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Abstract. We characterize those bounded multilinear operators that factor
through a Hilbert space in terms of its behavior in finite sequences. This extends
a result, essentially due to Kwapień, from the linear to the multilinear setting.
We prove that Hilbert–Schmidt and Lipschitz 2-summing multilinear operators
naturally factor through a Hilbert space. We also prove that the class Γ of
all multilinear operators that factor through a Hilbert space is a maximal
multi-ideal; moreover, we give an explicit formulation of a finitely generated
tensor norm γ which is in duality with Γ.

1. Introduction and preliminaries

The fact that a bounded linear operator between Banach spaces factors through
a Hilbert space is a priori a fairly abstract property. It is possible, however, to
describe it in terms of the behavior of the operator in a special type of finite
sequences of the domain. Such a local expression of the property makes it possible
to relate it with other fundamental notions of the geometry of Banach spaces.
This is the case, for example, of Kwapień’s characterization of the Banach spaces
that are isomorphic to a Hilbert space as those having type 2 and cotype 2 (see
[14]). (Regarding the factorization of linear operators through a Hilbert space,
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we refer the reader to the original papers [10] and [16], and to the corresponding
chapters in [6], [20], and [23].)

The problem of factoring an operator through a Hilbert space has also been
studied for mappings other than linear operators. This is the case of Lipschitz
mappings between metric spaces and completely bounded operators between
operator spaces developed in [4] and [21], respectively. This problem certainly
makes sense for multilinear mappings. Compact (see [13]), nuclear (see [1]), p-
summing (see [3], [7], [19]), integral (see [24]), and other classes of linear oper-
ators have been extended to the multilinear setting. Despite this, the case of
factoring a multilinear operator through a Hilbert space, as far as we know, has
not been studied or even defined. In this article, we provide a solution to this
problem. We first briefly describe our results.

We say that T : X1×· · ·×Xn → Y factors through a Hilbert space if there exist
a Hilbert spaceH, a subsetM ofH, a bounded multilinear operator A : X1×· · ·×
Xn → H, and a Lipschitz function B :M → Y such that A(X1 × · · · ×Xn) ⊂M
and

X1 × · · · ×Xn

A
&&

T // Y

M
B

>>

i
��
H

(1.1)

commutes; that is, T = B ◦ A. We define Γ(T ) = inf ‖A‖Lip(B), where the
infimum is taken over all possible factorizations as in (1.1).

Our main result, Theorem 3.3, says that if π denotes the projective tensor norm
on X1 ⊗ · · · ⊗Xn, then we have the following.

Kwapień-type characterization. The multilinear operator T : X1 × · · · ×Xn → Y
factors through a Hilbert space if and only if there is a constant C > 0 such that

m∑
i=1

∥∥T (x1i , . . . , xni )− T (z1i , . . . , z
n
i )
∥∥2 ≤ C2

m∑
i=1

π(s1i ⊗ · · · ⊗ sni − t1i ⊗ · · · ⊗ tni )
2

holds for all finite sequences (x1i , . . . , x
n
i )

m
i=1, (z

1
i , . . . , z

n
i )

m
i=1, (s

1
i , . . . , s

n
i )

m
i=1, and

(t1i , . . . , t
n
i )

m
i=1 in X1 × · · · ×Xn with the property

m∑
i=1

∣∣ϕ(x1i , . . . , xni )− ϕ(z1i , . . . , z
n
i )
∣∣2 ≤ m∑

i=1

∣∣ϕ(s1i , . . . , sni )− ϕ(t1i , . . . , t
n
i )
∣∣2

for all ϕ in L(X1, . . . , Xn). In this situation, Γ(T ) is the best constant C.

Note that in the case n = 1, (1.1) reduces to

X

A   

T // Y

H
B

>>
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where all the involved operators are linear and M = A(X) = H. In this case, we
get an equivalent formulation of the well-known linear characterization (essen-
tially due to Kwapień), namely, that a bounded linear operator T : X → Y
factors through a Hilbert space if and only if there exists a constant C > 0 such
that

m∑
i=1

∥∥T (xi)∥∥2 ≤ C2

m∑
i=1

‖ai‖2

holds for all finite sequences (xi)
m
i=1 and (ai)

m
i=1 in X with the property

m∑
i=1

∣∣x∗(xi)∣∣2 ≤ m∑
i=1

∣∣x∗(ai)∣∣2 ∀x∗ ∈ X∗.

In this way, Theorem 3.3 extends Kwapień’s formulation of linear operators
factoring through a Hilbert space to the multilinear setting. (The interested reader
is strongly encouraged to review Lindenstrauss and Pelczynski’s early formulation
of this property in [16, Proposition 5.2] and Kwapień’s subsequent versions in
[14, Proposition 3.1] and [15, Theorem 2′]; see also Pisier [20, Theorem 2.4] for
an accessible proof and a good exposition of this class in the linear setting.)

In relation to other multilinear properties, we prove that every Hilbert–Schmidt
multilinear operator (see [18, Definition 5.2]), as well as every Lipschitz 2-summing
multilinear operator (see [3, Definition 3.1]), factors through a Hilbert space. We
also prove that the class of multilinear operators which satisfy diagram (1.1)
enjoys ideal properties. To explain this, let L denote the class of all bounded
multilinear operators. If we denote by Γ the subclass of L that consists of all
bounded multilinear operators that factor through a Hilbert space with the func-
tion Γ(·), then the pair [Γ,Γ(·)] is a maximal multi-ideal in the sense of Floret and
Hunfeld [9]. This affirmation is a consequence of Proposition 4.1 and Theorem 3.2,
which establish the multi-ideal nature of Γ and maximality, respectively.

In duality with the maximal multi-ideal nature of the class Γ, we exhibit a
finitely generated tensor norm γ which satisfies that

(X1 ⊗ · · · ⊗Xn ⊗ Y, γ)∗ = Γ(X1, . . . , Xn;Y
∗)

and

(X1 ⊗ · · · ⊗Xn ⊗ Y ∗, γ)∗ ∩ L(X1, . . . , Xn, Y ) = Γ(X1, . . . , Xn;Y )

hold isometrically. These results are presented as Theorem 4.4 and Corollary 4.5,
respectively.

Following the ideas developed throughout the article, we also introduce the
notion of polynomials that can be factored through a Hilbert space (see Defi-
nition 5.1), and we state a Kwapień-type characterization for polynomials (see
Theorem 5.3). To obtain these results, we have applied the general approach intro-
duced in [8]. This approach is, basically, to study a multilinear map T by means
of its associated Σ-operator fT (see Section 1.1). Posing the problem of factoring
T through a Hilbert space in the context of Σ-operators allowed us to use the geo-
metric richness of the tensor products of Banach spaces. Moreover, since bounded
Σ-operators are Lipschitz mappings (see [8, Theorem 3.2]), this approach enables
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us to relate, naturally, multilinear operators that factor through a Hilbert space
with the metric study carried out in [4] (see Section 2.1).

The material here is organized as follows. In Section 1.1, we fix some standard
notation of Banach spaces and multilinear theories. We also recall from [8] the
notion of a Σ-operator. In Section 2, we give the precise definition of a multilinear
operator that factors through a Hilbert space, along with some examples. Sec-
tion 3 is dedicated to proving the main result, Theorem 3.3. Section 4 is devoted to
proving that the class Γ of all multilinear operators that factor through a Hilbert
space is a maximal multi-ideal. The duality with the tensor norm is proved in
Theorem 4.4 and Corollary 4.5. In Section 5, we study the polynomials that factor
through a Hilbert space, proving a Kwapień-type characterization for them.

1.1. Notation and preliminaries. We use standard notation of the theory of
Banach spaces. The letter K denotes the real or complex numbers. The unit ball
of a the normed space X is denoted by BX . We denote by KX : X → X∗∗ the
canonical embedding.

