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Abstract. In this article, via establishing a new atomic characterization of
the Musielak–Orlicz Hardy space Hϕ(Rn) [which is essentially deduced from
the known molecular characterization of Hϕ(Rn)] and some estimates on a
new discrete Littlewood–Paley g-function and a Peetre-type maximal func-
tion, together with using the known intrinsic g-function characterization of
Hϕ(Rn), the authors obtain several equivalent characterizations of Hϕ(Rn) in
terms of wavelets, which extend the wavelet characterizations of both Orlicz–
Hardy spaces and the weighted Hardy spaces, and are available to the typical
and useful Musielak–Orlicz Hardy spaceH log(Rn). The novelty of this approach
is that the new adapted atomic characterization of Hϕ(Rn) compensates the
inconvenience in applications of the supremum appearing in the original defi-
nition of atoms, which play crucial roles in the proof of the main theorem of
this article and may have further potential applications.

1. Introduction

In recent decades, the real-variable theory of Hardy spaces Hp(Rn) on the
n-dimensional Euclidean space Rn has played essential roles in the theory of
harmonic analysis and partial differential equations (see [6], [25]–[27] for details).
In the 1990s, the wavelet theory provided a new powerful tool for the real-variable
theory of Hardy spaces. More precisely, Meyer [24] established several equivalent
wavelet characterizations of H1(Rn); Liu [22] established some equivalent wavelet
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characterizations of the weak Hardy space H1,∞(Rn); Wu [31] obtained further
a wavelet area integral characterization of the weighted Hardy space Hp

ω(Rn) for
any p ∈ (0, 1]; and later, Garćıa-Cuerva and Martell [7] found a characterization
of Hp

ω(Rn) for any p ∈ (0, 1] in terms of wavelets without compact supports via
the vector-valued Calderón–Zygmund theory.

From that point on, wavelet characterizations were established involving many
more different Hardy-type spaces or other function spaces. More specifically,
Hernández et al. [9] established the ϕ-transform and the wavelet characteriza-
tions of Herz-type spaces. Kopaliani [13] and Izuki [11] independently introduced
the wavelet inequalities of Lebesgue spaces with variable exponents. Later, Wang
and Liu [30] obtained the wavelet characterization of Herz-type Hardy spaces with
variable exponents. Izuki, Nakai, and Sawano [12] further obtained the wavelet
characterization for weighted Lebesgue spaces with variable exponents.

Recently, motivated by the wide application of function spaces of Musielak–
Orlicz type in several branches of mathematics and physics (see, e.g., [2]–[4], [16],
[32]), Ky [16] introduced the Musielak–Orlicz Hardy spaceHϕ(Rn), which extends
both the Orlicz–Hardy spaces and the weighted Hardy spaces. In particular, the
typical Musielak–Orlicz Hardy space H log(Rn), related to the growth function

θ(x, t) :=
t

ln(e+ |x|) + ln(e+ t)
, ∀x ∈ Rn,∀t ∈ [0,∞), (1.1)

plays a striking role in the bilinear decompositions of the products of functions
in BMO(Rn) and H1(Rn). These bilinear decompositions have important appli-
cations in the optimal endpoint estimate for the div-curl lemma, involving the
space H log(Rn), which has relations to an implicit conjecture from [4] (see also
[1], [3]), and in the bilinear or the subbilinear decompositions, respectively, for
the linear or the sublinear commutators of Calderón–Zygmund operators from
[14] (see [15], [17], [32] for more applications of the above decompositions).

So far, a great deal of literature on the real-variable theory of Hϕ(Rn) and its
applications has appeared (see, e.g., [16], [18]–[21], [32], [33]). A natural question
is whether or not we can establish a unified framework for the wavelet characteri-
zations of all the Hardy-type spaces. Unfortunately, it was shown in [34, Remark
1.7(iv)] that the Musielak–Orlicz Hardy space and the variable exponent Hardy
space cannot cover each other. However, in this article we establish several equiv-
alent characterizations of Hϕ(Rn) in terms of wavelets, which extend the wavelet
characterizations of both Orlicz–Hardy spaces and weighted Hardy spaces and
are available to the typical and useful Musielak–Orlicz Hardy space H log(Rn).

To formulate the main result of this article, let us first recall some important
details. Recall that a function φ : [0,∞) → [0,∞) is called an Orlicz function if
it is nondecreasing, φ(0) = 0, φ(t) > 0 if t ∈ (0,∞), and limt→∞ φ(t) = ∞. The
following notions of uniformly lower-type and upper-type properties can be found
in Ky [16] (see also [32]).

Definition 1.1. For a given function ϕ : Rn × [0,∞) → [0,∞) such that, for each
x ∈ Rn, ϕ(x, ·) is Orlicz, ϕ is said to be of uniformly lower- (resp., upper-) type p
if there exists a positive constant C(p), depending on p, such that, for any x ∈ Rn,
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t ∈ [0,∞) and s ∈ (0, 1) (resp., s ∈ [1,∞)), ϕ(x, st) ≤ C(p)s
pϕ(x, t). Moreover,

let

i(ϕ) := sup
{
p ∈ (0,∞) : ϕ is of uniformly lower type p

}
. (1.2)

Note that i(ϕ) may not be attainable (see, e.g., [32] for some examples). We
now recall the notions of the uniformly Muckenhoupt condition and the uniformly
reverse Hölder condition from [16] (see also [32]).

Definition 1.2. A function ϕ : Rn×[0,∞) → [0,∞) is said to satisfy the uniformly
Muckenhoupt condition for some q ∈ [1,∞), denoted by ϕ ∈ Aq(Rn), if, when
q ∈ (1,∞),

[ϕ]Aq(Rn) := sup
t∈(0,∞)

sup
B⊂Rn

1

|B|q

∫
B

ϕ(x, t) dx
{∫

B

[
ϕ(y, t)

]−1/(q−1)
dy

}q−1

<∞

or, when q = 1,

[ϕ]A1(Rn) := sup
t∈(0,∞)

sup
B⊂Rn

1

|B|

∫
B

ϕ(x, t) dx
(
ess supy∈B

[
ϕ(y, t)

]−1)
<∞,

where the first suprema are taken over all t ∈ (0,∞) and the second ones over all
balls B ⊂ Rn. Let

A∞(Rn) :=
⋃

q∈[1,∞)

Aq(Rn).

A function ϕ : Rn×[0,∞) → [0,∞) is said to satisfy the uniformly reverse Hölder
condition for some q ∈ (1,∞], denoted by ϕ ∈ RHq(Rn), if, when q ∈ (1,∞),

[ϕ]RHq(Rn) := sup
t∈(0,∞)

sup
B⊂Rn

{ 1

|B|

∫
B

[
ϕ(x, t)

]q
dx

}1/q{ 1

|B|

∫
B

ϕ(y, t) dy
}−1

<∞

or, when q = ∞,

[ϕ]RH∞(Rn) := sup
t∈(0,∞)

sup
B⊂Rn

{ 1

|B|

∫
B

ϕ(y, t) dy
}−1{

ess sup
y∈B

ϕ(y, t)
}
<∞,

where the first suprema are taken over all t ∈ (0,∞) and the second ones over all
balls B ⊂ Rn.

Now we recall the notion of growth functions.

Definition 1.3. A function ϕ : Rn× [0,∞) → [0,∞) is called a growth function if
the following conditions are satisfied.

(i) ϕ is a Musielak–Orlicz function, namely:
(i)1 the function ϕ(x, ·) : [0,∞) → [0,∞) is an Orlicz function for each

x ∈ Rn,
(i)2 the function ϕ(·, t) is measurable for every t ∈ [0,∞).

(ii) ϕ ∈ A∞(Rn).
(iii) ϕ is of uniformly lower type p for some p ∈ (0, 1] and of uniformly upper

type 1.
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Remark 1.4.

(i) Some nontrivial examples of growth functions can be found in [32, Exam-
ple 1.1.5] or Remark 1.11 below.

(ii) From [32, Remark 1.7], it follows that, without loss of generality, we may
assume that ϕ(x, ·) is continuous and strictly increasing for any fixed
x ∈ Rn.

We then recall the notion of Musielak–Orlicz Hardy spaces. In what follows, we
denote the Schwartz class and its dual space, respectively, by S (Rn) and S ′(Rn).
For any m ∈ N := {1, 2, . . .}, let Z+ := {0} ∪ N and

Sm(Rn) :=
{
h ∈ S (Rn) : sup

x∈Rn

sup
{β∈Zn

+:|β|≤m+1}

(
1 + |x|

)(m+2)(n+1)∣∣∂βh(x)∣∣ ≤ 1
}
,

where, for any β := (β1, . . . , βn) ∈ Zn+ and x := (x1, . . . , xn) ∈ Rn, |β| := β1 +

· · ·+βn and ∂β := ( ∂
∂x1

)β1 · · · ( ∂
∂xn

)βn . Then, for any f ∈ S ′(Rn), its nontangential
grand maximal function f ∗

m is defined by setting

f ∗
m(x) := sup

h∈Sm(Rn)

sup
{|y−x|<t,t∈(0,∞)}

∣∣f ∗ ht(y)
∣∣, ∀x ∈ Rn,

where, for any t ∈ (0,∞), ht(·) := t−nh( ·
t
). In what follows, for any s ∈ R, we

use the symbol bsc to denote the largest integer not greater than s. Let

m(ϕ) :=
⌊
n
[
q(ϕ)/i(ϕ)− 1

]⌋
, (1.3)

where i(ϕ) is as in (1.2) and

q(ϕ) := inf
{
q ∈ [1,∞) : ϕ ∈ Aq(Rn)

}
. (1.4)

We simply write f ∗ := f ∗
m(ϕ). Observe that q(ϕ) may not be attainable (see, e.g.,

[32]). Recall that Lϕ(Rn) is defined to be the set of all measurable functions f
satisfying that there exists t ∈ (0,∞) such that∫

Rn

ϕ
(
x,

|f(x)|
t

)
dx <∞

equipped with the quasinorm

‖f‖Lϕ(Rn) := inf
{
λ ∈ (0,∞) :

∫
Rn

ϕ
(
x,

|f(x)|
λ

)
dx ≤ 1

}
.

Definition 1.5. Let ϕ be a growth function as in Definition 1.3. The Musielak–
Orlicz Hardy space Hϕ(Rn) is defined to be the space of all f ∈ S ′(Rn) such
that f ∗ ∈ Lϕ(Rn), equipped with the quasinorm

‖f‖Hϕ(Rn) := ‖f ∗‖Lϕ(Rn).

