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Abstract. A sufficient condition for higher-order compact embeddings on
bounded domains in Carnot–Carathéodory spaces is established for the class
of rearrangement-invariant function spaces. The condition is expressed in terms
of compactness of a suitable 1-dimensional integral operator depending on the
isoperimetric function relative to the Carnot–Carathéodory structure of the
relevant sets. The general result is then applied to particular Sobolev spaces
built upon Lebesgue and Lorentz spaces.

1. Introduction

One of the most important characteristics of Sobolev spaces is how they relate
to other spaces. This sort of information is usually expressed in terms of (continu-
ous) embeddings, and compact embeddings. Compact embeddings are of particu-
lar interest from the point of view of applications of Sobolev spaces in mathemat-
ical physics, calculus of variations, economical sciences, and probability theory.
A compact embedding can be used to point toward a solution to a given partial
differential equation or to show the discreteness of the spectra of linear elliptic
partial differential operators defined over bounded domains.

One of the first classical compactness results originated in a lemma by Rel-
lich [33] and was later proved specifically for Sobolev spaces by Kondrachov [24].
These results of course found their way to classical textbooks, such as the one
by Adams [1]. Ever since then, compact embeddings of Sobolev spaces have been
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the subject of extensive research as a very important topic in functional analysis.
Obtained results extend far beyond the original context of underlining measurable
space Rn to various classes or domains in different measurable spaces.

It has been understood that the quality of an embedding of a Sobolev space
into another appropriate space is closely connected to the isoperimetric profile
of the underlying domain, and even that Sobolev embeddings can be derived
from isoperimetric inequalities. The problem of Sobolev inequalities and function
spaces embeddings can thus be approached through isoperimetric inequality. This
deep connection was observed in the early 1960s by Maz’ya [26] and [27] and also
by Federer and Fleming [13].

The approach to Sobolev spaces via isoperimetric inequalities allows one to con-
sider Sobolev embeddings from a much wider perspective than that of the classical
Euclidean setting. Examples of important non-Euclidean embeddings include, for
instance, the Gaussian–Sobolev embeddings studied in the connection with the
so-called logarithmic Sobolev inequalities (see e.g. [16], [2]), a central subject in
the investigation of hypercontractive semigroups. On the other hand, investiga-
tion of Sobolev embeddings has been carried out on Carnot–Carathéodory spaces,
where Sobolev spaces are built with respect to a different differential operator,
and whose pivotal example is the Heisenberg chain. While the Sobolev embed-
dings on Carnot–Carathéodory spaces have been studied to some extent (see,
e.g., [6], [8]–[12], [15], [17], [18], [20], [28], [25], [31]), very little is known about
compactness of such embeddings. In this paper we concentrate on this problem.

The isoperimetric approach was successfully applied in the context of Carnot–
Carathéodory spaces to the problem of establishing higher-order Sobolev-type
embeddings in [14]. Our main aim here is to determine when a Sobolev embed-
ding on a Carnot–Carathéodory space is compact. We intend to work under the
quite general setting of rearrangement-invariant spaces.

The Carnot–Carathéodory spaces (also known as sub-Riemannian spaces) pos-
sess an exciting range of applications ranging from quantum mechanics (where
we can also find the origin of the most famous example, the Heisenberg group),
through the control theory to exotic applications such as automatic animation
of physically plausible trajectories via computer graphics for passenger vehicles
[23]. The present article continues in this trend by applying the readily prepared
tools in [7], [14], and [15] to adapting state-of-art proofs from [35] to Carnot–
Carathéodory spaces settings. One of the main advantages of the isoperimetric
approach to embeddings of Sobolev spaces is the possibility of extending the
embeddings to the classes of rearrangement-invariant function spaces and higher-
order embeddings. Moreover, it allows us to reduce sufficient condition on embed-
dings over Carnot–Carathéodory spaces to condition on certain 1-dimensional
operators over R.

This article is structured as follows. In Section 2 we collect necessary back-
ground material. In particular, we fix all the indispensable basic notions concern-
ing Carnot–Carathéodory spaces, the rearrangement spaces, and the isoperimetric
inequalities (as our approach is built on the combination of these three topics).
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In Section 3 we state the main theorems. In Section 4, for the readers’ conve-
nience, the author collects known results that will be used in the proof. In the
final section we present the proofs of the main results.