Throughout this article, n denotes a positive integer and the capital letters
X1, . . . , Xn, Y and Z denote Banach spaces over the same field. The symbol
L(X1, . . . , Xn, Y ) denotes the Banach space of bounded multilinear operators
T : X1 × · · · × Xn → Y with the usual norm ‖T‖ = sup{‖T (x1, . . . , xn)‖ | xi ∈
BXi

}. For simplicity of notation, we write L(X1, . . . , Xn) in the case Y = K.
The set of decomposable tensors of the algebraic tensor product X1 ⊗ · · ·⊗Xn

is denoted by ΣX1,...,Xn . That is,

ΣX1,...,Xn := {x1 ⊗ · · · ⊗ xn | xi ∈ Xi}.

Let π be the projective tensor norm given by

π(u;X1 ⊗ · · · ⊗Xn) = inf
{ m∑

i=1

‖x1i ‖ . . . ‖xni ‖
∣∣∣ u =

m∑
i=1

x1i ⊗ · · · ⊗ xni

}
.

The symbol Σπ
X1,...,Xn

denotes the resulting metric space obtained by restricting
the norm π to ΣX1,...,Xn .

The universal property of the projective tensor product establishes that for
every bounded multilinear operator T : X1 × · · · ×Xn → Y there exists a unique

bounded linear operator T̃ : X1⊗̂π · · · ⊗̂πXn → Y such that T (x1, . . . , xn) =

T̃ (x1 ⊗ · · · ⊗ xn). In particular, the restriction of T̃ to Σπ
X1...Xn

is a Lipschitz

function. In this situation, the linear map T̃ is called the linearization of T and

fT = T̃ |Σπ
X1,...,Xn

: Σπ
X1,...,Xn

→ Y is called the Σ-operator associated to T . More-

over, we have ‖T‖ = Lip(fT ) = ‖T̃‖ (for details on Σ-operators, the reader is
referred to [8]).

A norm β on X1 ⊗ · · · ⊗Xn is said to be a reasonable crossnorm if

ε(u) ≤ β(u) ≤ π(u) ∀u ∈ X1 ⊗ · · · ⊗Xn,

where ε denotes the injective tensor norm defined by

ε(u;X1 ⊗ · · · ⊗Xn) = sup
{∣∣x∗1 ⊗ · · · ⊗ x∗n(u)

∣∣ ∣∣ x∗i ∈ BX∗
i
, 1 ≤ i ≤ n

}
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for each u in X1 ⊗ · · · ⊗Xn. (The interested reader may refer to [5], [22], and [9]
for details on tensor norms.)

According to Theorem 2.1 of [8], we have that if β is a reasonable crossnorm on

X1 ⊗ · · · ⊗Xn, then the resulting metric space Σβ
X1,...,Xn

(obtained by restricting

the norm β to ΣX1,...,Xn) is Lipschitz equivalent to Σπ
X1,...,Xn

. Specifically, we have

π(p− q) ≤ 2n−1β(p− q) ∀p, q ∈ ΣX1,...,Xn (1.2)

for all reasonable crossnorms β on X1 ⊗ · · · ⊗Xn.

2. Definition, examples, and the metric case

Definition 2.1. We say that the multilinear operator T : X1 × · · · × Xn → Y
factors through a Hilbert space if there exists a Hilbert space H, a subset M
of H, a bounded multilinear operator A : X1 × · · · × Xn → H whose image is
contained in M , and a Lipschitz function B :M → Y such that the diagram

X1 × · · · ×Xn

A
&&

T // Y

M
B

>>

��
H

(2.1)

commutes. We define Γ(T ) as inf ‖A‖Lip(B), where the infimum is taken over
all possible factorizations as above.

In the previous definition it is enough to take M as A(X1 × · · · × Xn) (or
equivalently, its closure in H). The collection of multilinear operators T : X1 ×
· · · ×Xn → Y which admit a factorization through a Hilbert space as in (2.1) is
denoted by the symbol Γ(X1, . . . , Xn;Y ). The symbol Γ denotes the class of all
bounded multilinear operators that factor through a Hilbert space.

It is easy to see that the translation of the diagram (2.1) to the setting of
Σ-operators acquires the form

Σπ
X1,...,Xn

fA ''

fT // Y

fA(ΣX1,...,Xn)

B

99

��
H

(2.2)

where fT and fA are the Σ-operators associated to the bounded multilinear oper-
ators T and A. In other words, fT = BfA.

In the rest of this article, H1, . . . , Hn and H denote Hilbert spaces,
H1⊗̂2 · · · ⊗̂2Hn denotes its Hilbert tensor product, and ‖·‖2 denotes its reasonable
crossnorm (we refer the reader to [12, Section 2.6] for details of this construction).
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Example 2.2 (The canonical multilinear map on Hilbert spaces). The canonical
multilinear map

⊗ : H1 × · · · ×Hn → H1⊗̂π · · · ⊗̂πHn,

(x1, . . . , xn) 7→ x1 ⊗ · · · ⊗ xn

factors through the Hilbert space H1⊗̂2 · · · ⊗̂2Hn. Moreover, (1.2) implies that

Γ(⊗) ≤ ‖ ⊗ ‖Lip(Id : Σ
‖·‖2
H1,...,Hn

→ Σπ
H1,...,Hn

) ≤ 2n−1.

Note that the linearization ⊗̃ is the identity map on H1⊗̂π · · · ⊗̂πHn. Hence, ⊗̃
does not factor through a Hilbert space in the linear sense since for n > 1,
H1⊗̂π · · · ⊗̂πHn contains a subspace isometric to `1 (see [22, Example 2.10]).

As a consequence of the previous discussion, T ∈ Γ(X1, . . . , Xn;Y ) does not

imply that its linearization T̃ : X1⊗̂π · · · ⊗̂πXn → Y factors through a Hilbert
space. However, the converse is naturally true.

Example 2.3 (Multilinear operators whose linearizations factor through a Hilbert
space). Consider a bounded multilinear operator T : X1 × · · · ×Xn → Y whose

linearization T̃ : X1⊗̂π · · · ⊗̂πXn → Y factors through a Hilbert space. Note that

a typical factorization T̃ = BA implies that T factors as T = B|fA(ΣX1,...,Xn )
(A⊗).

Therefore, T ∈ Γ(X1, . . . , Xn;Y ) and Γ(T ) ≤ Γ(T̃ ). In other words, the operator

Γ(X1⊗̂π · · · ⊗̂πXn;Y )→ Γ(X1, . . . , Xn;Y ),

T̃ 7→ T

is bounded and has norm at most 1.

Example 2.4 (When every factor of the domain is a Hilbert space). It is natural
to expect that operators of the form T : H1 × · · · ×Hn → Y factor through the
Hilbert space H1⊗̂2 · · · ⊗̂2Hn. Indeed, the identity

Γ(H1, . . . , Hn;Y )→L(H1, . . . , Hn;Y ),

T 7→ T

is a surjective isomorphism for every Y . To see this, let T : H1 × · · · ×Hn → Y
be a bounded multilinear operator. Recall that fT : Σπ

H1,...,Hn
→ Y is a Lipschitz

function and ⊗ : H1×· · ·×Hn → H1⊗̂2 · · · ⊗̂2Hn is bounded. From (1.2) we have

that fT : Σ
‖·‖2
H1,...,Hn

→ Y is also Lipschitz. Hence, the factorization T = fT⊗ tells

us that T ∈ Γ(H1, . . . , Hn;Y ) and

Γ(T ) ≤ ‖ ⊗ ‖Lip(fT : Σ
‖·‖2
H1,...,Hn

→ Y ) ≤ 2n−1‖T‖.

Furthermore, Proposition 4.1(iii) says that ‖T‖ ≤ Γ(T ).