We also need to recall notions of Musielak–Orlicz Campanato spaces from [20,
Definition 1.1]. In what follows, for any s ∈ Z+, we use the symbol Ps(Rn) to
denote the set of all polynomials on Rn with the order not greater than s.
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Definition 1.6. Let ϕ be as in Definition 1.3, let s ∈ Z+, and let q ∈ [1,∞).
The Musielak–Orlicz Campanato space Lipϕ,q,s(Rn) is defined to be the set of all
functions g ∈ L1

loc(Rn) such that

‖g‖Lipϕ,q,s(Rn) := sup
B

1

‖χB‖Lϕ(Rn)

{∫
B

[ |g(x)− P s
Bg(x)|

ϕ(x, ‖χB‖−1
Lϕ(Rn))

]q
× ϕ

(
x, ‖χB‖−1

Lϕ(Rn)

)
dx

}1/q

<∞,

where the supremum is taken over all balls B ⊂ Rn and P s
Bg denotes the unique

polynomial P ∈ Ps(Rn) such that, for any h ∈ Ps(Rn) on B,∫
B

[
g(x)− P (x)

]
h(x) dx = 0.

In what follows, for any quasi-Banach space E, let E∗ denote its dual space and,
for any q ∈ [1,∞), let q′ denote its conjugate index, namely, 1/q + 1/q′ = 1.

Remark 1.7. Let ϕ be a growth function. By [20, Theorems 2.7 and 3.5], we know
that the following hold.

(i) If s ∈ Z+ and q ∈ [1, [q(ϕ)]′), then Lipϕ,q,s(Rn) is independent of the
choice of q.

(ii) If s ∈ [m(ϕ),∞)∩Z+ withm(ϕ) as in (1.3), then (Hϕ(Rn))∗ = Lipϕ,1,s(Rn).
(iii) Assume that s ∈ [m(ϕ),∞) ∩ Z+. Then f ∈ Hϕ(Rn) if and only if f ∈

(Lipϕ,1,s(Rn))∗ and f ∗ ∈ Lϕ(Rn). Indeed, if f ∈ Hϕ(Rn), then, by (ii)
of this remark, we know that f ∈ (Hϕ(Rn))∗∗ = (Lipϕ,1,s(Rn))∗ and, by
Definition 1.5, f ∗ ∈ Lϕ(Rn). On the other hand, if f ∈ (Lipϕ,1,s(Rn))∗

and f ∗ ∈ Lϕ(Rn), then, by [21, Remark 1.12(i)], we find that S (Rn) ⊂
Lipϕ,1,s(Rn) and hence f ∈ S ′(Rn), which, together with Definition 1.5,
shows f ∈ Hϕ(Rn). This finishes the proof of the above claim.

In order to state the main result of this article, we also need to recall some
known facts on wavelets. We begin with the following notion of the multiresolution
analysis on R (see, e.g., [24], [29] for more details).

Definition 1.8. A multiresolution analysis (for short, MRA) on R is defined to be
an increasing sequence {Vj}j∈Z of closed subspaces in L2(R) such that

(i)
⋃
j∈Z Vj = L2(R) and

⋂
j∈Z Vj = {θ}, where θ denotes the zero function;

(ii) for any j ∈ Z and f ∈ L2(R), f ∈ Vj if and only if f(2−j·) ∈ V0;
(iii) for any k ∈ Z and f ∈ L2(R), f ∈ V0 if and only if f(· − k) ∈ V0;
(iv) there exists a function φ ∈ L2(R) (called father wavelet) such that{

φk(·)
}
k∈Z :=

{
φ(· − k)

}
k∈Z

is an orthonormal basis of V0.

For any fixed s ∈ Z+, according to [5, Section 4] (see also [29, Theorem
1.61(ii)]), we choose the father and the mother wavelets φ, ψ ∈ Cs+1

c (R) (the
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set of all functions with compact supports having continuous derivatives up to

order s+ 1) such that φ̂(0) = (2π)−1/2 and, for any l ∈ {0, . . . , s+ 1},∫
R
xlψ(x) dx = 0,

where φ̂ denotes the Fourier transform of φ; namely, for any ξ ∈ R,

φ̂(ξ) :=
1√
2π

∫
R
φ(y)e−iξy dy.

Following [3], throughout the whole article we always assume that

suppφ, suppψ ⊂ 1/2 +m(−1/2, 1/2), (1.5)

where 1/2+m(−1/2, 1/2) denotes the interval obtained from (0, 1) via a dilation
by m centered at 1/2; namely, x ∈ 1/2 +m(−1/2, 1/2) if and only if |x− 1/2| <
m/2. Here m ∈ [1,∞) is a positive constant independent of the main parameters
involved in the whole article.

The extension of the above considerations from 1-dimension to n-dimension
can be realized by the standard procedure of tensor products. More precisely, let

~θn := (

n times︷ ︸︸ ︷
0, . . . , 0) and E := {0, 1}n \ {~θn}.

Assume that D is the set of all dyadic cubes in Rn, namely, for any Q ∈ D, there
exist j ∈ Z+ and k := {k1, . . . , kn} ∈ Zn such that

Q = Qj,k :=
{
x ∈ Rn : ki ≤ 2jxi < ki + 1 for any i ∈ {1, . . . , n}

}
. (1.6)

LetmQ be them dilation of Q with the same center as Q andm as in (1.5). Based
on the tensor product in [24, p. 108], we write, for any λ := (λ1, . . . , λn) ∈ E,
Q := Qj,k with k := (k1, . . . , kn) ∈ Zn, j ∈ Z, and x = (x1, . . . , xn),

ψλQ(x) := 2jn/2ψλ1(2jx1 − k1) · · ·ψλn(2jxn − kn),

φQ(x) := 2jn/2φ(2jx1 − k1) · · ·φ(2jxn − kn),

where ψ0 := φ and ψ1 := ψ.
A family {ψλQ}Q∈D,λ∈E ⊂ Cs+1(Rn) (the set of all functions having continuous

derivatives up to order s+ 1) is called an s-order wavelet system if {ψλQ}Q∈D,λ∈E
satisfy

(i) {ψλQ}Q∈D,λ∈E forms an orthonormal basis of L2(Rn);

(ii) ψλQ are compactly supported, namely,

suppψλQ ⊂ mQ; (1.7)

(iii) there exists a positive constant C, depending on s, such that, for any
β := (β1, . . . , βn) ∈ Zn+ with |β| := β1 + · · ·+ βn ≤ s+ 1,∣∣∂βψλQ(x)∣∣ ≤ C2j|β|2jn/2, ∀x ∈ Rn; (1.8)

(iv) for any β := (β1, . . . , βn) ∈ Zn+ with |β| ≤ s,
∫
Rn x

βψλQ(x) dx = 0, here and

hereafter, for any x := (x1, . . . , xn) ∈ Rn, xβ := xβ11 · · ·xβnn .
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The existence of the above s-order wavelet system is guaranteed by the classical
results in [24, p. 108].

Thus, for any f ∈ L2(Rn), we have

f =
∑
λ∈E

∑
Q∈D

(f, ψλQ)ψ
λ
Q =

∑
λ∈E

∑
(j,k)∈Z×Zn

(f, ψλj,k)ψ
λ
j,k in L2(Rn),

where (·, ·) denotes the inner product in L2(Rn) and, for any j ∈ Z+, k ∈ Zn with
Q = Qj,k ∈ D as in (1.6) and λ ∈ E,

ψλj,k := ψλQ.

As in [24, p. 142], we may assume that, for any λ ∈ E, there exists some set
W λ ⊂ [0, 1)n satisfying |W λ| ≥ γ > 0 and |ψλ| ≥ c0χWλ for some fixed positive
constants γ and c0, where

ψλ := ψλ[0,1)n . (1.9)

For every λ ∈ E, j ∈ Z, k ∈ Zn, and Q := Qj,k, let

W λ
j,k := {x ∈ Rn : 2jx− k ∈ W λ} =: W λ

Q. (1.10)

Then we know that, for each λ ∈ E, j ∈ Z and k ∈ Zn,

W λ
j,k ⊂ Qj,k, |W λ

j,k| ≥ γ|Qj,k| (1.11)

and

|ψλj,k| ≥ c0
χWλ

j,k

|Qj,k|
. (1.12)

In what follows, let

Λ :=
{
(λ, j, k) : λ ∈ E, (j, k) ∈ Z× Zn

}
. (1.13)

Moreover, for any j ∈ Z, let Vj be the closed subspace of L2(Rn) spanned by
{φQ}|Q|=2−jn . It is known that {Vj}j∈Z is an MRA on Rn, whose definition is an
extension of MRA on R in Definition 1.8 (see [24, Chapter 2] or [29, Remark 1.52]
for more details).

Let s ∈ [m(ϕ),∞) ∩ Z+. From Remark 1.7(iii), it follows that, if f ∈ Hϕ(Rn),
then f ∈ (Lipϕ,1,s(Rn))∗. On the other hand, by Corollary 2.2 below, we know that

ψλj,k ∈ Lipϕ,1,s(Rn). Let 〈·, ·〉 denote the dual relation between Lipϕ,1,s(Rn) and

(Lipϕ,1,s(Rn))∗. Thus, following an idea used in [24, p. 177], we know that 〈f, ψλj,k〉
is well defined in the sense of the duality between Lipϕ,1,s(Rn) and (Lipϕ,1,s(Rn))∗.
Now we are ready to state the main result of this article.

Theorem 1.9. Suppose that ϕ is an growth function, suppose that s ∈ [m(ϕ),∞)∩
Z+ with m(ϕ) as in (1.3), {ψλj,k}(λ,j,k)∈Λ is an s-order wavelet system and, for any
f ∈ (Lipϕ,1,s(Rn))∗, suppose that

f =
∑

(λ,j,k)∈Λ

〈f, ψλj,k〉ψλj,k in
(
Lipϕ,1,s(Rn)

)∗
. (1.14)

Then the following statements are mutually equivalent:
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(i) f ∈ Hϕ(Rn);
(ii) ‖f‖(i) := ‖[

∑
(λ,j,k)∈Λ |〈f, ψλj,k〉|2|ψλj,k|2]1/2‖Lϕ(Rn) <∞;

(iii) ‖f‖(ii) := ‖[
∑

(λ,j,k)∈Λ |〈f, ψλj,k〉|2
χQj,k

|Qj,k|
]1/2‖Lϕ(Rn) <∞;

(iv) ‖f‖(iii) := ‖[
∑

(λ,j,k)∈Λ |〈f, ψλj,k〉|2
χ
Wλ

j,k

|Qj,k|
]1/2‖Lϕ(Rn) <∞, where, for any (λ, j,

k) ∈ Λ, W λ
j,k ⊂ Qj,k is as in (1.10) and

|W λ
j,k| ∼ |Qj,k| (1.15)

with the implicit positive constants independent of (λ, j, k).