2. Settings

Let X be a system of vector fields X1, . . . , Xm such that

Xi =
n∑

j=1

bi,j(x)
∂

∂xj

,

where x = (x1, x2, . . . , xn) ∈ Rn and bi,j : Rn → R, bij ∈ C∞(Rn) (with respect to
the classical Euclidean topology). The simplest choice of {Xj =

∂
∂xj

, j = 1, . . . , n}
would yield the classical Euclidean case. A piecewise C1-curve γ : [0, T ] → Rn,
T > 0, is called horizontal if whenever γ′(t) exists, then

γ′(t) =
m∑
j=1

cj(t)Xj

(
γ(t)

)
,

where cj : (0, T ) → R are measurable and satisfying
∑m

j=1 c
2
j(t) ≤ 1 for 0 ≤ t ≤ T .

The horizontal length of γ is defined by lh(γ) = T . Let us denote by H the family
of all horizontal curves. The distance function corresponding to X is defined by

d(x, y) = inf
{
lh(γ) : γ ∈ H, γ(0) = x, γ

(
lh(γ)

)
= y

}
, x, y ∈ Rn.

If d(x, y) is a metric, then Rn equipped with d(x, y) as metric is considered the
Carnot–Carathéodory space, generated by the system X.

Throughout this paper we assume that the distance function is a metric, espe-
cially that d(x, y) < ∞ for all x, y ∈ Rn, and that the topology generated by it
is the same as the classical Euclidean topology. It is known that this is ensured
if the system X enjoys the so-called Hörmander finite-rank condition. We also
assume throughout this article that Ω ⊂ Rn is open with |Ω| < ∞, where | · |
denotes the n-dimensional Lebesgue measure.

For a function f ∈ L1
loc(Ω), its distributional derivative along the vector field

Xj, Xjf , is defined by the identity

〈Xjf, φ〉 =
∫
Ω

fX∗
j φ dx for every φ ∈ C∞

0 (Ω),

where X∗
j (·) = −

∑n
k=1

∂
∂xk

(bj,k ·) denotes the formal adjoint of Xj. Throughout
this article, if f is a nonsmooth function, Xjf will be meant in the distributional
sense. If derivatives X1f,X2f, . . . , Xmf exist, then the vector of X-gradient of a
function f is defined by

X∇f = (X1f,X2f, . . . , Xmf).

Moreover, let us introduce the higher-order derivatives as

XDα(·) = Xα1

(
Xα2

(
. . . Xαk

(·) . . .
))
,
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where α = (α1, . . . , αk) ∈ {1, . . . ,m}k. Provided that XDαf exists for all α ∈
{1, . . . ,m}k, the X-gradient of order k is defined as a vector of length mk of the
following form:

X∇kf =
(
XDα(f) : α ∈ {1, . . . ,m}k

)
.

Naturally, the norm of the X-gradient of order k reads as

|X∇kf |2 =
∑
α∈mk

(
XDα(f)

)2
.

The X-variation and the X-perimeter can be defined as follows: if we denote

FΩ =
{
φ = {φ1, φ2, . . . , φm} ∈ C1

0(Ω → Rm) : sup
x∈Ω

( m∑
j=1

∣∣φj(x)
∣∣2) 1

2 ≤ 1
}
,

then, for a given u ∈ L1
loc(Ω), the X-variation of u with respect to Ω is defined

as

VarX(u,Ω) = sup
φ∈FΩ

∫
Ω

u(x)
m∑
j=1

X∗
j φj(x) dx.

The set of functions with bounded X-variation is denoted as BVX(Ω) and forms
a Banach space with respect to the norm

‖ · ‖BVX
= ‖ · ‖L1(Ω) +VarX(·,Ω).

If X∇f ∈ L1(Ω), then

VarX(f,Ω) ≤ Ĉ‖X∇f‖L1 , (2.1)

where Ĉ > 0 depends only on m.
If E ⊂ Rn is measurable, then the X-perimeter of E relative to Ω is defined

by

PX(E,Ω) = VarX(χE,Ω),

where χE denotes the characteristic function of E. The X-isoperimetric function
of Ω is given by the formula

IX,Ω(s) = inf
{
PX(E,Ω): E ⊂ Ω, s ≤ |E| ≤ 1

2

}
for s ∈

[
0,

1

2

]
,

and IX,Ω(s) = IX,Ω(1− s) if s ∈ (1
2
, 1].