Example 2.5 (Hilbert–Schmidt multilinear operators). Following Matos [18], let
LHS(H1, . . . , Hn;H) denote the Banach space of Hilbert–Schmidt multilinear
operators T : H1 × · · · ×Hn → H endowed with the norm
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‖T‖HS =
( ∑

ji∈Ji
1≤i≤n

∥∥T (e1j1 , . . . , enjn)∥∥2
) 1

2
,

where (eij)j∈Ji is an orthonormal basis of Hi.

The previous example tells us that every Hilbert–Schmidt multilinear operator
factors through a Hilbert space. Even more, we have the following.

Proposition 2.6. We have ‖Id : LHS(H1, . . . , Hn;H) → Γ(H1, . . . , Hn;H)‖ ≤ 1.

Proof. Recall that the spaces LHS(H1, . . . , Hn;H) and LHS(H1⊗̂2 · · · ⊗̂2Hn;H) are

isometrically isomorphic via the assignment T 7→ T̃ (see [18, Proposition 5.10]).
Then every Hilbert–Schmidt multilinear operator T : H1 × · · · ×Hn → H factors
as T = fT⊗ through H1⊗̂2 · · · ⊗̂2Hn. Moreover,∥∥fT (p)− fT (q)

∥∥ ≤ ‖p− q‖2‖T‖HS ∀p, q ∈ ΣH1,...,Hn .

Hence Γ(T ) ≤ ‖ ⊗ ‖Lip(fT : Σ
‖·‖2
H1,...,Hn

→ H) ≤ ‖T‖HS. �

With this, we obtain that for every 2 ≤ p < ∞, every fully absolutely p-
summing operator T ∈ Lp

fas(H1, . . . , Hn;H) (for this notion, see [18, Defini-
tion 2.2]) factors through a Hilbert space. In [18, Proposition 5.5], the author
proves that L2

fas(H1, . . . , Hn;H) is isometrically isomorphic to LHS(H1, . . . ,
Hn;H). Hence, the preceding proposition asserts that every absolutely 2-summing
multilinear operator T between Hilbert spaces factors through a Hilbert space
and Γ(T ) ≤ ‖T‖fas,2. Even more, according to [18, Proposition 5.7], Lp

fas(H1, . . . ,
Hn;H) is isomorphic to LHS(H1, . . . , Hn;H) for 2 ≤ p < ∞. As a consequence,
every fully absolutely p-summing multilinear operator T factors through a Hilbert
space and Γ(T ) ≤ (bp)

n‖T‖fas,p, where bp is the greater constant from Khintchine’s
inequality for all 2 ≤ p <∞.

It is worth pointing out that the morphism in Proposition 2.6 is not surjective
since ⊗ : H1 × · · · × Hn → H1⊗̂2 · · · ⊗̂2Hn is a bounded multilinear operator
which is not Hilbert–Schmidt when each Hi is infinite-dimensional. The same
observation is also valid for the case of fully absolutely summing multilinear
operators that we have dealt with before.

Example 2.7 (Lipschitz 2-summing multilinear operators). In this example, we
relate the notion of Lipschitz 2-summing multilinear operators developed in [3]
with multilinear operators that factor through a Hilbert space.

One of the equivalences of the Lipschitz 2-summability of T : X1×· · ·×Xn → Y
(see [3, Theorem 1.1]) establishes that T factors as

X1 × · · · ×Xn

i
��

T // Y

i(ΣX1,...,Xn)

��

j2|i(ΣX1,...,Xn
)

// j2 ◦ i(ΣX1,...,Xn)

��

u

OO

C(BL(X1,...,Xn)∗) j2
// L2(µ)
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where µ is a probability measure on (BL(X1,...,Xn)∗ , w
∗), i : X1 × · · · × Xn →

C(BL(X1,...,Xn)∗) acts by evaluation, j2 : C(BL(X1,...,Xn)∗) → L2(µ) is the canonical

inclusion, and u is a Lipschitz function such that πLip
2 (T ) = Lip(u). Hence T is

in Γ(X1, . . . , Xn;Y ) and Γ(T ) ≤ πLip
2 (T ).

Actually, we have proved that∥∥Id : ΠLip
2 (X1, . . . , Xn;Y ) → Γ(X1, . . . , Xn;Y )

∥∥ ≤ 1

holds for all Banach spaces X1, . . . , Xn and Y .

2.1. Relation with the metric case. Now we turn our attention to Lipschitz
mappings between metric spaces. Recall from [4] that a Lipschitz function between
metric spaces f : X → Y factors through a subset of a Hilbert space if there exist
a Hilbert space H and a subset Z of H (actually, we may take Z = f(X)) and
two Lipschitz functions A : X → Z, B : Z → Y such that f = BA. In this

case γLip2 (f) = inf Lip(A) Lip(B), where the infimum is taken over all possible
factorizations of f as before.

It is clear from (2.2) that if T is an element in Γ(X1, . . . , Xn;Y ), then its
associated Σ-operator fT : Σπ

X1,...,Xn
→ Y is a Lipschitz function that can be

factored through a subset of a Hilbert space in the sense of [4]. Moreover, we
have

γLip2 (fT ) ≤ Γ(T ).

In other words, every multilinear operator T in Γ(X1, . . . , Xn;Y ) gives rise to a

Lipschitz function fT in ΓLip
2 (Σπ

X1,...,Xn
;Y ). That is, the operator

Γ(X1, . . . , Xn;Y ) → ΓLip
2 (Σπ

X1,...,Xn
;Y ),

T 7→ fT
(2.3)

is bounded and has norm at most 1.
We do not know if the metric approach of [4] restricts well to the setting of

multilinear operators we are proposing. Specifically, we have the following two
questions.

Question 1. Is the map defined in (2.3) an isometry?

Question 2. We do not know if T factors through a Hilbert space whenever fT does
in the metric sense. That is, does fT in ΓLip

2 (X;Y ) imply T in Γ(X1, . . . , Xn;Y )?

3. Kwapień-type characterization

In this section, we characterize the multilinear operators that factor through
a Hilbert space in terms of their behavior on some special finite sequences (see
Theorem 3.3). This fact relies on the local character of the property of factoring
through a Hilbert space, which is proved in Theorem 3.2. First, we need some
facts and notation.

Sets of the form fA(ΣX1,...,Xn) = A(X1 × · · · ×Xn), where A : X1 × · · · ×Xn →
Z is bounded, are fundamental for the proof of Theorem 3.2. We collect some
relevant facts about these sets in the next lemma. We omit its proof since it can
be done by standard arguments of the theory of Banach spaces.
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Lemma 3.1. Let A : X1 × · · · × Xn → Z be a bounded multilinear operator
between Banach spaces. Then we have the following.

(i) The set (fA(ΣX1,...,Xn))
∗ defined by{

ψ : fA(ΣX1,...,Xn) → K
∣∣ ψA is multilinear and ψ is Lipschitz

}
is a vector space endowed with the algebraic operations defined pointwise;
moreover, it becomes a Banach space with the Lipschitz norm induced
by Z.

(ii) Let B : fA(ΣX1,...,Xn) → Y be a Lipschitz function such that the composi-
tion BA : X1 × · · · ×Xn → Y is multilinear. The function

B∗ : Y ∗ →
(
fA(ΣX1,...,Xn)

)∗
,

y∗ 7→ y∗B
(3.1)

is a well-defined bounded linear operator and ‖B∗‖ ≤ Lip(B). The linear
operator B∗ is called the adjoint of B.

Let Ei be a finite-dimensional subspace of Xi, for 1 ≤ i ≤ n, and let L be a
finite-codimensional subspace of Y . We define the multilinear map

IE1,...,En : E1 × · · · × En → X1⊗̂π · · · ⊗̂πXn,

(x1, . . . , xn) 7→ x1 ⊗ · · · ⊗ xn

and denote by QL : Y → Y/L the natural quotient map.