Moreover, all the quasinorms ‖·‖(i), ‖·‖(ii) and ‖·‖(iii) are equivalent to ‖·‖Hϕ(Rn).

As a consequence of Theorem 1.9, we have the following conclusion.

Corollary 1.10. Replacing the assumption (1.14) in Theorem 1.9 by f ∈ L2(Rn),
then all the conclusions in Theorem 1.9 still hold true.

Remark 1.11. There exist the following interesting special cases of Theorem 1.9.

(i) For any x ∈ Rn and t ∈ [0,∞), let ϕ(x, t) := tp, where p ∈ (0, 1]. Then
Theorem 1.9 is just [24, p. 143, Theorem 1].

(ii) For any x ∈ Rn and t ∈ [0,∞), let ϕ(x, t) := ω(x)tp with any given
p ∈ (0, 1]. Then Theorem 1.9 covers [7, Theorem 4.2] and [31, Theorem
3.2].

(iii) For any x ∈ Rn and t ∈ [0,∞), let ϕ(x, t) := ω(x)Φ(t), where ω is a
nonnegative locally integrable function and Φ an Orlicz function. Then
Theorem 1.9, even in such cases, seems new.

(iv) It was shown in [32, Lemma 1.1.3(v)] that another typical and useful
growth function ϕ is defined by setting

ϕ(x, t) :=
tα

[In(e+ |x|)]β + [In(e+ t)]γ
, ∀x ∈ Rn,∀t ∈ [0,∞)

with any giving α ∈ (0, 1], β ∈ [0,∞), and γ ∈ [0, 2α(1 + In 2)]. Then
Theorem 1.9, even in such cases, is new. Recall that H log(Rn) with θ as
in (1.1) plays an irreplaceable role in [3], [14].

This article is organized as follows. In Section 2, we first recall some known
results on the atomic and the molecular characterizations of Hϕ(Rn). We then
introduce a new adapted atomic Musielak–Orlicz Hardy space Hϕ,q,s

at,A (Rn) and
show that Hϕ,q,s

at,A (Rn) coincides with Hϕ(Rn) via the known molecular character-
ization of Hϕ(Rn) (see Theorem 2.12 below). The approach used in the proof
of Theorem 2.12 is essentially an elaborate modification of the well-known argu-
ment given by Taibleson and Weiss in [28]. We also introduce a wavelet variant
of atoms and show that they are positive constant multiples of the original atoms
defined in Definition 2.4 (see Lemma 2.17 below), which are vital to the proof of
Theorem 1.9. Then, via introducing a discrete Littlewood–Paley g-functions and
applying the boundedness of the intrinsic Littlewood–Paley g-function from [21]
and some ideas from [7], we establish some estimates on a discrete Peetre-type
maximal function (see Proposition 2.21 below). Observe that the new adapted
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atomic characterization of Hϕ(Rn) in Theorem 2.12 compensates the inconve-
nience in applications of the supremum appearing in the original definition of
atoms (see Definition 2.4), which may have further potential applications. Sec-
tion 3 is devoted to the proofs of Theorem 1.9 and Corollary 1.10 on several
wavelet characterizations of the Musielak–Orlicz Hardy space Hϕ(Rn). By the
estimate on the Peetre-type maximal function in Section 2, the wavelet charac-
terizations of Lebesgue spaces from [24], two new variants of atomic character-
izations established in Section 2 and some standard arguments on the wavelet
characterizations of the classical Hardy spaces, we then finish the proof of Theo-
rem 1.9 in this section. The proof of Corollary 1.10 is just a slight modification
of the proof of Theorem 1.9.

Finally, we note some conventions on notation. Throughout the whole article,
N stands for the set of all positive integers, Z+ the set of all nonnegative integers
and Zn+ := (Z+)

n; C stands for a positive constant which is independent of the
main parameters, but it may vary from line to line. Moreover, we use C(ρ,β,...) to
denote a positive constant depending on the indicated parameters ρ, β, . . . . If, for
two real functions f and g, f ≤ Cg, then we write f . g; if f . g . f , the
we write f ∼ g. For any subset E of Rn, we use χE to denote its characteristic
function. Furthermore, 〈·, ·〉 and (·, ·)L2(Rn) represent the duality relation and the
L2(Rn) inner product, respectively. To simplify the notation, if there exists no
ambiguity, we denote (·, ·)L2(Rn) simply by (·, ·).

2. Preliminaries

In this section, we first recall the known atomic and the known molecular
characterizations of Hϕ(Rn) and then we establish a new atomic characterization
ofHϕ(Rn). We also introduce a wavelet variant of atoms and establish an estimate
on a Peetre-type maximal function. We begin with showing that the wavelets
belong to Musielak–Orlicz Campanato spaces.

For any α ∈ (0, 1], s ∈ Z+, and ε ∈ (0,∞), let C̃(α,ε),s(Rn) be the class of all
functions η ∈ Cs(Rn) (the set of all functions having continuous derivatives up
to order s) such that, for any ν ∈ Zn+, with |ν| ≤ s, and for any x ∈ Rn,∣∣∂νη(x)∣∣ ≤ (

1 + |x|
)−n−ε

(2.1)

and, for any ν ∈ Zn+, with |ν| = s, and for any x1, x2 ∈ Rn,∣∣∂νη(x1)− ∂νη(x2)
∣∣ ≤ |x1 − x2|α

[(
1 + |x1|

)−n−ε
+
(
1 + |x2|

)−n−ε]
. (2.2)

In what follows, we write C̃ε,s(Rn) := C̃(1,ε),s(Rn).

Proposition 2.1. Let ϕ be a growth function. Then

(i) if α ∈ (0, 1], s ∈ Z+, ε ∈ (α + s,∞), p ∈ (n/(n + α + 1), 1], and ϕ ∈
Ap(1+[α+s]/n)(Rn), then C̃(α,ε),s(Rn) ⊂ Lipϕ,1,s(Rn);

(ii) if s ∈ [m(ϕ),∞) ∩ N, with m(ϕ) as in (1.3), and ε ∈ (1 + s,∞), then

C̃ε,s(Rn) ⊂ Lipϕ,1,s(Rn).
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Proof. By a careful check on the proof of [21, Proposition 2.3] (see also [32,
Proposition 6.2.1]), we know that (i) holds true. Indeed, in the proof of [21,
Proposition 2.3] (or [32, Propostion 6.2.1]), no vanishing moment of the considered
functions was used.

Now, let s ∈ [m(ϕ),∞) ∩ N and ε ∈ (1 + s,∞). To prove (ii), based on (i),
it suffices to show that ϕ ∈ A1+(1+s)/n(Rn). Indeed, we first claim that i(ϕ) ≤ 1
with i(ϕ) as in (1.2). Otherwise, if i(ϕ) > 1, then there exists p0 ∈ (1, i(ϕ))
such that ϕ is of uniformly lower-type p0, which, combined with the uniformly
upper-type 1 of ϕ, further implies that, for any x ∈ Rn, t ∈ [0,∞), and s ∈ (0, 1),
sϕ(x, t) . ϕ(x, st) . sp0ϕ(x, t) and hence that s1−p0 . 1, where the implicit
positive constants are independent of s, t, and x. Letting s → 0, we then have
∞ = lims→0 s

1−p0 . 1, which is a contradiction. Thus, i(ϕ) ≤ 1, which completes
the proof of the preceding claim.

Moreover, by this claim and s ≥ m(ϕ), we obtain

s > n
[
q(ϕ)/i(ϕ)− 1

]
− 1 ≥ n

[
q(ϕ)− 1

]
− 1,

and hence q(ϕ) < 1 + (1 + s)/n. From this, the definition of q(ϕ) in (1.4), and
[32, Lemma 1.1.3(i)], we deduce that there exists q0 ∈ (q(ϕ), 1 + (1 + s)/n) such
that ϕ ∈ Aq0(Rn) ⊂ A1+(1+s)/n(Rn), which completes the proof of (ii) and hence
of Proposition 2.1. �

As a consequence of Proposition 2.1, we have the following conclusion.

Corollary 2.2. Let ϕ be a growth function and let s ∈ [m(ϕ),∞)∩Z+ with m(ϕ)
as in (1.3). Then, for any (λ, j, k) ∈ Λ with Λ as in (1.13), ψλj,k ∈ Lipϕ,1,s(Rn).

Proof. Let ϕ be a growth function, let s ∈ [m(ϕ),∞)∩Z+ with m(ϕ) as in (1.3),
and let ε ∈ (1 + s,∞). By Proposition 2.1(ii), it suffices to show that, for any

(λ, j, k) ∈ Λ, there exists a positive constant C̃, depending on j and k, such that

C̃ψλj,k ∈ C̃ε,s(Rn). Indeed, by the fact that ψλj,k ∈ Cs+1(Rn) with compact support,

we easily know that there exists a positive constant C̃, depending on j and k,

such that C̃ψλj,k satisfies (2.1). We now show that C̃ψλj,k also satisfies (2.2). To
this end, let ν ∈ Zn+, with |ν| = s, and let x1, x2 ∈ Rn. We consider the following
two cases.

Case (1): |x1−x2| ≥ 1. In this case, since ψλj,k ∈ Cs+1(Rn) has compact support,
it follows that∣∣∂νψλj,k(x1)− ∂νψλj,k(x2)

∣∣
≤

∣∣∂νψλj,k(x1)∣∣+ ∣∣∂νψλj,k(x2)∣∣ . (
1 + |x1|

)−n−ε
+
(
1 + |x2|

)−n−ε
. |x1 − x2|

[(
1 + |x1|

)−n−ε
+
(
1 + |x2|

)−n−ε]
,

which is the desired estimate.
Case (2): |x1 − x2| ≤ 1. In this case, by (1.7) and (1.8), we conclude that, if

x1, x2 /∈ mQj,k, then ∣∣∂νψλj,k(x1)− ∂νψλj,k(x2)
∣∣ = 0;
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if x1 ∈ mQj,k and x2 /∈ mQj,k, then, by the mean value theorem for derivatives,
we have∣∣∂νψλj,k(x1)− ∂νψλj,k(x2)

∣∣ . |x1 − x2| . |x1 − x2|
(
1 + |x1|

)−n−ε
. |x1 − x2|

[(
1 + |x1|

)−n−ε
+
(
1 + |x2|

)−n−ε]
and, by symmetry, a similar estimate also holds true if x1 /∈ mQj,k and x2 ∈ mQj,k;
finally, if x1, x2 ∈ mQj,k, then, by the mean value theorem for derivatives again,
we obtain∣∣∂νψλj,k(x1)− ∂νψλj,k(x2)

∣∣ . |x1 − x2|

. |x1 − x2|
[(
1 + |x1|

)−n−ε
+
(
1 + |x2|

)−n−ε]
.