Throughout this paper we will assume a certain regularity of IX,Ω(s), namely:
suppose that there is some nondecreasing function I : [0, 1] → R satisfying

IX,Ω(s) ≥ cI(cs) for s ∈
[
0,

1

2

]
(2.2)

with some constant c > 0, and

inf
t∈(0,1)

I(t)

t
> 0. (2.3)

In this generality, the isoperimetric function is usually unknown. However, in [15]
it was shown that the isoperimetric function can be evaluated if some additional
conditions hold.



974 M. FRANCŮ

The first such condition is the following version of the doubling condition: for
any set U ⊂ Rn with diam(U) < ∞, there exist constants C1 > 0 and R0 < ∞
such that, for x0 ∈ U and 0 < R < R0, one has∣∣B(x0, 2R)

∣∣ ≥ C1

∣∣B(x0, R)
∣∣. (2.4)

It was shown in [30] that the finite-rank Hörmander condition implies the doubling
condition.

The second restriction is the following version of the Poincaré inequality: for
any set U ⊂ Rn with diam(U) < ∞, there exist constants C2 > 0, R0 < ∞, and
α ≥ 1 such that, for x0 ∈ U , 0 < R < R0, and every Lipschitz function u in
αB = B(x0, αR), we have, for any λ > 0,∣∣∣{x ∈ B :

∣∣∣u(x)− ∫
B

u(x) dx
∣∣∣ > λ

}∣∣∣ ≤ C2

λ

∫
αB

∣∣X∇u(y)
∣∣ dy. (2.5)

The third restriction is that (Rn, d) is complete and it is a length-space; that
is

d(x, y) = inf l(γxy), (2.6)

where γ is a continuous curve joining x to y and where l(γxy) denotes its metric
length.

Let U ⊂ Rn, and denote by C the smallest constant in (2.4). Then the homo-
geneous dimension relative to U (and X) is defined by

Q = log2(C).

Let us recall definitions of John domains and X-PS domains in the following two
paragraphs.

An open set Ω ⊂ Rn is called an X-John domain if there exist a constant
c ∈ (0, 1) and a point x0 ∈ Ω such that for every x ∈ Ω there exists a rectifiable
curve ω : [0, l] → Ω, parameterized by arc-length, such that ω(0) = x, ω(l) = x0,
and

d
(
ω(r), ∂Ω

)
≥ cr for r ∈ [0, l],

where ∂Ω denotes boundary of Ω.
An open set Ω ⊂ Rn is called X-PS domain if there exist a covering {B}B∈F of

Ω by metric balls and numbers N > 0, α ≥ 1, and ν ≥ 1 such that the following
hold.

(1)
∑

B∈F χ(α+1)B(x) ≤ NχΩ(x) for every x ∈ Ω.
(2) There exists a (central) ball B0 ∈ F such that, for any B ∈ F , one can

find a chain B0, B1, . . . , Bs(B) = B, with Bi ∩Bi+1 6= ∅ and |Bi ∩Bi+1| ≥
1
N
max(|Bi|, |Bi+1|).

(3) For any i = 0, . . . , s(B), one has B ⊂ νBi.

Though the class of John domains is better known in the context of Sobolev-
type embeddings, we will state our results by means of the notion of X-PS
domains. The class of X-PS domains contains that of X-John domains if (2.4)
holds, which is always assumed in the present article. On the other hand, if a
certain geodesic segment property is satisfied, then the class of X-John domains
contains the class of X-PS domains. Both inclusions are shown in [15, Theorem
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1.30]. Consequently, both classes coincide if both (2.4) and the geodesic segment
property are satisfied.

If in addition the metric space (Rn, d) is complete and a length-space, then it is
shown in [15] that metric balls with small diameter are X-PS domains. The class
of X-PS domains is larger than the class of nontangentially accessible domains
(introduced in [19]) and the class of extension domains (introduced in [22]). In
[29] it is shown that if X is generated by structure of a step two homogeneous
group, then any C1,1 domain is an X-NTA domain and consequently an X-PS
domain. (More examples of X-NTA and therefore X-PS domains can be found
in [4].) However, the task of finding X-PS domains in a general setting is rather
nontrivial.