Theorem 3.2. The multilinear operator T : X1 × · · · × Xn → Y admits a fac-
torization through a Hilbert space if and only if

s := supΓ(QLfT IE1,...,En) <∞,

where the supremum is taken over all finite-dimensional subspaces Ei of Xi and
finite-codimensional subspaces L of Y . In this situation, Γ(T ) = s.

Proof. Suppose that T : X1 × · · · ×Xn → Y factors through a Hilbert space. Let
Ei and L be as above. The factorization T = BA implies that QLfT IE1,...,En =
(QLB)(fAIE1,...,En) and that

Γ(QLfT IE1,...,En) ≤ Γ(T ).

Therefore, s must be finite.
For the converse, we have to translate a condition on finite-dimensional spaces

to a global condition. To this end, we use the technique of ultraproducts. Basic
facts about ultraproducts of Banach spaces can be found in [11].

Let us denote by F(X) the collection of all finite-dimensional subspaces of X
and by CF(Y ) the collection of all finite-codimensional subspaces of Y . Define
P = F(X1)×· · ·×F(Xn)×CF(Y ). The relation ≤ defined by (E1, . . . , En, L) ≤
(M1, . . . ,Mn, N) if Ei ⊂ Mi and N ⊂ L defines a partial order on P . Let A be
an ultrafilter on P containing the sets

(E1, . . . , En, L)
# =

{
(M1, . . . ,Mn, N)

∣∣ (E1, . . . , En, L) ≤ (M1, . . . ,Mn, N)
}
.
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For each (E1, . . . , En, L) ∈ P , there exists a factorization

E1 × · · · × En

AE1,...,EnL **

QLfT IE1,...,En // Y/L

AE1,...,EnL(E1 × · · · × En)
BE1,...,EnL

66

��
HE1,...,EnL

with ‖AE1,...,En,L‖ ≤ 1 and Lip(BE1,...,En,L) ≤ s. By the finite-dimensional hypoth-

esis, we may assume that HE1,...,En,L = `
n(E1,...,En,L)
2 , where n(E1, . . . , En, L) is a

positive integer.
For each (E1, . . . , En, L) ∈ P , define

AE1,...,En,L : X1 × · · · ×Xn → `
n(E1,...,En,L)
2 ,

(x1, . . . , xn) 7→

{
AE1,...,En,L(x1, . . . , xn) if xi ∈ Ei, 1 ≤ i ≤ n,

0 otherwise.

It is not difficult to see that

A : X1 × · · · ×Xn → (`
n(E1,...,En,L)
2 )A,

(x1, . . . , xn) 7→
(
AE1,...,En,L(x

1, . . . , xn)
)
A

is a multilinear mapping. Moreover,∥∥A(x1, . . . , xn)∥∥
A
=

∥∥(AE1,...,En,L(x
1, . . . , xn)

)
A

∥∥
A

= lim
A

∥∥AE1,...,En,L(x
1, . . . , xn)

∥∥
≤ ‖x1‖ · · · ‖xn‖

implies that A is bounded and that ‖A‖ ≤ 1.
We extend the operator (BE1,...,En,L)∗ : (Y/L)∗ → (fAE1,...,En,L(ΣE1,...,En))

∗ (see
Lemma 3.1) as follows:

(BE1,...,En,L)∗ : Y ∗ →
(
fAE1,...,En,L(ΣE1,...,En)

)∗
,

y∗ 7→

{
(BE1,...,En,L)∗(ζ) if y∗ = Q∗

L(ζ) ∈ Q∗
L((Y/L)

∗),

0 otherwise.

Define

B : A(X1 × · · · ×Xn)→ Y ∗∗,

A(x1, . . . , xn) 7→ BA(x1, . . . , xn),

where

BA(x1, . . . , xn) : Y ∗ → K,
y∗ 7→ lim

A

〈
(BE1,...,En,L)∗(y∗), AE1,...,En,L(x

1, . . . , xn)
〉
.



244 M. FERNÁNDEZ-UNZUETA and S. GARCÍA-HERNÁNDEZ

The definitions of (BE1,...,En,L)∗ and AE1,...,En,L imply that∣∣〈(BE1,...,En,L)∗(y∗), AE1,...,En,L(x)
〉
−

〈
(BE1,...,En,L)∗(y∗), AE1,...,En,L(z)

〉∣∣
≤ s‖y∗‖

∥∥AE1,...,En,L(x)− AE1,...,En,L(z)
∥∥ (3.2)

holds for all y∗ in Y ∗, x = (x1, . . . , xn), z = (z1, . . . , zn) in X1 × · · · × Xn,
and (E1, . . . , En, L) in P . Inequality (3.2) has many implications. First, z1 ⊗
· · · ⊗ zn = 0 implies that BA(x1, . . . , xn) is well defined. Second, the equal-
ity (AE1,...,En,L(x1, . . . , xn))A = (AE1,...,En,L(z1, . . . , zn))A asserts that B does not
depend on representations since

lim
A

∥∥AE1,...,En,L(x1, . . . , xn)− AE1,...,En,L(z1, . . . , zn)
∥∥ = 0.

Third, the general case ensures that B is Lipschitz and that Lip(B) ≤ s.
To conclude, note that for every (x1, . . . , xn) ∈ X1 × · · · × Xn and y∗ ∈ Y ∗

there exists (E1, . . . , En, L) in P such that (x1, . . . , xn) ∈ E1 × · · · × En and
y∗ ∈ Q∗

L((Y/L)
∗). Then (E1, . . . , En, L)

# ∈ A ensures that

lim
A

〈
(BE1,...,En,L)∗(y∗), AE1,...,En,L(x

1, . . . , xn)
〉
= y∗

(
T (x1, . . . , xn)

)
.

As a consequence, BA(x1, . . . , xn) = KY T (x
1, . . . , xn) for every (x1, . . . , xn) in

X1 × · · · ×Xn. This means that

X1 × · · · ×Xn

A ))

T // Y

A(X1 × · · · ×Xn)

K−1
Y B

77

��

(`
n(E1,...,En,L)
2 )A

is commutative. Now, if we consider all the spaces `
n(E1,...,En,L)
2 as abstract L2-

spaces, then the ultraproduct (`
n(E1,...,En,L)
2 )A is an abstract L2-space. Moreover,

[17, Theorem 1.b.2] implies that this ultraproduct is (order) linearly isometric
to L2(µ) for some measure space (Ω, µ). This means that T factors through a
Hilbert space and thatΓ(T ) ≤ s. �

Given finite sequences (pi)
m
i=1, (qi)

m
i=1, (aj)

l
j=1, (bj)

l
j=1 in ΣX1,...,Xn , we write

(pi, qi) ≤π (aj, bj) if

m∑
i=1

∣∣fϕ(pi)− fϕ(qi)
∣∣2 ≤ l∑

j=1

∣∣fϕ(aj)− fϕ(bj)
∣∣2 ∀ϕ ∈ L(X1, . . . , Xn).

Note that it is enough, by adding zeros if necessary, to take m = l.

Theorem 3.3. The multilinear operator T : X1×· · ·×Xn → Y admits a factor-
ization through a Hilbert space if and only if there exists a constant C > 0 such
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that
m∑
i=1

∥∥T (x1i , . . . , xni )−T (z1i , . . . , zni )∥∥2 ≤ C2

m∑
i=1

π(s1i ⊗· · ·⊗sni −t1i ⊗· · ·⊗tni )2 (3.3)

holds for all finite sequences (x1i , . . . , x
n
i )

m
i=1, (z

1
i , . . . , z

n
i )

m
i=1, (s

1
i , . . . , s

n
i )

m
i=1, and

(t1i , . . . , t
n
i )

m
i=1 such that

(x1i ⊗ · · · ⊗ xni , z
1
i ⊗ · · · ⊗ zni ) ≤π (s1i ⊗ · · · ⊗ sni , t

1
i ⊗ · · · ⊗ tni ).