This finishes the proof of (2.2) and hence of Corollary 2.2. �

Now we recall the notion of atomic Musielak–Orlicz Hardy spaces from [16]
(see also [32]).

Definition 2.3. For any measurable set S in Rn, the space Lqϕ(S) for any q ∈ [1,∞]
is defined to be the set of all measurable functions f on Rn, supported on S, such
that

‖f‖Lq
ϕ(S) :=

{
supt∈(0,∞)[

1
ϕ(S,t)

∫
Rn |f(x)|qϕ(x, t) dx]1/q <∞ when q ∈ [1,∞),

‖f‖L∞(Rn) <∞ when q = ∞.

Here and hereafter, ϕ(S, t) :=
∫
S
ϕ(x, t) dx for any t ∈ [0,∞).

Recall that, for any given q ∈ (0,∞], the space Lq(Rn) is defined to be the set
of all measurable functions f such that, when q ∈ (0,∞),

‖f‖Lq(Rn) :=
[∫

Rn

∣∣f(x)∣∣q dx]1/q <∞

and, when q = ∞,

‖f‖L∞(Rn) := ess sup
x∈Rn

∣∣f(x)∣∣ <∞.

Definition 2.4. A triplet (ϕ, q, s) is said to be admissible if q ∈ (q(ϕ),∞] and
s ∈ Z+ satisfies s ≥ m(ϕ), where q(ϕ) and m(ϕ) are defined, respectively, as in
(1.4) and (1.3). Let (ϕ, q, s) be admissible. A measurable function a is called a
(ϕ, q, s)-atom if the following three conditions hold true:

(i) a ∈ Lqϕ(Q) for some cube Q;

(ii) ‖a‖Lq
ϕ(Q) ≤ ‖χQ‖−1

Lϕ(Rn);

(iii) for any β ∈ Zn+ with |β| ≤ s,∫
Rn

xβa(x) dx = 0.

The atomic Musielak–Orlicz Hardy space Hϕ,q,s
at (Rn) is defined to be the set of all

f ∈ S ′(Rn) satisfying that there exists a sequence {bj}j∈N of constant multiples
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of some (ϕ, q, s)-atoms, respectively, related to some cubes {Qj}j∈N, with the
property

∞∑
j=1

ϕ
(
Qj, ‖bj‖Lq

ϕ(Qj)

)
<∞,

such that f =
∑∞

j=1 bj in S ′(Rn). Moreover, let

Λ
(
{bj}∞j=1

)
:= inf

{
λ ∈ (0,∞) :

∞∑
j=1

ϕ
(
Qj,

‖bj‖Lq
ϕ(Qj)

λ

)
≤ 1

}
and then define

‖f‖Hϕ,q,s
at (Rn) := inf

{
Λ
(
{bj}∞j=1

)
: f =

∞∑
j=1

bj in S ′(Rn)
}
,

where the infimum is taken over all decompositions of f as above.

The following atomic characterization of Hϕ(Rn) is taken from [16, Theo-
rem 3.1] (see also [32, Theorem 1.3.17]).

Theorem 2.5. Let (ϕ, q, s) be admissible. Then Hϕ,q,s
at (Rn) = Hϕ(Rn) with equiv-

alent quasinorms.

Remark 2.6. Let (ϕ, q, s) be admissible. Then, by Theorem 2.5, Hϕ,q,s
at (Rn) is

independent of the choices of q and s in the sense of equivalent quasinorms.

We also need to recall the molecular characterization of Hϕ(Rn). To this end,
we first review the notion of molecular Musielak–Orlicz Hardy spaces from [10]
(see also [32]).

Definition 2.7. Let ϕ be a growth function, q ∈ (1,∞), and s ∈ Z+ and ε ∈ (0,∞).
A measurable function α is called a (ϕ, q, s, ε)-molecule, related to the ball B, if
the following two conditions hold true:

(i) for any j ∈ Z+,

‖α‖Lq(Uj(B)) ≤ 2−jε|2jB|1/q‖χB‖−1
Lϕ(Rn),

where U0(B) := B and Uj(B) := 2jB \ 2j−1B for any j ∈ N;
(ii) for any β ∈ Zn+ with |β| ≤ s,∫

Rn

xβα(x) dx = 0.

The molecular Musielak–Orlicz Hardy space Hq,s,ε
ϕ,mol(Rn) is defined to be the set

of all f ∈ S ′(Rn) satisfying that there exist a sequence {αj}j∈N of (ϕ, q, s, ε)-mole-
cules, respectively, related to some balls {Bj}j∈N and {λj}j∈N ⊂ C, with the
property

∞∑
j=1

ϕ
(
Bj,

|λj|
‖χBj

‖Lϕ(Rn)

)
<∞,
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such that f =
∑∞

j=1 λjαj in S ′(Rn). Moreover, let

Λ
(
{λjαj}∞j=1

)
:= inf

{
λ ∈ (0,∞) :

∞∑
j=1

ϕ
(
Bj,

|λj|
λ‖χBj

‖Lϕ(Rn)

)
≤ 1

}
and then define

‖f‖Hq,s,ε
ϕ,mol(Rn) := inf

{
Λ
(
{λjαj}∞j=1

)
: f =

∞∑
j=1

λjαj in S ′(Rn)
}
,

where the infimum is taken over all decompositions of f as above.

The following molecular characterization of Hϕ(Rn) is taken from [10, Theorem
4.13] (see also [32, Theorem 3.2.10]).

Theorem 2.8. Let ϕ be a growth function, let ε ∈ (max{n+ s, nq(ϕ)/i(ϕ)},∞),
let s ∈ Z+, and let q ∈ (q(ϕ)[r(ϕ)]′,∞), where q(ϕ) and i(ϕ) are, respectively, as
in (1.4) and (1.2), and

r(ϕ) := sup
{
q ∈ (1,∞] : ϕ ∈ RHq(Rn)

}
. (2.3)

Then Hq,s,ε
ϕ,mol(Rn) = Hϕ(Rn) with equivalent quasinorms.

Recall that r(ϕ) may not be attainable (see, e.g., [32]).

Remark 2.9. Let ϕ, q, s, and ε be as in Theorem 2.8. Then, by Theorem 2.8, we
know that Hq,s,ε

ϕ,mol(Rn) is independent of the choices of q, s, and ε in the sense of
equivalent quasinorms.

In order to obtain Theorem 1.9, we also need to establish a new atomic charac-
terization for Hϕ(Rn). We now introduce the notion of adapted atomic Musielak–
Orlicz Hardy spaces.

Definition 2.10. Let (ϕ, q, s) be admissible. A function α ∈ Lq(Rn) is called an
adapted (ϕ, q, s)A-atom related to some ball B if part (iii) of Definition 2.4 holds
true and, instead of (i) and (ii) of Definition 2.4, a satisfies

(i)′ supp a ⊂ B,

(ii)′ ‖a‖Lq(Rn) ≤ |B|1/q
‖χB‖Lϕ(Rn)

.

The adapted atomic Musielak–Orlicz Hardy space Hϕ,q,s
at,A (Rn) is defined to be the

space of all f ∈ S ′(Rn) satisfying that there exist a sequence {aj}j∈N of some
(ϕ, q, s)-atoms, respectively, related to some balls {Bj}j∈N and {λj}j∈N ⊂ C, with
the property

∞∑
j=1

ϕ
(
Bj,

|λj|
‖χBj

‖Lϕ(Rn)

)
<∞,

such that f =
∑∞

j=1 λjaj in S ′(Rn). Moreover, let

Λ
(
{bj}∞j=1

)
:= inf

{
λ ∈ (0,∞) :

∞∑
j=1

ϕ
(
Bj,

|λj|
λ‖χBj

‖Lϕ(Rn)

)
≤ 1

}
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and then define

‖f‖Hϕ,q,s
at,A (Rn) := inf

{
Λ
(
{bj}∞j=1

)
: f =

∞∑
j=1

λjaj in S ′(Rn)
}
,

where the infimum is taken over all decompositions of f as above.

Remark 2.11. It is obvious that an adapted (ϕ,∞, s)A-atom is just a (ϕ,∞, s)-
atom.

Then we establish a new atomic characterization of Hϕ(Rn) as follows.

Theorem 2.12. Let ϕ be a growth function, let s ∈ Z+ ∩ [m(ϕ),∞), and let
q ∈ (q(ϕ)[r(ϕ)]′,∞), where m(ϕ), q(ϕ) and r(ϕ) are, respectively, as in (1.3),
(1.4) and (2.3). Then Hϕ,q,s

at,A (Rn) = Hϕ(Rn) with equivalent quasinorms.

Proof. Let ϕ be a growth function, let ε ∈ (max{n + s, nq(ϕ)/i(ϕ)},∞), let
s ∈ Z+ ∩ [m(ϕ),∞), and let q ∈ (q(ϕ)[r(ϕ)]′,∞). Then (ϕ, q, s) is admissible.

First, we observe that any adapted (ϕ, q, s)A-atom is a (ϕ, q, s, ε)-molecule.
Thus, by Theorem 2.8, we have

Hϕ,q,s
at,A (Rn) ⊂ Hq,s,ε

ϕ,mol(R
n) = Hϕ(Rn)

and, for any f ∈ Hϕ,q,s
at,A (Rn),

‖f‖Hϕ(Rn) ∼ ‖f‖Hq,s,ε
ϕ,mol(Rn) . ‖f‖Hϕ,q,s

at,A (Rn).

Now we show that Hϕ(Rn) = Hq,s,ε
ϕ,mol(Rn) ⊂ Hϕ,q,s

at,A (Rn). Indeed, let α be any
fixed (ϕ, q, s, ε)-molecule related to some ball B := B(xB, rB) with xB ∈ Rn

and rB ∈ (0,∞). It suffices to show that α is a countable linear combination
of adapted (ϕ, q, s)A-atoms and adapted (ϕ,∞, s)A-atoms. To do this, for any
k ∈ Z+, we let αk := αχUk(B), where Uk(B) is as in Definition 2.7(i), and we also
use the symbol Pk(Rn) to denote the set of all polynomials with order not greater
than s restricted on Uk(B), namely,

Pk(Rn) := span
{
xβχUk(B) : β ∈ Zn+, |β| ≤ s

}
.