In [15, Theorem 1.18] it was shown that if Ω ⊂ Rn is an X-PS domain (and
conditions (2.4) and (2.5) hold), then

IX,Ω(s) ≤


C

diam(Ω)|Ω|−
1
Q
s

Q−1
Q , for s ∈ [0, 1

2
],

C

diam(Ω)|Ω|−
1
Q
(1− s)

Q−1
Q , for s ∈]1

2
, 1],

(2.7)

where Q is the homogeneous dimension relative to Ω.
Now we turn our attention to the rearrangement-invariant function spaces (the

basic references and more recent ones for readers interested in more details are
[3], [5], [21], [32], [36]). We first recall the nonincreasing rearrangement and dis-
tribution function. Let u ∈ M(Ω); then

µu(t) =
∣∣{x ∈ Ω:

∣∣u(x)∣∣ > t
}∣∣, t ∈ [0,∞),

is the distribution function of u. Let (R, λ) and (S, µ) be two measurable spaces.
Functions u ∈ M(R, λ) and v ∈ M(S, µ) are called equimeasurable if µu = µv (on
R+). In that case, we write u ∼ v.

The nonincreasing rearrangement of function u ∈ M(R, λ) is then defined as

u∗(t) = inf
{
s ≥ 0: µu(s) ≤ t

}
, t ∈ [0,∞).

A mapping % : M+(R, λ) → [0,∞] is called a Banach function norm if, for all f, g,
and {fn}n∈N in M+(R, λ), every a ≥ 0, and for all Lebesgue measurable E ⊂ Ω,
the following properties hold.

(1) %(f) = 0 if and only if f = 0 almost everywhere. Moreover, %(af) = a%(f)
and %(f + g) ≤ %(f) + %(g).

(2) If 0 ≤ g ≤ f almost everywhere, then %(g) ≤ %(f).
(3) If 0 ≤ fn ↑ f almost everywhere, then %(fn) ↑ %(f).
(4) If |E| < ∞, then %(χE) < ∞.
(5) If |E| < ∞, then

∫
E
f dλ ≤ CE%(f), for some constant CE, 0 < CE < ∞,

depending on E and % but independent of f .

If, in addition, % satisfies %(f) = %(g) for every pair of equimeasurable functions
f and g in M+(R, λ), then % is called a rearrangement-invariant Banach function
norm.

The collection X(R, µ) = X%(R, µ) of all functions f ∈ M(R, λ) for which
%(|f |) < ∞ is called a rearrangement-invariant Banach function space (r.i. space).
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For each f ∈ X(R, µ), define

‖f‖X(R, µ) = %
(
|f |

)
.

Let us recall that there is functional %′ defined on M+(R, λ) by

%′(g) = sup
{∫

R

fg : f ∈ M+(R, λ), %(f) ≤ 1
}
, g ∈ M+(R, λ),

associated with r.i. Banach function norm %. It turns out that %′ is an r.i. Banach
function norm, called the associate function norm of %. We note that if |Ω| < ∞,
then for any r.i. space X(Ω) there exists a representation rearrangement-invariant
Banach function norm

%X(Ω) : M+(0, 1) → [0,∞]

such that

‖f‖X(Ω) = %X
(
f ∗(|Ω|·)), f ∈ X(Ω).

This allows us to work sometimes with function spaces over simple measurable
space (0, 1), instead of with function spaces over Ω.

Let us now give some examples of r.i. norms. A basic example are the Lebesgue
norms Lp(0, 1), p ∈ [1,∞], defined for all f ∈ M(0, 1) by

‖f‖Lp(0,1) =

{
(
∫ 1

0
|f(x)|p dx)

1
p , p < ∞,

esssupx∈(0,1) |f(x)|, p = ∞.

The corresponding r.i. spaces lp(R, µ) are then called Lebesgue spaces.
One can consider also more general functionals ‖ · ‖Lp,q(0,1) and ‖ · ‖Lp,q:α(0,1).