In this case, Γ(T ) is the best possible constant C as above.

Proof. First, let us suppose that T : X1 × · · · × Xn → Y admits a factorization
through a Hilbert space H, T = BA. If (pi, qi) ≤π (ai, bi), then it is clear that
(fA(pi), fA(qi)) ≤ (fA(ai), fA(bi)) in H. Given an orthonormal basis (eα)α∈I of H,
we have that ‖h‖2 =

∑
α |〈h, eα〉|2 holds for all h ∈ H. Then

m∑
i=1

∑
α∈F

∣∣〈fA(pi)− fA(qi), eα
〉∣∣2 = ∑

α∈F

m∑
i=1

∣∣〈fA(pi)− fA(qi), eα
〉∣∣2

≤
∑
α∈F

m∑
i=1

∣∣〈fA(ai)− fA(bi), eα
〉∣∣2

for all finite subsets F of I. Therefore,

m∑
i=1

∥∥fA(pi)− fA(qi)
∥∥2 ≤

m∑
i=1

∥∥fA(ai)− fA(bi)
∥∥2
. (3.4)

Finally, the combination of (3.4) and the Lipschitz conditions of B and fA imply
that

m∑
i=1

∥∥fT (pi)− fT (qi)
∥∥2 ≤ Lip(B)2‖A‖2

m∑
i=1

β(ai − bi)
2.

Consequently, (3.3) must be true and inf C ≤ Lip(B)‖A‖. Hence, inf C ≤ Γ(T ).
Conversely, let us prove that whenever T satisfies (3.3), then T admits such a

factorization. To this end, we will use Theorem 3.2. Let Ei be a finite-dimensional
subspace of Xi. Let us denote by π| the restriction of the norm π(·;X1⊗· · ·⊗Xn)
to E1 ⊗ · · · ⊗ En. Set

K :=
{
ζ ∈ (E1 ⊗ · · · ⊗ En, π|)∗

∣∣ ‖ζ‖ = 1
}
.

Since the spaces Ei are finite-dimensional, K is compact. Define S as the subset
of C(K) given by functions of the form

φ(ζ) =
m∑
i=1

∣∣ζ(pi)− ζ(qi)
∣∣2 − m∑

i=1

∣∣ζ(ai)− ζ(bi)
∣∣2,

where (ai), (bi), (pi), and (qi) are finite sequences in ΣE1,...,En such that

C2

m∑
i=1

π | (ai − bi)
2 <

m∑
i=1

∥∥fT (pi)− fT (qi)
∥∥2
.
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Every φ in S satisfies ‖φ‖ > 0 since there exists ζ in K such that φ(ζ) > 0.
Moreover, S is a convex cone disjoint of the negative open cone C− := {φ |
supφ < 0}. An application of the Hahn–Banach theorem ensures the existence
of a measure µ on K which separates C− and S. It is possible to adjust µ to be
a positive measure such that

0 ≤
∫
K

φ(ζ) dµ(ζ) ∀φ ∈ S. (3.5)

Since Ei is a finite-dimensional space,

D = sup
{(∫

K

∣∣ζ(a)− ζ(b)
∣∣2 dµ(ζ)) 1

2
∣∣∣ π | (a− b) ≤ 1, a, b ∈ ΣE1,...,En

}
> 0.

Thus, we may adjust µ such that D = C.
For every a, b, p, q ∈ ΣE1,...,En such that Cπ|(a − b) ≤ ‖fT (p) − fT (q)‖, (3.5)

asserts that ∫
K

∣∣ζ(a)− ζ(b)
∣∣2 dµ(ζ) ≤ ∫

K

∣∣ζ(p)− ζ(q)
∣∣2 dµ(ζ). (3.6)

In particular, (3.6) is also true for p and q in ΣE1,...,En such that C < ‖fT (p) −
fT (q)‖ and a, b in ΣE1,...,En with π|(a− b) < 1. As a consequence,

C ≤
(∫

K

∣∣ζ(p)− ζ(q)
∣∣2 dµ(ζ)) 1

2

for all p, q in ΣE1,...,En with C ≤ ‖fT (p)− fT (q)‖. Take c = ‖fT (p)− fT (q)‖ and
ε > 0. The homogeneous property of fT asserts that

C < (C + ε)
c

c
=

∥∥∥fT(C + ε

c
p
)
− fT

(C + ε

c
q
)∥∥∥.

Hence,

C

C + ε

∥∥fT (p)− fT (q)
∥∥ ≤

(∫
K

∣∣ζ(p)− ζ(q)
∣∣2 dµ) 1

2 ∀ε > 0.

This way,

∥∥fT (p)− fT (q)
∥∥ ≤

(∫
K

∣∣ζ(p)− ζ(q)
∣∣2 dµ(ζ)) 1

2 ∀p, q ∈ ΣE1,...,En . (3.7)

On the other hand, it is clear that(∫
K

∣∣ζ(a)− ζ(b)
∣∣2 dµ(ζ)) 1

2 ≤ Cπ | (a− b) ∀a, b ∈ ΣE1,...,En . (3.8)
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Finally, we obtain a factorization

E1 × · · · × En

A ((

fT IE1,...,En // Y

fA(ΣE1,...,En)

��

B

99

L2(µ)

where

A : E1 × · · · × En → L2(µ),

(x1, . . . , xn) 7→ A(x1, . . . , xn) : ζ 7→ ζ(x1 ⊗ · · · ⊗ xn)

and

B : fA(ΣE1,...,En)→ Y,

fA(x
1 ⊗ · · · ⊗ xn) 7→ T (x1, . . . , xn).

The boundedness of A is deduced from (3.8); moreover, ‖A‖ ≤ C. Inequality
(3.7) asserts that B is a well-defined Lipschitz function and that Lip(B) ≤ 1.

Let L be a finite-codimensional subspace of Y , and consider the composition
QLfIE1,...,En = (QLB)A. Since ‖QL‖ ≤ 1, we obtain that QLfIE1,...,En admits
a factorization through a Hilbert space and Γ(QLfT IE1,...,En) ≤ C. Theorem 3.2
implies that T belongs to Γ(X1, . . . , Xn;Y ) and Γ(T ) ≤ inf C. �

4. Ideal behavior and tensorial representation

The ideal features of Γ are contained in the next proposition. We omit its proof
since it follows easily from the definition, using the characterization provided by
Theorem 3.3.

Proposition 4.1. Let X1, . . . , Xn and Y be Banach spaces. Then we have the
following.

(i) We have that Γ is a norm on Γ(X1, . . . , Xn;Y ).
(ii) Every rank 1 multilinear operator

ϕ · y : X1 × · · · ×Xn → Y,

(x1, . . . , xn) 7→ ϕ(x1, . . . , xn)y

with ϕ ∈ L(X1, . . . , Xn) and y ∈ Y is an element of Γ(X1, . . . , Xn;Y ) and
Γ(ϕ · y) ≤ ‖ϕ‖‖y‖.

(iii) We have that ‖T‖ ≤ Γ(T ) for all T ∈ Γ(X1, . . . , Xn;Y ).
(iv) Let m be a positive integer, and let Z1, . . . , Zm, W be Banach spaces. Let

R : Z1 × · · · × Zm → X1⊗̂π · · · ⊗̂πXn be a bounded multilinear operator
such that fR(ΣZ1,...,Zm) ⊂ ΣX1,...,Xn, and let S : Y → W be a bounded
linear operator. Then SfTR : Z1 × · · · × Zm → W is an element of
Γ(Z1, . . . , Zm;W ) whenever T is in Γ(X1, . . . , Xn;Y ) and Γ(SfTR) ≤
‖R‖Γ(T )‖S‖.
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A consequence of Corollary 4.5 is that every Γ(X1, . . . , Xn;Y ) is a Banach
space. This result, in addition to the preceding proposition and Theorem 3.2,
tells us that the pair [Γ,Γ(·)] is a maximal multi-ideal in the sense of Floret and
Hunfeld [9].