By the proof of [23, p. 41, (3.5)], we conclude that, for any k ∈ Z+, there exists
Pk ∈ Pk(Rn) such that, for any β ∈ Zn+ with |β| ≤ s,∫

Uk(B)

xβ
[
αk(x)− Pk(x)

]
dx = 0. (2.4)

Let us now prove that, for any k ∈ Z+, αk − Pk is a constant multiple of an
adapted (ϕ, q, s)A-atom and that

∑∞
k=0 Pk also has a decomposition in terms of

adapted (ϕ,∞, s)A-atoms. If these facts hold true, then

α =
∞∑
k=0

αk =
∞∑
k=0

(αk − Pk) +
∞∑
k=0

Pk, (2.5)

and we can easily finish the proof of Theorem 2.12.
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As in the proof of [23, Theorem 7.2], for any k ∈ Z+ and s as above, let
{Qk

` : ` ∈ Zn+, |`| ≤ s} be the orthogonal polynomials with weight 1/|Uk(B)| by
means of the Gram–Schmidt orthogonalization process from{

xβχUk(B) : β ∈ Zn+, |β| ≤ s
}
.

Thus, for any k ∈ Z+ and `, β ∈ Zn+ with |`|, |β| ≤ s, we have

〈Qk
` , Q

k
β〉w :=

1

|Uk(B)|

∫
Uk(B)

Qk
` (x)Q

k
β(x) dx = δ`,β,

where δ`,β := 1 if ` = β and δ`,β := 0 if ` 6= β. From [23, (7.1)], it follows that

Pk =
∑

`∈Zn
+,|`|≤s

〈αk, Qk
` 〉wQk

`χUk(B).

By [23, Lemma 4.1], we know that

sup
x∈Uk(B)

∣∣Pk(x)∣∣ . 1

|Uk(B)|
‖αk‖L1(Rn),

which, together with the Minkowski inequality and the Hölder inequality, implies
that

‖αk − Pk‖Lq(Rn) ≤ ‖αk‖Lq(Uk(B)) + ‖Pk‖Lq(Rn)

. ‖αk‖Lq(Uk(B)) + ‖Pk‖L∞(Rn)

∣∣Uk(B)
∣∣1/q

. ‖αk‖Lq(Uk(B)) + ‖αk‖L1(Uk(B))

1

|Uk(B)|1/q′

. ‖αk‖Lq(Uk(B)) ≤ C02
−kε|2kB|1/q‖χB‖−1

Lϕ(Rn), (2.6)

where C0 is a positive constant independent of k and B.
Let µk := C02

−kε‖χ2kB‖Lϕ(Rn)/‖χB‖Lϕ(Rn) and let ak :=
αk−Pk

µk
. This condition,

combined with (2.4) and (2.6) and the fact that supp(αk−Pk) ⊂ 2kB, implies that,
for any k ∈ Z+, ak is an adapted (ϕ, q, s)A-atom and αk − Pk = µkak. Moreover,

by the Minkowski inequality, (2.6) and ε > n q(ϕ)
i(ϕ)

≥ n > n
q
, we conclude that∥∥∥ ∞∑

k=0

(αk − Pk)
∥∥∥
Lq(Rn)

≤
∞∑
k=0

‖αk − Pk‖Lq(Rn) .
∞∑
k=0

2−k(ε−
n
q
)|B|1/q‖χB‖−1

Lϕ(Rn)

. |B|1/q‖χB‖−1
Lϕ(Rn),

which further implies that

∞∑
k=0

(αk − Pk) =
∞∑
k=0

µkak inLq(Rn). (2.7)

Now we turn to the atomic decomposition of
∑∞

k=0 Pk. For any k ∈ Z+ and s as
above, let {P k

` : ` ∈ Zn+, |`| ≤ s} be a dual basis of {xαχUk(B) : α ∈ Zn+, |α| ≤ s}
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with respect to the weight 1/|Uk(B)|; namely, for any k ∈ Z+ and α, ` ∈ Zn+ with
|`|, |α| ≤ s, P k

` ∈ Pk(Rn) and

〈P k
` , x

α〉w :=
1

|Uk(B)|

∫
Uk(B)

xαP k
` (x) dx = δα,`. (2.8)

Thus, for any x ∈ Rn, we have

Qk
` (x) =

∑
ν∈Zn

+,|ν|≤s

〈Qk
` , x

ν〉wxν and P k
` (x) =

∑
ν∈Zn

+,|ν|≤s

〈x`, Qk
ν〉wQk

ν(x),

and that property leads to

Pk(x) =
∑

`∈Zn
+,|`|≤s

〈αk, x`〉wP k
` (x)χUk(B)(x). (2.9)

Furthermore, from [23, (7.2)], we deduce that, for any k ∈ Z+, ` ∈ Zn+ with
|`| ≤ s, and x ∈ Rn, ∣∣P k

` (x)
∣∣ . (2k−1rB)

−|`|. (2.10)

For any k ∈ Z+ and ` ∈ Zn+ with |`| ≤ s, let

Nk
` :=

∞∑
j=k

∣∣Uj(B)
∣∣〈αj, x`〉w.

Then, by the Lebesgue dominated convergence theorem, we have, for any ` ∈ Zn+
with |`| ≤ s,

N0
` :=

∞∑
j=0

∣∣Uj(B)
∣∣〈αj, x`〉w =

∞∑
j=0

∫
Rn

αj(x)x
` dx =

∫
Rn

α(x)x` dx = 0 (2.11)

and, by the Hölder inequality and ε > s + n ≥ |`| + n, we obtain, for any k ∈ N
and ` ∈ Zn+ with |`| ≤ s,

|Nk
` | ≤

∞∑
j=k

∫
Uj(B)

∣∣αj(x)x`∣∣ dx ≤
∞∑
j=k

‖αj‖Lq(Uj(B))(2
jrB)

|`|+ n
q′

.
∞∑
j=k

2−jε|2jB|1/q‖χB‖−1
Lϕ(Rn)(2

jrB)
|`|+ n

q′ ∼
∞∑
j=k

2−j(ε−|`|−n)|B|1+
|`|
n ‖χB‖−1

Lϕ(Rn)

∼ 2−k(ε−|`|−n)|B|1+
|`|
n ‖χB‖−1

Lϕ(Rn), (2.12)

which, together with (2.10), implies that, for any k ∈ Z+ and ` ∈ Zn+ with |`| ≤ s,∣∣Uk(B)
∣∣−1|Nk

` ||P k
` χUk(B)| . 2−kn|B|−12−k(ε−n−|`|)2−k|`|r

−|`|
B |B|1+

|`|
n ‖χB‖−1

Lϕ(Rn)

∼ 2−kε‖χB‖−1
Lϕ(Rn). (2.13)
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Moreover, by (2.9), (2.11) and the Abel transform, we write

∞∑
k=0

Pk =
∞∑
k=0

∑
{`∈Zn

+:|`|≤s}

〈αk, x`〉wP k
` χUk(B)

=
∑

{`∈Zn
+:|`|≤s}

∞∑
k=0

Nk
` −Nk+1

`

|Uk(B)|
P k
` χUk(B)

=
∑

{`∈Zn
+:|`|≤s}

∞∑
k=0

Nk+1
`

[
P k+1
`

χUk+1(B)

|Uk+1(B)|
− P k

`

χUk(B)

|Uk(B)|

]

=:
∑

{`∈Zn
+:|`|≤s}

∞∑
k=0

bk` ,

where, for any k ∈ Z+ and ` ∈ Zn+ with |`| ≤ s,

bk` := Nk+1
`

[
P k+1
`

χUk+1(B)

|Uk+1(B)|
− P k

`

χUk(B)

|Uk(B)|

]
.

From (2.13), (2.10), and (2.12), we deduce that

‖bk`‖L∞(Rn) ≤ C12
−kε‖χB‖−1

Lϕ(Rn), (2.14)

where C1 is a positive constant independent of k, `, and B. For any k ∈ Z+ and
` ∈ Zn+ with |`| ≤ s, let µk` := C12

−kε‖χ2k+1B‖Lϕ(Rn)/‖χB‖Lϕ(Rn) and a
k
` := bk`/µ

k
` .

Then

‖ak`‖L∞(Rn) ≤ ‖χ2k+1B‖−1
Lϕ(Rn).

By (2.8) and the definition of ak` , we know that, for any k ∈ Z+ and `, β ∈ Zn+
with |`|, |β| ≤ s, ∫

Rn

ak` (x)x
β dx = 0.

Furthermore, observe that supp ak` ⊂ 2k+1B for any k ∈ N. Thus, ak` is an adapted
(ϕ,∞, s)A-atom and bk` = µk`a

k
` . Similarly to (2.7), we find that

∞∑
k=0

Pk =
∞∑
k=0

∑
{`∈Zn

+:|`|≤s}

µk`a
k
` in Lq(Rn).

By this, (2.5) and (2.7), we conclude that

α =
∞∑
k=0

(αk − Pk) +
∞∑
k=0

Pk =
∞∑
k=0

µkak +
∞∑
k=0

∑
{`∈Zn

+:|`|≤s}

µk`a
k
` (2.15)

hold true in Lq(Rn) and hence in S ′(Rn).
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By ε > n q(ϕ)
i(ϕ)

, we know that there exists p0 ∈ [1,∞) such that ϕ ∈ Ap0(Rn)

and ε > p0
i(ϕ)

≥ p0
p
, where ϕ is of uniformly lower-type p ∈ (0, 1]. From this, (2.6),

(2.14), and [32, Lemma 1.1.3(iv)], we further deduce that, for any λ ∈ (0,∞),

∞∑
k=0

ϕ
(
2kB,

λ|µk|
‖χ2kB‖Lϕ(Rn)

)
+

∞∑
k=0

∑
{`∈Zn

+:|`|≤s}

ϕ
(
2k+1B,

λ|µk` |
‖χ2k+1B‖Lϕ(Rn)

)

.
∞∑
k=0

ϕ
(
2kB, 2−kε

λ

‖χB‖Lϕ(Rn)

)
+

∞∑
k=0

∑
{`∈Zn

+:|`|≤s}

ϕ
(
2k+1B, 2−(k+1)ε λ

‖χB‖Lϕ(Rn)

)

.
∞∑
k=0

2−kpεϕ
(
2kB,

λ

‖χB‖Lϕ(Rn)

)
.