They are given for any f ∈ M(0, 1) by

‖f‖Lp,q(0,1) =
∥∥f ∗(s)s

1
p
− 1

q

∥∥
Lq(0,1)

and

‖f‖Lp,q,α(0,1) =
∥∥∥f ∗(s)s

1
p
− 1

q

(
log

2

s

)α∥∥∥
Lq(0,1)

,

respectively. Here, we assume that p ∈ [1,∞], α ∈ R, and we use the convention
that 1

∞ = 0. Note that ‖ · ‖Lp(0,1) = ‖ · ‖Lp,p(0,1) and ‖ · ‖Lp,q(0,1) = ‖ · ‖Lp,q:0(0,1)

for every such p and q. However, it turns out that under these assumptions on
p, q, and α, ‖ · ‖Lp,q(0,1) and ‖ · ‖Lp,q:α(0,1) do not have to be r.i. norms. To ensure
that ‖ · ‖Lp,q:α(0,1) is equivalent to an r.i. norm, we need to assume that one of the
following conditions is satisfied:

p = q = 1, α ≥ 0, (2.8)

1 < p < ∞, (2.9)

p = ∞, q < ∞, α +
1

q
< 0, (2.10)

p = q = ∞, α ≤ 0. (2.11)

In this case, ‖ · ‖Lp,q(0,1) is called a Lorentz norm, ‖ · ‖Lp,q:α(0,1) is called a Lorentz–
Zygmund norm, and the corresponding r.i. spaces Lp,q(0, 1) and Lp,q:α(0, 1) are
called Lorentz spaces and Lorentz-Zygmund spaces, respectively.
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Let m ∈ N, and let X(Ω) be an r.i. space. We define the mth order Sobolev
space V m

X X(Ω) as the set of all functions f ∈ M(Ω) such that X∇mf exists in
a distributional sense, and it is represented by locally integrable functions such
that |X∇mf | ∈ X(Ω).

In [14] it is proved that if

IΩ,X(s) ≥ C̄s for s ∈
[
0,

1

2

]
(2.12)

with some constant C̄ > 0, then

V m
X X(Ω) ⊂ V k

XL
1(Ω) for k < m. (2.13)

Provided that (2.12) holds, the V m
X X(Ω) forms a normed linear space with respect

to the norm

‖u‖V m
X X(Ω) =

m−1∑
k=0

‖X∇ku‖L1(Ω) + ‖X∇mu‖X(Ω).

Moreover, by Wm
X X(Ω) we denote the set of all functions f ∈ (Ω) such that, for

all k = 0, 1, . . . ,m, X∇kf exists in a distributional sense and it is represented by
locally integrable functions such that |X∇kf | ∈ X(Ω). Wm

X (Ω) forms a normed
linear space with respect to norm

‖u‖Wm
X X(Ω) =

m∑
k=0

‖X∇ku‖X(Ω).

Let (R, µ) be a measurable space. Given two function spaces X(R, µ) and
Y(R, µ) (not necessarily rearrangement-invariant), the notation

X(R, µ) → Y(R, µ)

represents the fact that there exists a constant C independent of f ∈ X(R, µ)
such that

‖f‖Y(R,µ) ≤ C‖f‖X(R,µ).

In such a case we say that X(R, µ) is embedded into Y(R, µ). By saying that
Y(R, µ) is the optimal target in X(R, µ) → Y(R, µ), we mean that, for any func-
tion space Z(R, µ) satisfying X(R, µ) → Z(R, µ), one necessarily has Y(R, µ) →
Z(R, µ).

IfX(R, µ) → Y(R, µ), then the identity operator Id is continuous fromX(R, µ)
to Y(R, µ). If it is also compact, then we write

X(R, µ) ↪→↪→ Y(R, µ).

In such a case we say that function space X(R, µ) is compactly embedded into
Y(R, µ). The fact that operator T is compact from function space X(R, µ) into
Y(R, µ) is denoted as

T : X(R, µ) →→ Y(R, µ).

Suppose that ‖ · ‖X(0,1) and ‖ · ‖Y(0,1) are rearrangement-invariant norms. We
say that X(R, µ) is almost-compactly embedded into Y(R, µ) and we write

X(R, µ)
∗
↪→ Y(R, µ)
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if

lim
k→∞

sup
‖f‖X(R,µ)≤1

‖χEk
f‖Y(R,µ) = 0

is satisfied for every sequence (Ek)
∞
k=1 of µ-measurable subsets of R fulfilling

χEk
→ 0 µ-almost everywhere.