In [9] the authors prove that every maximal ideal is represented by a finitely
generated tensor norm, extending, in this way, the representation theorem for
maximal ideals (see [5, Section 17]). Consequently, Γ is represented by a finitely
generated tensor norm γ with which it is in duality. Now, we give an explicit
formulation of γ.

For a better understanding, it is convenient to have in mind that the mapping
x1 ⊗ · · · ⊗ xn ⊗ y 7→ (x1 ⊗ · · · ⊗ xn) ⊗ y defines a linear isomorphism between
X1⊗· · ·⊗Xn⊗Y and (X1⊗· · ·⊗Xn)⊗Y . For example, under this identification
if p = x1 ⊗ · · · ⊗ xn and q = z1 ⊗ · · · ⊗ zn are elements in ΣX1,...,Xn and y is in Y ,
then

x1 ⊗ · · · ⊗ xn ⊗ y − z1 ⊗ · · · ⊗ zn ⊗ y = (p− q)⊗ y.

In order to define γ(u), the Lipschitz condition of bounded Σ-operators leads
us to consider representations of u of the form

m∑
i=1

(pi − qi)⊗ yi, (4.1)

where pi and qi are elements in ΣX1,...,Xn and yi in Y . The first tensor norm
which considers representations as in (4.1) was given by Angulo [2] in his doctoral
dissertation. In that case, Angulo defined the tensor norm dp which is in duality
with the collection of Lipschitz p-summing multilinear operators defined in [3].

Before presenting the norm γ, we fix some notation. Given finite sequences
(aj)

m
j=1 and (bj)

m
j=1 in ΣX1,...,Xn , we write∥∥(aj − bj)

∥∥π

2
:=

( m∑
j=1

π(aj − bj)
2
) 1

2
.

We also use the standard notation∥∥(yi)∥∥2
=

( m∑
i=1

‖yi‖2
) 1

2

for a finite sequence (yi)
m
i=1 in Y.

Definition 4.2. Let X1, . . . , Xn, Y be Banach spaces. For u in X1 ⊗ · · · ⊗Xn ⊗ Y
define

γ(u) = inf
∥∥(ai − bi)

∥∥π

2

∥∥(yi)∥∥2
,

where the infimum is taken over all representations u =
∑m

i=1(pi − qi) ⊗ yi and
(pi, qi) ≤π (ai, bi).

The next proposition is straightforward and only requires standard tensor prod-
uct techniques. We omit the proof.

Proposition 4.3. Let X1, . . . , Xn, Y be Banach spaces and let β be a reasonable
crossnorm on the tensor product X1 ⊗ · · · ⊗Xn. Then we have the following.
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(i) We have that γ is a norm on X1 ⊗ · · · ⊗Xn ⊗ Y .
(ii) We have γ((p− q)⊗ y) ≤ π(p− q)‖y‖ for all p, q ∈ ΣX1,...,Xn and y ∈ Y .
(iii) Let ϕ ∈ L(X1, . . . , Xn) and y

∗ ∈ Y ∗. The functional

ϕ⊗ y∗ : (X1 ⊗ · · · ⊗Xn ⊗ Y, γ)→ K,
x1 ⊗ · · · ⊗ xn ⊗ y 7→ fϕ(x

1 ⊗ · · · ⊗ xn)y∗(y)

is bounded and ‖ϕ⊗ y∗‖ ≤ ‖ϕ‖‖y∗‖.
(iv) Let Z1, . . . , Zm,W be Banach spaces. If R : Z1×· · ·×Zm → X1⊗̂π · · · ⊗̂πXn

is a bounded multilinear operator such that fR(ΣZ1,...,Zm) ⊂ ΣX1,...,Xn and
S : W → Y is a bounded linear operator, then

R⊗ S : (Z1 ⊗ · · · ⊗ Zm ⊗W, γ)→ (X1 ⊗ · · · ⊗Xn ⊗ Y, γ),

z1 ⊗ · · · ⊗ zm ⊗ w 7→ fR(z1 ⊗ · · · ⊗ zm)⊗ S(w)

is bounded and ‖R⊗ S‖ ≤ ‖R‖‖S‖.
(v) We have γ(u;X1 ⊗ · · · ⊗ Xn ⊗ Y ) = inf γ(u;E1 ⊗ · · · ⊗ En ⊗ F ), where

the infimum is taken over all finite-dimensional subspaces Ei and F of Xi

and Y , respectively, such that u ∈ E1 ⊗ · · · ⊗ En ⊗ F .

The preceding proposition tells us that γ is a finitely generated tensor norm in
the sense of Floret and Hunfeld [9].

For a better understanding of the tensorial representation of the class Γ, we
need the involved algebraic morphism. Every bounded multilinear operator T :
X1 × · · · ×Xn → Y ∗ gives rise to a bounded functional

ϕT : X1⊗̂π · · · ⊗̂πXn⊗̂πY → K,
x1 ⊗ · · · ⊗ xn ⊗ y 7→ T (x1, . . . , xn)(y).

Conversely, every bounded functional ϕ onX1⊗̂π · · · ⊗̂πXn⊗̂πY defines a bounded
multilinear operator

Tϕ : X1 × · · · ×Xn → Y ∗,

x1 ⊗ · · · ⊗ xn 7→ Tϕ(x
1 ⊗ · · · ⊗ xn) : y 7→ ϕ(x1 ⊗ · · · ⊗ xn ⊗ y).

It is not difficult to prove that these assignments are linear isometries and inverse
of each other. In other words, we have that

Φ : (X1⊗̂π · · · ⊗̂πXn⊗̂πY )∗ → L(X1, . . . , Xn;Y
∗),

ϕ 7→ Tϕ
(4.2)

is an isometric linear isomorphism. The next theorem establishes that Φ in (4.2)
also is an isometric linear isomorphism if we replace π by the norm γ and
L(X1, . . . , Xn;Y

∗) by the normed space Γ(X1, . . . , Xn;Y
∗).

Theorem 4.4. Let X1, . . . , Xn, Y be Banach spaces. Then

Φ : (X1 ⊗ · · · ⊗Xn ⊗ Y, γ)∗ → Γ(X1, . . . , Xn;Y
∗)

is an isometric linear isomorphism.
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Proof. We will use the linear isometry

(Y ⊕2 · · · ⊕2 Y )∗ = Y ∗ ⊕2 · · · ⊕2 Y
∗. (4.3)

Suppose that T factors through a Hilbert space. The combination of (4.3) and
Theorem 3.3, implies that for all (yi)i and (pi, qi) ≤π (ai, bi),∣∣∣ m∑

i=1

〈
fT (pi)− fT (qi), yi

〉∣∣∣ ≤ Γ(T )
∥∥(ai − bi)

∥∥π

2

∥∥(yi)∥∥2
.

So, if u =
∑m

i=1(pi−qi)⊗yi is an element inX1⊗· · ·⊗Xn⊗Y and (pi, qi) ≤π (ai, bi),
then ∣∣ϕT (u)

∣∣ ≤ Γ(T )
∥∥(aj − bj)

∥∥π

2

∥∥(yi)∥∥2
.