∞∑
k=0

2−kp(ε−
p0
p
)ϕ
(
B,

λ

‖χB‖Lϕ(Rn)

)
. ϕ

(
B,

λ

‖χB‖Lϕ(Rn)

)
. (2.16)

Let f ∈ Hq,s,ε
ϕ,mol(Rn). We know that there exist {λj}∞j=1 ⊂ C and a sequence

{αj}∞j=1 of (ϕ, q, s, ε)-molecules such that

f =
∞∑
j=1

λjαj in S ′(Rn)

and

‖f‖Hq,s,ε
ϕ,mol(Rn) ∼ Λ

(
{λjαj}∞j=1

)
. (2.17)

Then, by (2.15), we find that, for any j ∈ N, there exist a sequence {aj,k}k∈N
of adapted (ϕ, q, s)A-atoms and {µj,k}k∈N ⊂ C such that αj =

∑∞
k=1 µj,kaj,k in

S ′(Rn). Thus, we have

f =
∞∑
j=1

∞∑
k=1

λjµj,kaj,k in S ′(Rn),

which, combined with Theorem 2.8, (2.16), and (2.17), further implies that

‖f‖Hϕ,q,s
at,A (Rn) . Λ

(
{λjµj,kaj,k}∞j,k=1

)
. Λ

(
{λjαj}∞j=1

)
∼ ‖f‖Hq,s,ε

ϕ,mol(Rn) ∼ ‖f‖Hϕ(Rn).

This finishes the proof of Theorem 2.12. �

Remark 2.13. Let ϕ, q, s be as in Theorem 2.12. Then, by this theorem, we know
that Hϕ,q,s

at,A (Rn) is independent of the choices of q and s in the sense of equivalent
quasinorms.
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We further introduce a variant of atoms adapted from [7, Definition 4.17].
To this end, we first introduce some notation. Let ϕ be a growth function, let
s ∈ [m(ϕ),∞) ∩ Z+ with m(ϕ) as in (1.3), and let {ψλj,k}(λ,j,k)∈Λ be an s-order
wavelet system. In what follows, for any f ∈ (Lipϕ,1,s(Rn))∗, let

Wψ,(i)f :=
[ ∑
(λ,j,k)∈Λ

∣∣〈f, ψλj,k〉∣∣2|ψλj,k|2]1/2, (2.18)

Wψ,(ii)f :=
[ ∑
(λ,j,k)∈Λ

∣∣〈f, ψλj,k〉∣∣2 χQj,k

|Qj,k|

]1/2
(2.19)

and

Wψ,(iii)f :=
[ ∑
(λ,j,k)∈Λ

∣∣〈f, ψλj,k〉∣∣2 χWλ
j,k

|Qj,k|

]1/2
, (2.20)

where Λ is as in (1.13). By Corollary 2.2, we know that Wψ,(i)f , Wψ,(ii)f , and
Wψ,(iii)f are well defined.

Definition 2.14. Let ϕ be a growth function, let s be as in Definition 2.4, and let
ψ be the mother wavelet of an s-order wavelet system. For any given q ∈ (1,∞),
a function a ∈ L2(Rn) is called an adapted (ϕ, q, s, ψ)A-atom if there exists a
dyadic cube R such that supp a ⊂ mR with m as in (1.7),

a =
∑
λ∈E

∑
Q⊂R
Q∈D

(a, ψλQ)ψ
λ
Q

and

‖Wψ,(ii)a‖Lq(Rn) =
∥∥∥[∑

λ∈E

∑
Q⊂R
Q∈D

∣∣(a, ψλQ)∣∣2 χQ|Q|]1/2∥∥∥Lq(Rn)
≤ |mR|1/q

‖χmR‖Lϕ(Rn)

,

where Wψ,(ii) is as in (2.19).

Remark 2.15. Observe that, if ϕ is a growth function, s ∈ [m(ϕ),∞) ∩ Z+, with
m(ϕ) as in (1.3), and q ∈ (1,∞), then Lq(Rn) ⊂ (Lipϕ,1,s(Rn))∗ and hence, for any

f ∈ L2(Rn) and (λ, j, k) ∈ Λ with Λ as in (1.13), 〈f, ψλj,k〉 = (f, ψλj,k). Moreover,
if there exists a dyadic cube R such that supp f ⊂ mR with m as in (1.7), in this
case, by the orthogonality of {ψλj,k}(lz,j,k)∈Λ, we have

f =
∑
λ∈E

∑
Q⊂R
Q∈D

(f, ψλQ)ψ
λ
Q.

Thus, Definition 2.14 is well defined.

Then we recall the wavelet characterizations of Lebesgue spaces from [24].
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Theorem 2.16 ([24, p. 165, Theorem 1]). Let q ∈ (1,∞). Then there exists
a positive constant C := C(q,n), depending only on q and n, such that, for any
f ∈ Lq(Rn),

1

C
‖f‖Lq(Rn) ≤ ‖Wψ,(ii)f‖Lq(Rn) ≤ C‖f‖Lq(Rn),

where Wψ,(ii) is as in (2.19).

The following conclusion is needed in the proof of Theorem 1.9, whose proof
borrows some ideas from the proof of [7, Lemma 4.18].

Lemma 2.17. Let ϕ, ψ and q be as in Definition 2.14. If a is an adapted
(ϕ, q, 0, ψ)A-atom related to a cube R, then there exists a positive harmless con-
stant c, independent of a, such that a/c is an adapted (ϕ, q, 0)A-atom.

Proof. Observe that supp a ⊂ mR with m as in (1.7). From the Lebesgue domi-
nated convergence theorem, it follows that∫

Rn

a(x) dx =
∑
λ∈E

∑
Q⊂R
Q∈D

(a, ψλQ)

∫
Rn

ψλQ(x) dx = 0.

Furthermore, by Theorem 2.16, we know that

‖a‖Lq(Rn) . ‖Wψ,(ii)a‖Lq(Rn) .
|mR|1/q

‖χmR‖Lϕ(Rn)

.

This shows that a is a positive constant multiple of an adapted (ϕ, q, 0)A-atom
(see Definition 2.10), which completes the proof of Lemma 2.17. �

We now recall the definition of intrinsic g-functions from [21]. For any α ∈ (0, 1]
and s ∈ Z+, let Cα,s(Rn) be the class of all functions η ∈ Cs(Rn) such that
supp η ⊂ {x ∈ Rn : |x| ≤ 1},∫

Rn

η(x)xγ dx = 0 for any γ ∈ Zn+ with |γ| ≤ s,

and such that there exists a positive constant C, depending on s, such that, for
any ν ∈ Zn+, with |ν| = s, and any x1, x2 ∈ Rn,∣∣∂νη(x1)− ∂νη(x2)

∣∣ ≤ C|x1 − x2|α.

For any f ∈ L1
loc(Rn) and (y, t) ∈ Rn+1

+ := Rn × (0,∞), we write

Aα,s(f)(y, t) := sup
η∈Cα,s(Rn)

∣∣f ∗ ηt(y)
∣∣,

where ηt(·) := t−nη( ·
t
) for any t ∈ (0,∞). Then the intrinsic g-function from [21]

is defined by setting, for any x ∈ Rn,

gα,s(f)(x) :=
{∫ ∞

0

[
Aα,s(f)(x, t)

]2dt
t

}1/2

.

The following conclusion is from [21] (see also [32, Theorem 6.3.3]). Recall that
f ∈ S ′(Rn) is said to vanish weakly at infinity if, for every ψ ∈ S (Rn), f ∗ψt → 0
in S ′(Rn) as t→ ∞.
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Proposition 2.18 ([21, Theorem 1.6]). Let ϕ be a growth function, let α ∈
(0, 1], let s ∈ Z+, let ε ∈ (α + s,∞), let p0 ∈ (n/(n + α + s), 1], and let ϕ ∈
Ap0[1+(α+s)/n](Rn). Then f ∈ Hϕ(Rn) if and only if f ∈ (Lipϕ,1,s(Rn))∗, f vanishes
weakly at infinity, and gα,s(f) ∈ Lϕ(Rn); moreover, there exists a positive constant
C such that, for any f ∈ Hϕ(Rn),

1

C
‖f‖Hϕ(Rn) ≤

∥∥gα,s(f)∥∥Lϕ(Rn)
≤ C‖f‖Hϕ(Rn).

In order to prove Theorem 1.9, we need to introduce a discrete variant of the
Littlewood–Paley g-function gλ(f). For any λ ∈ E, f ∈ L2(Rn), and x ∈ Rn, we
write

g̃λ(f)(x) :=
[∑
j∈Z

∣∣f ∗ ψλ2−j(x)
∣∣2]1/2,

where ψλ is as (1.9). Then we formulate a useful conclusion from [21] (see also
[32, Theorem 6.2.4]).

Proposition 2.19 ([21, Theorem 2.6]). Let λ ∈ E, let α ∈ (0, 1], let s ∈ Z+, and
let ε ∈ (max{s, α},∞). Then there exists a positive constant C such that, for any
f satisfying ∣∣f(·)∣∣(1 + | · |

)−n−ε ∈ L1(Rn) (2.21)

and for any x ∈ Rn, it holds true that

g̃λ(f)(x) ≤ Cgα,s(f)(x).

Observe that, for any λ ∈ E, ψλ ∈ Cα,s(Rn) and, if f ∈ L2(Rn), then f satisfies
(2.21) by the Hölder inequality. From these, we easily deduce the conclusion of
Proposition 2.19, the details of which we omit. Propositions 2.18 and 2.19 imply
the following conclusion, whose details we also omit.

Corollary 2.20. Let ϕ be a growth function and let λ ∈ E. If it is the case that
f ∈ Hϕ(Rn) ∩ L2(Rn), then g̃λ(f) ∈ Lϕ(Rn); moreover, there exists a positive
constant C(λ), depending on λ, such that, for any f ∈ Hϕ(Rn) ∩ L2(Rn),∥∥g̃λ(f)∥∥

Lϕ(Rn)
≤ C(λ)‖f‖Hϕ(Rn).

For any λ ∈ E, j ∈ Z, ν ∈ (0,∞), f ∈ L2(Rn), and x ∈ Rn, we introduce a
variant of the Peetre-type maximal functions defined by setting

ψλ,∗∗j,ν (f)(x) := sup
y∈Rn

|f ∗ ψλ2−j(x− y)|
[1 + 2j|y|]ν

.

Similarly to [7], we obtain the following corresponding result.