3. The main theorems

The connection between Sobolev embeddings and certain Hardy-type operators
in the setting of Carnot–Carathéodory spaces is established in [14]. Here, we
are going to extend this connection to compactness of Sobolev embeddings. Let
J : (0, 1] → (0,∞) be a measurable function satisfying (2.3); we will consider the
operator HJ : M(0, 1) → M(0, 1) defined by

HJf(t) =

∫ 1

t

|f(s)|
J(s)

ds, f ∈ M(0, 1) and t ∈ (0, 1). (3.1)

Furthermore, given j ∈ N, we define the operator Hj
J by

HJ ◦HJ ◦ · · · ◦HJ︸ ︷︷ ︸
j-times

(f). (3.2)

Theorem 3.1. Assume that (2.4), (2.5), and (2.6) are fulfilled. Let Ω ⊂ Rn

be open, and let m ∈ N. Suppose that there is some nondecreasing function
I : [0, 1] → R satisfying (2.2) and (2.3), and let ‖ · ‖X(0,1) and ‖ · ‖Y(0,1) be
rearrangement-invariant norms. Then

Hm
I : X(0, 1) →→ Y(0, 1) (3.3)

implies

V m
X X(Ω) ↪→↪→ Y(Ω). (3.4)

Remark 3.2. According to [35] the following two conditions are equivalent under
the assumptions of Theorem 3.1:

• Hm
I : X(0, 1) →→ Y(0, 1),

• lim
a→0+

sup‖f‖X(0,1)≤1 ‖Hm
I (χ(0,a)f)‖Y(0,1) = 0.

Adopting some additional conditions allows us to reformulate the condition
from Theorem 3.1 in terms of a simpler operator which we will denote Km

I .
Suppose that I : (0, 1] → (0,∞) is a nondecreasing function satisfying (2.3)

and let m ∈ N. Set

J(t) =
(I(t))m

tm−1
, t ∈ (0, 1]. (3.5)

Let us observe that J is measurable on (0, 1] and fulfills (2.3). Consider the
operator Km

I defined by

Km
I f(t) =

∫ 1

t

∣∣f(s)∣∣ sm−1

(I(s))m
ds, f ∈ M(0, 1), t ∈ (0, 1).
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If, up to multiplicative constants depending on I,∫ s

0

dr

I(r)
≈ s

I(s)
, s ∈ (0, 1), (3.6)

then the sufficient condition for (3.4) can be reformulated with operator Km
I .

Theorem 3.3. Assume that (2.4), (2.5), and (2.6) are fulfilled. Suppose that
there is some nondecreasing function I : [0, 1] → R satisfying (2.2) and (3.6). Let
m ∈ N and let ‖ · ‖X(0,1) and ‖ · ‖Y(0,1) be rearrangement-invariant norms.

(1) Suppose that

lim
t→0+

tm−1

(I(t))m
6= 0. (3.7)

Then

Km
I : X(0, 1) →→ Y(0, 1) (3.8)

implies that

V m
X X(Ω) ↪→↪→ Y(Ω). (3.9)

(2) Suppose that

lim
t→0+

tm−1

(I(t))m
= 0. (3.10)

Then (3.9) is satisfied for all pairs of rearrangement-invariant norms
‖ · ‖X(0,1) and ‖ · ‖Y(0,1).

If we restrict our consideration to X-PS domains, where the isoperimetric func-
tion is known, we can use a yet simpler operator. Given Q > 0 and m ∈ N, we
define

Qm
Qf(t) =

∫ 1

t

∣∣f(s)∣∣sm
Q
−1 ds, f ∈ M(0, 1) and t ∈ (0, 1).

Theorem 3.4 (Reduction principle forX-PS domains). Assume that (2.4), (2.5),
and (2.6) are fulfilled. Let m ∈ N and Ω be a X-PS domain with homogeneous
dimension Q. Suppose that ‖ · ‖X(0,1) and ‖ · ‖Y(0,1) are r.i. spaces. If m ≤ Q and

Qm
Q : X(0, 1) →→ Y(0, 1), (3.11)

then

V m
X X(Ω) ↪→↪→ Y(Ω). (3.12)

In particular, the assumption that Q = m implies that (3.12) is satisfied for all
‖ · ‖Y(0,1) if X(0, 1) 6= L1(0, 1). Furthermore, if m > Q then (3.12) is fulfilled for
all choices of X(0, 1) and Y(0, 1).