In other words, ϕT is bounded and ‖ϕT‖ ≤ Γ(T ).
Conversely, suppose that ϕ ∈ (X1 ⊗ · · · ⊗ Xn ⊗ Y, γ)∗. Let (pi, qi) ≤π (ai, bi)

and (yi)i. Define u =
∑m

i=1(pi − qi)⊗ yi. Then∣∣∣ m∑
i=1

〈
fTϕ(pi)− fTϕ(qi), yi

〉∣∣∣ = ∣∣ϕ(u)∣∣ ≤ ‖ϕ‖
∥∥(ai − bi)

∥∥π

2

∥∥(yi)∥∥2
.

After taking suprema over
∑m

i=1 ‖yi‖2 ≤ 1, (4.3) implies that( m∑
i=1

∥∥fTϕ(pi)− fTϕ(qi)
∥∥2
) 1

2 ≤ ‖ϕ‖
∥∥(ai − bi)

∥∥π

2
.

According to Theorem 3.3, Tϕ : X1 × · · · × Xn → Y ∗ factors through a Hilbert
space and Γ(Tϕ) ≤ ‖ϕ‖. �

Corollary 4.5. Let X1, . . . , Xn and Y be Banach spaces. Then the spaces (X1 ⊗
· · · ⊗ Xn ⊗ Y ∗, γ)∗ ∩ L(X1, . . . , Xn, Y ) and Γ(X1, . . . , Xn;Y ) are isometrically
isomorphic.

Proof. Let T be an operator in Γ(X1, . . . , Xn;Y ). Define

ζT : X1 ⊗ · · · ⊗Xn ⊗ Y ∗ → K,
x1 ⊗ · · · ⊗ xn ⊗ y∗ 7→ y∗

(
T (x1, . . . , xn)

)
.

The multilinear feature of T and the linearity of every y∗ assert that ζT is well
defined and linear. Let u ∈ X1 ⊗ · · · ⊗Xn ⊗ Y ∗ and η > 0. The finitely generated
property of γ (see Proposition 4.3) asserts that there exist Ei ∈ F(Xi) and
F ∈ F(Y ∗) such that u ∈ E1 ⊗ · · · ⊗ En ⊗ F and

γ(u;E1, . . . , En ⊗ F ) ≤ (1 + η)γ(u;X1 ⊗ · · · ⊗Xn ⊗ Y ∗).

The subspace F defines L ∈ CF(Y ) such that (Y/L)∗ = F is isometrically iso-
morphic to F via Q∗

L. Then Theorem 4.4 implies that(
E1 ⊗ · · · ⊗ En ⊗ F ⊗ (Y/L)∗, γ

)∗
= Γ(E1, . . . , En;Y/L) (4.4)

in which the equal sign stands for an isometric isomorphism. Note that in (4.4)
we are identifying Y/L with its double topological dual. Algebraic manipulations



MULTILINEAR OPERATORS FACTORING THROUGH HILBERT SPACES 251

lead us to the fact that, under (4.4), QLfT IE1,...,En is the multilinear operator that
corresponds to the composition ϕT ◦ (IE1,...,En ⊗Q∗

L). Furthermore,∣∣ζT (u)∣∣ = ∣∣ϕT ◦ (IE1,...,En ⊗Q∗
L)(u)

∣∣
≤

∥∥ϕT ◦ (IE1,...,En ⊗Q∗
L) :

(
E1, . . . , En ⊗ (Y/L)∗

)
, γ) → K

∥∥γ(u)
≤ Γ(QLfT IE1,...,En)(1 + η)γ(u;X1 ⊗ · · · ⊗Xn ⊗ Y ∗)

≤ Γ(T )(1 + η)γ(u;X1 ⊗ · · · ⊗Xn ⊗ Y ∗).

The election of η allows us to conclude that ζT is bounded and that ‖ζT‖ ≤ Γ(T ).
For the converse, let ϕ ∈ (X1⊗· · ·⊗Xn⊗Y ∗, γ)∗∩L(X1, . . . , Xn, Y ). We may

assume that Tϕ has range contained in Y . Reasoning as before (see (4.4)), we
have that

Γ(QLfTϕIE1,...,En) =
∥∥ϕ ◦ (IE1,...,En ⊗Q∗

L)
∥∥ ≤ ‖ϕ‖

holds for all Ei ∈ F(Xi) and L ∈ CF(Y ). Hence, Theorem 3.2 asserts that
T ∈ Γ(X1, . . . , Xn;Y ) and that Γ(T ) ≤ ‖ϕ‖.

Finally, it is easy to check that the assignments T 7→ ζT and ϕ 7→ Tϕ are linear
and inverse of each other. �

4.1. Preservation of the property of factoring through a Hilbert space.

Decreasing the degree by evaluations. For any bounded multilinear operator T :
X1 × · · · ×Xn → Y and any xn in Xn fixed, define

T xn

: X1 × · · · ×Xn−1 → Y,

(x1, . . . , xn−1) 7→ T (x1, . . . , xn).

Plainly, T xn
is a bounded multilinear operator. Analogously, we can define a

bounded multilinear operator T xn−k+1,...,xn
: X1 × · · · ×Xn−k → Y for 1 ≤ k < n

once we fix xj in Xj for n− k + 1 ≤ j ≤ n.

Proposition 4.6. Let T in Γ(X1, . . . , Xn;Y ) and xj in Xj for n−k+1 ≤ j ≤ n.

Then T xn−k+1,...,xn
is an element of Γ(X1, . . . Xn−k;Y ) for all 1 ≤ k < n and

Γ(T xn−k+1,...,xn
) ≤ Γ(T )‖xn−k+1‖ . . . ‖xn‖.

Proof. It suffices to apply the ideal property from Proposition 4.1(iv) to the map
R : X1×· · ·×Xn−k → X1⊗̂π · · · ⊗̂πXn defined by R(x1, . . . , xn−k) = (x1, . . . , xn).

�

The case k = n−1 produces a bounded linear operator Tn−(n−1) : X1 → Y that
factors through a Hilbert space in the linear sense. In this respect, we can say
more. Let p = (x1, . . . , xn) inX1×· · ·×Xn be fixed, and let T in Γ(X1, . . . , Xn;Y ).
Denote by Ti : Xi → Y the linear map resulting by fixing all coordinates except
the ith (see Proposition 4.6). Arguments analogous to those presented in the
proof of Proposition 4.6 allow us to conclude that Ti is an element of Γ(Xi;Y )
and Γ(Ti) ≤ Γ(T )

∏
j 6=i ‖xj‖ for all 1 ≤ i ≤ n. Hence

Γ(T1) · · ·Γ(Tn) ≤ Γ(T )nπ(p)n−1.
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Increasing the degree by products. In the following proposition, we show how to
construct multilinear operators that factor through a Hilbert space for given n
linear operators with the same property.

Proposition 4.7. Let n be a positive integer, and let Ti : Xi → Yi in Γ(Xi;Yi)
for 1 ≤ i ≤ n. Then

⊗ ◦ (T1, . . . , Tn) : X1 × · · · ×Xn → Y1⊗̂π · · · ⊗̂πYn,

(x1, . . . , xn) 7→ T1(x
1)⊗ · · · ⊗ Tn(x

n)

belongs to Γ(X1, . . . , Xn;Y1⊗̂π · · · ⊗̂πYn) and

Γ
(
⊗ ◦ (T1, . . . , Tn)

)
≤ 2n−1Γ(T1) · · ·Γ(Tn).