Proposition 2.21 ([7, Proposition 4.8]). Let ϕ be a growth function and let
ν ∈ (q(ϕ)/p,∞). Then there exists a positive constant C(λ,ν), depending on λ and
ν, such that, for any f ∈ Hϕ(Rn) ∩ L2(Rn),∥∥∥{∑

j∈Z

∣∣ψλ,∗∗j,ν (f)
∣∣2}1/2∥∥∥

Lϕ(Rn)
≤ C(λ,ν)‖f‖Hϕ(Rn).
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Proof. Let M be the Hardy–Littlewood maximal function defined by setting

Mf(x) := sup
B3x:B ball

1

|B|

∫
B

∣∣f(y)∣∣ dy, ∀f ∈ L1
loc(Rn),∀x ∈ Rn,

where the supremum is taken over all balls B ⊂ Rn that contain x.
By some arguments analogous to those used in the proof of [8, p. 271] in

1-dimensional case, we conclude that, for any j ∈ Z, ν ∈ (0,∞), f ∈ Hϕ(Rn) ∩
L2(Rn), and x ∈ Rn,

ψλ,∗∗j,ν f(x) .
[
M

(
|f ∗ ψλ2−j |1/ν

)
(x)

]ν
,

where the implicit positive constant depends only on λ, ν and n. From this,
the Fefferman–Stein vector-valued inequality on Musielak–Orlicz spaces (see [32,
Theorem 2.1.4]), and Propositions 2.18 and 2.19, we deduce that, for any ν ∈
(q(ϕ)/p,∞) and f ∈ Hϕ(Rn) ∩ L2(Rn),∥∥∥[∑

j∈Z

∣∣ψλ,∗∗j,ν (f)
∣∣2]1/2∥∥∥

Lϕ(Rn)
.

∥∥∥{∑
j∈Z

[
M

(
|ψλ2−j ∗ f |1/ν

)]2ν}1/2∥∥∥
Lϕ(Rn)

∼
∥∥∥{∑

j∈Z

[
M

(
|ψλ2−j ∗ f |1/ν

)]2ν}1/(2ν)∥∥∥ν
Lϕ̃(Rn)

.
∥∥∥{∑

j∈Z

|ψλ2−j ∗ f |2
}1/(2ν)∥∥∥ν

Lϕ̃(Rn)
∼

∥∥g̃λ(f)∥∥
Lϕ(Rn)

.
∥∥gα,s(f)∥∥Lϕ(Rn)

. ‖f‖Hϕ(Rn),

where α ∈ (0, 1], s ∈ Z+ and, for any (x, t) ∈ Rn+1
+ := Rn × [0,∞), ϕ̃(x, t) :=

ϕ(x, tν), and ϕ̃ is of lower type pv ∈ (q(ϕ),∞). This finishes the proof of Propo-
sition 2.21. �

3. Proofs of Theorem 1.9 and Corollary 1.10

This section is devoted to the proofs of Theorem 1.9 and Corollary 1.10. We
first show Theorem 1.9.

Proof of Theorem 1.9. We first observe that (1.15) follows from (1.11). Then we
only need to show that (i) through (iv) of Theorem 1.9 are mutually equivalent.
Indeed, we prove (i) =⇒ (ii) =⇒ (iv) =⇒ (iii) =⇒ (i) in sequence.

(i) =⇒ (ii). We first notice that Hϕ(Rn) is a quasi-Banach space and that
Hϕ(Rn) ∩ L2(Rn) is dense in Hϕ(Rn). Thus, it suffices to show that, for any
f ∈ Hϕ(Rn) ∩ L2(Rn),

‖Wψ,(i)f‖Lϕ(Rn) . ‖f‖Hϕ(Rn),

where Wψ,(i)f is as in (2.18). Indeed, for any λ ∈ E and f ∈ Hϕ(Rn) ∩ L2(Rn),
we have∣∣(f, ψλj,k)∣∣ = 2jn/2

∣∣∣∫
Rn

f(x)ψλ(2jx− k) dx
∣∣∣ = 2−jn/2

∣∣ψ̃λ2−j ∗ f(2−jk)
∣∣

. 2−jn/2 sup
y∈Qλ

j,k

∣∣ψ̃λ2−j ∗ f(y)
∣∣,
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where ψ̃(x) := ψ(−x) for any x ∈ Rn. Fix λ ∈ E and j ∈ Z. For any given
ν ∈ (0,∞) and almost every x ∈ Rn, by (1.8) and the finitely overlapped property
of {mQλ

j,k}k∈Zn , we have∑
k∈Zn

∣∣〈f, ψλj,k〉∣∣2∣∣ψλj,k(x)∣∣2
.

∑
k∈Zn

[
sup
y∈Qλ

j,k

∣∣ψ̃λ2−j ∗ f(y)
∣∣]2χmQj,k

(x)

.
∑
k∈Zn

[
sup

|z|≤
√
n2−j

∣∣ψ̃λ2−j ∗ f(x− z)
∣∣]2χmQj,k

(x)

.
[

sup
|z|≤

√
n2−j

|ψ̃λ2−j ∗ f(x− z)|
(1 + 2j|z|)ν

(
1 + 2j|z|

)ν]2
.

[
ψλ,∗∗j,ν f(x)

]2
,

where the implicit positive constants only depend on ν, m and n. By this and
Proposition 2.21, choosing ν ∈ (q(ϕ)/p,∞), we conclude that

‖Wψ,(i)f‖Lϕ(Rn) =
∥∥∥{∑

λ∈E

∑
j∈Z

∑
k∈Zn

∣∣〈f, ψλj,k〉∣∣2|ψλj,k|2}1/2∥∥∥
Lϕ(Rn)

.
∑
λ∈E

∥∥∥{∑
j∈Z

∑
k∈Zn

∣∣〈f, ψλj,k〉∣∣2|ψλj,k|2}1/2∥∥∥
Lϕ(Rn)

.
∑
λ∈E

∥∥∥{∑
j∈Z

∣∣ψλ,∗∗j,ν (f)
∣∣2}1/2∥∥∥

Lϕ(Rn)

. ‖f‖Hϕ(Rn), (3.1)

which completes the proof for (i) =⇒ (ii).
(ii) =⇒ (iv). This is an easy consequence of the fact (1.12). Moreover, we have

‖Wψ,(iii)f‖Lϕ(Rn) . ‖Wψ,(i)f‖Lϕ(Rn), (3.2)

where Wψ,(iii)f is as in (2.20).
(iv) =⇒ (iii). We first notice that, for any s ∈ (0,∞) and (λ, j, k) ∈ Λ,

χQj,k
.

[
M(χWλ

j,k
)
]1/s

. (3.3)

Indeed, we know that, for every x ∈ Qj,k,

1 ∼
[ |W λ

j,k|
|Qj,k|

]1/s
∼

{ 1

|Qj,k|

∫
Qj,k

χWλ
j,k
(y) dy

}1/s

.
[
M(χWk

α,β
)(x)

]1/s
,

which shows (3.3).
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Moreover, by (3.3), with s := r/2 and r ∈ (0,min{1, p/q(ϕ)}), the Fefferman–
Stein vector-valued inequality on Musielak–Orlicz spaces (see, e.g., [32, Theo-
rem 2.1.4] with r replaced by 2/r) and the increasing property of ϕ, we obtain

‖f‖(ii) =
∥∥∥{ ∑

(λ,j,k)∈Λ

∣∣〈f, ψλj,k〉∣∣2 χQj,k

|Qj,k|

}1/2∥∥∥
Lϕ(Rn)

.
∥∥∥{ ∑

(λ,j,k)∈Λ

|〈f, ψλj,k〉|2

|Qj,k|
[
M(χWλ

j,k
)
]2/r}1/2∥∥∥

Lϕ(Rn)

∼
∥∥∥{ ∑

(λ,j,k)∈Λ

[
M

([ |〈f, ψλj,k〉|
|Qj,k|1/2

χWλ
j,k

]r)]2/r}r/2∥∥∥1/r

Lϕ̃(Rn)

.
∥∥∥{ ∑

(λ,j,k)∈Λ

[ |〈f, ψλj,k〉|
|Qj,k|1/2

χWλ
j,k

]2}r/2∥∥∥1/r

Lϕ̃(Rn)

∼
∥∥∥{ ∑

(λ,j,k)∈Λ

∣∣〈f, ψλj,k〉∣∣2 χWλ
j,k

|Qj,k|

}1/2∥∥∥
Lϕ(Rn)

∼ ‖f‖(iii), (3.4)

where, for any x ∈ Rn and t ∈ (0,∞), ϕ̃(x, t) := ϕ(x, t1/r) is of uniformly
lower-type p/r ∈ (q(ϕ),∞). This shows that (iv) =⇒ (iii).

(iii) =⇒ (i). We first reduce the proof to showing that, for any f ∈ L2(Rn)
with Wψ,(ii)f ∈ Lϕ(Rn), f ∈ Hϕ(Rn) and

‖f‖Hϕ(Rn) . ‖Wψ,(ii)f‖Lϕ(Rn), (3.5)

where Wψ,(ii)f is as in (2.19). Indeed, we assume that (3.5) holds true. Then, for
any

f =
∑

(λ,j,k)∈Λ

〈f, ψλj,k〉ψλj,k ∈
(
Lipϕ,1,s(Rn)

)∗
(3.6)

with Wψ,(ii)f ∈ Lϕ(Rn) and Λ as in (1.13), let {ΛN}N∈N be an increasing sequence
of finite subsets of Λ satisfying that

⋃
N∈N ΛN = Λ, and for any N ∈ N,

fN :=
∑

(λ,k,j)∈ΛN

〈f, ψλj,k〉ψλj,k.

For any N,M ∈ N with M > N , by (3.5), Remark 1.4(ii) and [32, Lemma
1.10(ii)], we obtain

‖fN − fM‖Hϕ(Rn) .
∥∥∥[ ∑

(λ,j,k)∈ΛM\ΛN

∣∣〈f, ψλj,k〉∣∣2 χQj,k

|Qj,k|

]1/2∥∥∥
Lϕ(Rn)

→ 0,

as N → ∞. By the completion of Hϕ(Rn), we know that there exists f̃ ∈ Hϕ(Rn)

such that f̃ := limN→∞ fN in Hϕ(Rn) and hence in (Lipϕ,1,s(Rn))∗. Thus, by

this and (3.6), we conclude that f = f̃ in (Lipϕ,1,s(Rn))∗, which, combined with

f̃ ∈ Hϕ(Rn), implies that f ∈ Hϕ(Rn). This is the desired conclusion.
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Now we start to prove (3.5). For any f ∈ L2(Rn) with Wψ,(ii)f ∈ Lϕ(Rn), we
aim to show that

f =
∑
λ∈E

∑
Q∈D

(f, ψλQ)ψ
λ
Q =

∑
k∈Z

∑
i∈∆k

b(k, i), (3.7)

where {b(k, i) : k ∈ Z, i ∈ ∆k} are some adapted (ϕ, 2, 0, ψ)A-atoms which are
determined later. For any k ∈ Z, let Ωk := {x ∈ Rn : Wψ,(ii)f(x) > 2k},

Dk : =
{
Q ∈ D : |Q ∩ Ωk| ≥

1

2
|Q|, |Q ∩ Ωk+1| <

1

2
|Q|

}
and D̃ :=

⋃
k∈ZDk.