The principle introduced in the Theorem 3.1 and further developed in Theo-
rems 3.3 and Theorem 3.4 will be applied to the class of Lorentz spaces.

Theorem 3.5. Assume that (2.4), (2.5), and (2.6) are fulfilled. Let m ∈ N, and
let Ω ⊂ Rn be an X-PS domain. Let p1, p2, q1, q2 ∈ [1,∞] be such that the triples
(p1, q1, 0) and (p2, q2, 0) satisfy one of the conditions (2.8)–(2.11). Let Q denote
the homogeneous dimension of Ω, and assume that Q > 2 and m < Q. Then each
of the following conditions
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(1) p1 <
Q
m

and p2 <
p1

1−mp1
Q

,

(2) p1 =
Q
m

and p2 < ∞,

(3) p1 >
Q
m

ensures that

VXL
p1,q1(Ω) ↪→↪→ Lp2,q2(Ω). (3.13)

Let us note that the cases when m = Q and m ≥ Q are missing from Theo-
rem 3.5 are already covered in Theorem 3.4. Also, let us explicitly state that the
conditions on compact embeddings of Sobolev spaces build upon Lebesgue spaces
which are implied by Theorem 3.5.

Corollary 3.6. Assume that (2.4), (2.5), and (2.6) are fulfilled. Let m ∈ N, and
let Ω ⊂ Rn be an X-PS domain. Let p1, p2 ∈ [1,∞]. Let Q denote the homogeneous
dimension of Ω, and assume that Q > 2 and m < Q. Then each of the following
conditions

(1) p1 <
Q
m

and p2 <
p1

1−mp1
Q

,

(2) p1 =
Q
m

and p2 < ∞,

(3) p1 >
Q
m
,

ensures that

VXL
p1(Ω) ↪→↪→ Lp2(Ω). (3.14)

4. Support theorems

In this section we collect known theorems which will be used in proofs of
theorems from Section 3. First, we recall some facts about the operator Hj

J and
its connection to compact and almost-compact embeddings of r.i. spaces. Then
we shift our attention to compact and almost-compact embeddings of Lebesgue
spaces on Carnot–Carathéodory spaces, adapting known results to this settings
if necessary. We conclude this section by brief summary of some properties of
functions from Sobolev-like spaces over Carnot–Carathéodory spaces.

Assume that J : (0, 1] → (0,∞) is a measurable function satisfying

inf
J(t)

t
> 0. (4.1)

It is proved in [7, Remark 8.2] that

Hj
Jf(t) =

1

(j − 1)!

∫ 1

t

|f |
J(s)

(∫ s

t

dr

J(r)

)j−1

ds,

for f ∈ M(0, 1), t ∈ (0, 1). Let j ∈ N, and let ‖ · ‖X(0,1) be an r.i. norm. For every
f ∈ M(0, 1), we define the functional ‖ · ‖(Xr

j,J )
′(0,1) by

‖f‖(Xr
j,J )

′(0,1) =
1

(j − 1)!

∥∥∥ 1

J(s)

∫ s

0

(∫ s

t

dr

J(r)

)j−1

f ∗(t) dt
∥∥∥
X′(0,1)

.
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It is shown in [7, Proposition 8.3] that ‖·‖(Xr
j,J )

′(0,1) is an r.i. norm and its associate

norm ‖ · ‖(Xr
j,J )(0,1)

fulfills

Hj
J : X(0, 1) → Xr

j,J(0, 1). (4.2)

Lemma 4.1. Let J : (0, 1] → (0,∞) be a measurable function. Then H1
J is not

compact from L1(0, 1) into L∞(0, 1).

Proof. We will follow the argument from the end of the proof of Lemma 4.1 in
[35]. Since 1

J(t)
> 0, t ∈ (0, 1), there exists ε > 0 and set M ⊂ (0, 1) with |M | = 1

2

such that 1
J(s)

≥ ε for s ∈ M . Let (xn)
∞
n=1 be a sequence of points in [0, 1) such

that |(xn, 1) ∩M | = 1
2n
, n ∈ N, and set

fn(t) = 2nχ(xn,xn+1)∩M(t), for t ∈ (0, 1), n ∈ N.