Proof. Let Ti = BiAi be a factorization through the Hilbert space Hi for 1 ≤
i ≤ n. Since Ai and Bi are bounded for all i, we have that

A1 ⊗ · · · ⊗ An : X1⊗̂π · · · ⊗̂πXn → H1⊗̂π · · · ⊗̂πHn

and that

B1 ⊗ · · · ⊗Bn : H1⊗̂π · · · ⊗̂πHn → Y1⊗̂π · · · ⊗̂πYn

are bounded. Applying the ideal property of Proposition 4.1(iv) to the operator
R : X1 × · · · × Xn → H1⊗̂π · · · ⊗̂πHn, defined by R(x1, . . . , xn) = A1(x

1) ⊗
· · · ⊗ An(x

n), T = ⊗ : H1 × · · · × Hn → H1⊗̂π · · · ⊗̂πHn, and S = B1 ⊗ · · · ⊗
Bn, we have that (B1 ⊗ · · · ⊗ Bn)f⊗R : X1 × · · · × Xn → Y1⊗̂π · · · ⊗̂πYn is in
Γ(X1, . . . , Xn;Y1⊗̂π · · · ⊗̂πYn) and Γ((B1 ⊗ . . .⊗Bn)f⊗R) ≤ 2n−1

∏n
i=1 ‖Ai‖‖Bi‖.

Hence Γ((B1 ⊗ · · · ⊗ Bn)f⊗R) ≤ 2n−1Γ(T1) . . .Γ(Tn). We conclude the proof by
noting that ⊗ ◦ (T1, . . . , Tn) = (B1 ⊗ · · · ⊗Bn)f⊗R. �

5. Polynomials factoring through a Hilbert space

Homogeneous polynomials that factorize through a Hilbert space can also be
characterized in terms of their behavior in some special finite sequences of points.
In this case we only state the main results. Their proofs are analogous to those
of Theorems 3.2 and 3.3.

Recall that a mapping P : X → Y between Banach spaces is a homogeneous
polynomial of degree n if there exists a multilinear mapping TP : X×· · ·×X → Y
such that P (x) = TP (x, n. . ., x).

Definition 5.1. A n-homogeneous polynomial P : X → Y factors through a
Hilbert space if there exist a Hilbert space H, a bounded n-homogeneous poly-
nomial q : X → H, and a Lipschitz function B : q(X) → Y such that p = Bq. We
define Γ(q) = inf ‖q‖Lip(B).

It is clear that every T in Γ(X × · · · × X → Y ) defines an n-homogeneous
polynomial p : X → Y that factors through a Hilbert space, and Γ(p) ≤ Γ(T ).
Also, a composition of the form SpR factors through a Hilbert space if p does
and R and S are bounded linear operators; moreover, Γ(RpS) ≤ ‖R‖Γ(p)‖S‖.
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Theorem 5.2. The n-homogeneous polynomial p : X → Y admits a factorization
through a Hilbert space if and only if

s := sup
{
Γ(QLpIE)

∣∣ E ∈ F(X), L ∈ CF(Y )
}
<∞.

In this situation, Γ(p) = s.

If we denote by πn,s the symmetric projective tensor norm on the symmetric
tensor product ⊗n,sX and ⊗nx := x⊗ · · · ⊗ x, then we have the following.

Theorem 5.3. The n-homogeneous polynomial p : X → Y admits a factorization
through a Hilbert space if and only if there exists a constant C > 0 such that

m∑
i=1

∥∥p(xi)− p(zi)
∥∥2 ≤ C2

m∑
i=1

πn,s(⊗nsi −⊗nti)
2

for all finite sequences (xi), (yi), (si), and (ti) in X such that

m∑
i=1

∣∣ϕ(xi)− ϕ(zi)
∣∣2 ≤ m∑

i=1

∣∣ϕ(si)− ϕ(ti)
∣∣2

for all n-homogeneous polynomials ϕ : X → K. In this case, Γ(p) is the best
possible constant C as above.
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4. J. A. Chávez-Domı́nguez, Lipschitz factorization through subsets of Hilbert space, J. Math.
Anal. Appl. 418 (2014), no. 1, 344–356. Zbl 1329.46024. MR3198883. DOI 10.1016/
j.jmaa.2014.04.001. 235, 237, 241

5. A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland Math. Stud.
176, North-Holland, Amsterdam, 1993. Zbl 0774.46018. MR1209438. 238, 248

6. J. Diestel, H. Jarchow, and A. Tongue, Absolutely Summing Operators, Cambridge Stud.
Adv. Math. 43, Cambridge Univ. Press, Cambridge, 1995. Zbl 0855.47016. MR1342297.
DOI 10.1017/CBO9780511526138. 235

7. V. Dimant, Strongly p-summing multilinear operators, J. Math. Anal. Appl. 278 (2003),
no. 1, 182–193. Zbl 1043.47018. MR1963473. DOI 10.1016/S0022-247X(02)00710-2. 235

8. M. Fernández-Unzueta, The Segre cone of Banach spaces and multilinear operators, Linear
Multilinear Algebra (2018), available online at https://www.tandfonline.com/doi/full/
10.1080/03081087.2018.1509938. DOI 10.1080/03081087.2018.1509938. 236, 237, 238

9. K. Floret and S. Hunfeld, Ultrastability of ideals of homogeneous polynomials and multi-
linear mappings on Banach spaces, Proc. Amer. Math. Soc. 130 (2002), no. 5, 1425–1435.
Zbl 1027.46054. MR1879966. DOI 10.1090/S0002-9939-01-06228-1. 236, 238, 248, 249
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E-mail address: maite@cimat.mx; orcid: 0000-0002-8321-4877
E-mail address: samuelg@cimat.mx; orcid: 0000-0003-4562-299X

http://www.emis.de/cgi-bin/MATH-item?0518.46046
http://www.ams.org/mathscinet-getitem?mr=0719020
http://www.emis.de/cgi-bin/MATH-item?0235.46068
http://www.ams.org/mathscinet-getitem?mr=0295076
https://doi.org/10.2307/2038063
http://www.emis.de/cgi-bin/MATH-item?0256.46024
http://www.ams.org/mathscinet-getitem?mr=0341039
https://doi.org/10.4064/sm-44-6-583-595
http://www.emis.de/cgi-bin/MATH-item?0246.47040
http://www.ams.org/mathscinet-getitem?mr=0397464
http://www.emis.de/cgi-bin/MATH-item?0183.40501
http://www.ams.org/mathscinet-getitem?mr=0231188
https://doi.org/10.4064/sm-29-3-275-326
https://doi.org/10.4064/sm-29-3-275-326
http://www.emis.de/cgi-bin/MATH-item?0403.46022
http://www.ams.org/mathscinet-getitem?mr=0540367
http://www.emis.de/cgi-bin/MATH-item?1078.46031
http://www.ams.org/mathscinet-getitem?mr=1995136
http://www.emis.de/cgi-bin/MATH-item?0561.47037
http://www.ams.org/mathscinet-getitem?mr=0763541
http://www.emis.de/cgi-bin/MATH-item?0588.46010
http://www.ams.org/mathscinet-getitem?mr=0829919
https://doi.org/10.1090/cbms/060
http://www.emis.de/cgi-bin/MATH-item?0932.46046
http://www.ams.org/mathscinet-getitem?mr=1342022
http://www.emis.de/cgi-bin/MATH-item?1090.46001
http://www.ams.org/mathscinet-getitem?mr=1888309
https://doi.org/10.1007/978-1-4471-3903-4
http://www.emis.de/cgi-bin/MATH-item?0721.46004
http://www.ams.org/mathscinet-getitem?mr=0993774
http://www.emis.de/cgi-bin/MATH-item?1030.47503
http://www.ams.org/mathscinet-getitem?mr=1970490
https://doi.org/10.1016/S0022-247X(02)00362-1
mailto:maite@cimat.mx
mailto:samuelg@cimat.mx

	1 Introduction and preliminaries
	1.1 Notation and preliminaries

	2 Definition, examples, and the metric case
	2.1 Relation with the metric case

	3 Kwapien-type characterization
	4 Ideal behavior and tensorial representation
	4.1 Preservation of the property of factoring through a Hilbert space

	5 Polynomials factoring through a Hilbert space
	References
	Author's addresses