Then we claim that, for any Q ∈ D̃, there exists a unique k ∈ Z such that

Q ∈ Dk. Indeed, if there exist k, k̃ ∈ Z such that Q ∈ Dk ∩ Dk̃, then we have∣∣Q ∩ (Ωk \ Ωk̃+1)
∣∣ ≥ |Q ∩ Ωk| − |Q ∩ Ωk̃+1| >

1

2
|Q| − 1

2
|Q| = 0.

This shows that there exists z ∈ Q ∩ (Ωk \ Ωk̃+1) 6= ∅, which implies that

2k <Wψ,(ii)f(z) ≤ 2k̃+1

and hence that k < k̃ + 1. From this, it further follows that k ≤ k̃. Similarly, by

|Q∩ (Ωk̃ \Ωk+1)| > 0 and the symmetry, we obtain k̃ ≤ k. This shows that k = k̃,
which completes the proof of the preceding claim.

We now claim that, for any f ∈ L2(Rn) with Wψ,(ii)f ∈ Lϕ(Rn), λ ∈ E, and

Q ∈ D \ D̃,

(f, ψλQ) = 0. (3.8)

If (f, ψλQ) 6= 0, then there exists k0 ∈ Z such that |(f, ψλQ)||Q|−1/2 ≥ 2k0 , which

shows that, for any x ∈ Q, Wψ,(ii)f(x) > 2k0 and hence Q ⊂ Ωk0 . Therefore,

|Q ∩ Ωk0| = |Q| ≥ 1

2
|Q| > 0.

On the other hand, by Wψ,(ii)f ∈ Lϕ(Rn), we know that limk→∞ |Ωk| = 0. From
these facts and the decreasing property of Ωk with respect to k, we deduce that
there exists k ∈ Z such that

|Q ∩ Ωk| ≥
1

2
|Q|, |Q ∩ Ωk+1| <

1

2
|Q|, (3.9)

which further implies that Q ∈ Dk ⊂ D̃. This finishes the proof of the claim (3.8).
Observe that, due to the nesting property of dyadic cubes, for any Q ∈ Dk,

there exists a unique maximal dyadic cube Q̃ ∈ Dk such that Q ⊂ Q̃. Let {Q̃i
k ∈

Dk : i ∈ ∆k} be the collection of all such maximal dyadic cubes in Dk. Then

D̃ =
⋃
k∈Z

Dk =
⋃
k∈Z

⋃
i∈∆k

{Q ∈ Dk : Q ⊂ Q̃i
k}.
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From this, (3.7), and (3.8), we deduce that, for any f ∈ L2(Rn) with Wψ,(ii)f ∈
Lϕ(Rn),

f =
∑
λ∈E

∑
Q∈D

(f, ψλQ)ψ
λ
Q

=
∑
λ∈E

∑
Q∈D̃

(f, ψλQ)ψ
λ
Q

=
∑
λ∈E

∑
k∈Z

∑
i∈∆k

{ ∑
Q⊂Q̃i

k,Q∈Dk

(f, ψλQ)ψ
λ
Q

}
=:

∑
k∈Z

∑
i∈∆k

b(k, i), (3.10)

where, for any k ∈ Z and i ∈ Λ,

b(k, i) :=
∑
λ∈E

∑
Q⊂Q̃i

k,Q∈Dk

(f, ψλQ)ψ
λ
Q.

We now prove that b(k, i) is a multiple of an adapted (ϕ, 2, 0, ψ)A-atom. By the
orthogonality of the wavelets, for every k ∈ Z and i ∈ Λ, we have

Wψ,(ii)b(k, i) :=
[∑
λ∈E

∑
Q⊂Q̃i

k,Q∈Dk

∣∣(f, ψλQ)∣∣2 χQ|Q|]1/2.
Moreover, for every k ∈ Z and i ∈ Λ, let

λ(k, i) :=
∥∥Wψ,(ii)b(k, i)

∥∥
L2(Rn)

‖χmQ̃i
k
‖Lϕ(Rn)

|mQ̃i
k|1/2

and

a(k, i) :=

{
0 when λ(k, i) = 0,

1
λ(k,i)

∑
λ∈E

∑
Q⊂Q̃i

k,Q∈Dk
(f, ψλQ)ψ

λ
Q when λ(k, i) 6= 0.

Then ∥∥Wψ,(ii)a(k, i)
∥∥
L2(Rn)

≤ 1

|λ(k, i)|
∥∥Wψ,(ii)b(k, i)

∥∥
L2(Rn)

=
|mQ̃i

k|1/2

‖χmQ̃i
k
‖Lϕ(Rn)

,

which implies that a(k, i) is an adapted (ϕ, 2, 0, ψ)A-atom supported on the cube

mQ̃i
k, where m is as in (1.5). From this and Lemma 2.17, we deduce that a(k, i)

is a positive harmless constant multiple of an adapted (ϕ, 2, 0)A-atom supported

on the cube mQ̃i
k.

Using some ideas from [32, Lemma 1.3.15], we conclude that, for any t ∈ (0,∞),
there exists a positive constant C, independent of f and t, such that∑

k∈Z

ϕ
(
Ωk,

2k

t

)
≤ C

∫
Rn

ϕ
(
x,

Wψ,(ii)f(x)

t

)
dx. (3.11)
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Furthermore, by (3.9), we find that, for any t ∈ (0,∞),

1

|mQ̃i
k|

∫
Q̃i

k

[
Wψ,(ii)b(k, i)(x)

]2
dx

∼ 1

|mQ̃i
k|

∫
Q̃i

k

∑
λ∈E

∑
Q⊂Q̃i

k,Q∈Dk

∣∣(f, ψλQ)∣∣2χQ(x)|Q|
dx

∼
∑
λ∈E

∑
Q⊂Q̃i

k,Q∈Dk

|(f, ψλQ)|2

|Q|
|Q|

|mQ̃i
k|

.
∑
λ∈E

∑
Q⊂Q̃i

k,Q∈Dk

|(f, ψλQ)|2

|Q|
|Q|

|mQ̃i
k|

.
∑
λ∈E

∑
Q⊂Q̃i

k,Q∈Dk

|(f, ψλQ)|2

|Q|
|Q \ Ωk+1|
|mQ̃i

k|

∼ 1

|mQ̃i
k|

∑
λ∈E

∑
Q⊂Q̃i

k,Q∈Dk

∫
Q\Ωk+1

|(f, ψλQ)|2

|Q|
dx

∼ 1

|mQ̃i
k|

∫
Q̃i

k\Ωk+1

∑
λ∈E

∑
Q⊂Q̃i

k,Q∈Dk

|(f, ψλQ)|2χQ(x)
|Q|

dx

.
1

|mQ̃i
k|

∫
Q̃i

k\Ωk+1

[
Wψ,(ii)f(x)

]2
dx . 22(k+1) |Q̃i

k \ Ωk+1|
|mQ̃i

k|
. 22k,

which further implies that

1

|mQ̃i
k|1/2

∥∥Wψ,(ii)b(k, i)
∥∥
L2(Rn)

. 2k.

From this, (3.10), [32, parts (iv) and (vi) of Lemma 1.1.3], and (3.11), we deduce
that there exists a fixed p0 ∈ [1,∞) such that∑

k∈Z

∑
i∈∆k

ϕ
(
mQ̃i

k,
|λ(k, i)|

‖χ
m̃Q

i

k
‖Lϕ(Rn)‖Wψ,(ii)f‖Lϕ(Rn)

)
∼

∑
k∈Z

∑
i∈∆k

ϕ
(
mQ̃i

k,
‖Wψ,(ii)b(k, i)‖L2(Rn)

|mQ̃i
k|1/2‖Wψ,(ii)f‖Lϕ(Rn)

)
.

∑
k∈Z

∑
i∈∆k

ϕ
(
mQ̃i

k,
2k

‖Wψ,(ii)f‖Lϕ(Rn)

)
.

∑
k∈Z

∑
i∈∆k

ϕ
(
Q̃i
k ∩ Ωk,

2k

‖Wψ,(ii)f‖Lϕ(Rn)

)[ |mQ̃i
k|

|Q̃i
k ∩ Ωk|

]p0
.

∑
k∈Z

∑
i∈∆k

ϕ
(
Q̃i
k ∩ Ωk,

2k

‖Wψ,(ii)f‖Lϕ(Rn)

)
.

∑
k∈Z

ϕ
(
Ωk,

2k

‖Wψ,(ii)f‖Lϕ(Rn)

)
.

∫
Rn

ϕ
(
x,

Wψ,(ii)f

‖Wψ,(ii)f‖Lϕ(Rn)

)
dx ∼ 1,



1044 X. FU and D. YANG

which, together with Theorem 2.12, implies that

‖f‖Hϕ(Rn) ∼ ‖f‖Hϕ,2,0
at,A (Rn) . Λ

({
b(k, i)

}
k,i

)
. ‖Wψ,(ii)f‖Lϕ(Rn).

This finishes the proof that (iii) =⇒ (i).
Thus, (i) through (iv) are mutually equivalent.
Furthermore, from (3.1), (3.2), (3.4), and (3.5), we deduce that ‖·‖(i), ‖·‖(ii) and

‖·‖(iii) are equivalent to ‖·‖Hϕ(Rn), which completes the proof of Theorem 1.9. �

Finally, we prove Corollary 1.10.

Proof of Corollary 1.10. Let f ∈ L2(Rn). Then, by the proof of Theorem 1.9, we
know that (i) =⇒ (ii) =⇒ (iv) =⇒ (iii). Observe that the assumption (1.14) is
only used in the proof of “(iii) =⇒ (i)” in Theorem 1.9, where we indeed prove
that, for any f ∈ L2(Rn) with Wψ,(ii)f ∈ Lϕ(Rn), f ∈ Hϕ(Rn) as an intermediate
result. This shows (iii) =⇒ (i) and all the quasinorms ‖ · ‖(i), ‖ · ‖(ii) and ‖ · ‖(iii)
are equivalent to ‖ · ‖Hϕ(Rn), which completes the proof of Corollary 1.10. �
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