
∑M

m=1 ψM , and

N∑
n=1

λnxn =

∫ ΛN

0

f(x) dx =

∫ ΨM

0

f(x) dx =

∫ ΨM

0

f ∗(x) dx =
M∑

m=1

ψmym.

Therefore, the only property which remains to be proved is (5.2). One can easily
see that

(f |[0,u))∗(x) ≤ f ∗(x), x ∈ [0, u), u ∈ R ∩ [0,ΛN).

Thus, by the monotonicity of M,

u

M
0

(f |[0,u))∗(x) dx ≤
u

M
0

f ∗(x) dx, u ∈ R ∩ [0,ΛN).

But, by the definition, (f |[0,u))∗ and f |[0,u) have the same distribution. Whence,
applying the symmetry of M, we arrive at

u

M
0

f(x) dx ≤
u

M
0

f ∗(x) dx, u ∈ R ∩ [0,ΛN).

Therefore, applying this inequality for u = Λn, we obtain

N∑
n=1

λn

n

M
i=1

(xi, λi) =
N∑

n=1

λn

Λn

M
0

f(x) dx ≤
N∑

n=1

λn

Λn

M
0

f ∗(x) dx. (5.10)

We now note that

λn = Λn − Λn−1 = Ψin −Ψin−1 =
in∑

m=in−1+1

(Ψm −Ψm−1).
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Therefore, by Lemma 5.1, the definition of (in), and the identity above, we obtain

N∑
n=1

λn ·
Λn

M
0

f ∗(x) dx =
N∑

n=1

( in∑
m=in−1+1

(Ψm −Ψm−1)
) Ψin

M
0

f ∗(x) dx

≤
N∑

n=1

in∑
m=in−1+1

(Ψm −Ψm−1)
Ψm

M
0

f ∗(x) dx

=
M∑

m=1

(Ψm −Ψm−1)
Ψm

M
0

f ∗(x) dx =
M∑

m=1

ψm ·
m

M
i=1

(yi, ψi).

But this inequality combined with (5.10) is exactly what (5.2) states. As this was
the only remaining property to be verified, the proof is complete. �
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