We have

‖f‖L1(0,1) = 2n
∣∣(xn, xn+1) ∩M

∣∣ = 2n
(∣∣(xn, 1) ∩M

∣∣− ∣∣(xn+1, 1) ∩M
∣∣) = 1

2
,

and hence (fn)
∞
n=1 is bounded in L1(0, 1).

Now fix m,n ∈ N, m < n. We have∥∥H1
J(fn)−H1

J(fm)
∥∥
L∞(0,1)

≥
∣∣HJfn(xn)−HJfm(xn)

∣∣
=

∣∣∣∫ 1

xn

2nχ(xn,xn+1)∩M(s)

J(s)
ds−

∫ 1

xn

2mχ(xm,xm+1)∩M(s)

J(s)︸ ︷︷ ︸
=0 since m<n

ds
∣∣∣

= 2n
∫ xn+1

xn

χM(s)

J(s)
ds ≥ 2nε

1

2n+1
=

ε

2
.

Consequently, the sequence (H1
J(fn))

∞
n=1 is not a Cauchy sequence in L∞(0, 1)

and H1
J is not compact from L1(0, 1) into L∞(0, 1). �

Let us restate the following two characterizations of compactness of operator
Hj

J from [35].

Theorem 4.2 ([35, Theorem 4.1 and Theorem 4.2]). Let J : (0, 1] → (0,∞) be
a measurable function satisfying (2.3), and let j ∈ N. Suppose that ‖ · ‖X(0,1)

and ‖ · ‖Y(0,1) are rearrangement-invariant norms. Consider the following two
conditions:

(a) Hj
J : X(0, 1) →→ Y(0, 1),

(b) lima→0+ sup‖f‖X(0,1)≤1 ‖H
j
J(χ(0,a)f)‖Y(0,1) = 0.

If X(0, 1) = L1(0, 1), Y(0, 1) = L∞(0, 1), j = 1, and

lim
a→0+

ess sup
t∈(0,a)

1

J(t)
= 0,

then (b) is satisfied but (a) is not. In all other cases, (a) holds if and only if (b)
holds.
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Theorem 4.3. Let J : (0, 1] → (0,∞) be a measurable function satisfying (2.3),
and let j ∈ N. Suppose that ‖ · ‖X(0,1) and ‖ · ‖Y(0,1) are rearrangement-invariant
norms. If

Y(0, 1) 6= L∞(0, 1) or

∫ 1

0

dr

J(r)
= ∞,

then the following conditions are equivalent:

(1) Hj
J : X(0, 1) →→ Y(0, 1),

(2) Xr
j,J(0, 1)

∗
↪→ Y(0, 1).

Assume that X(0, 1) and J are such that, in addition to (4.1), it holds that∥∥∥(∫ 1

t

dr

J(r)

)j∥∥∥
X(0,1)

< ∞. (4.3)

For every f ∈ M(0, 1) define the function ‖ · ‖Yd
j,J (0,1)

by

‖f‖Yd
j,J (0,1)

= sup
h∼f

‖Hj
Jh‖Y(0,1) + ‖f‖L1(0,1).

Important properties of Yd
j,J(0, 1) are summarized in the following proposition

and theorem from [35].

Proposition 4.4 ([35, Proposition 4.5]). Let J : (0, 1] → (0,∞) be a measurable
function satisfying (2.3), and let j ∈ N. Suppose that ‖·‖Y(0,1) is a rearrangement-
invariant norm fulfilling (4.3). Then ‖ · ‖(Y)dj,J (0,1)

is a rearrangement-invariant

norm and

Hj
J : Y

d
j,J(0, 1) → Y(0, 1).

Theorem 4.5 ([35, Theorem 4.6]). Let J : (0, 1] → (0,∞) be a measurable func-
tion satisfying (2.3) and let j ∈ N. Suppose that X(0, 1) is a r.i. function space
such that X(0, 1) 6= L1(0, 1). Assume that Y(0, 1) is an r.i. space fulfilling (4.3).
Then the following conditions are equivalent:

(1) Hj
J : X(0, 1) →→ Y(0, 1),

(2) X(0, 1)
∗
↪→ Yd

j,J(0, 1).

When certain conditions are satisfied, the norm ‖ · ‖(L∞)d1,I(0,1)
can be approxi-

mated by a simpler one as is shown in the next lemma from [35].

Lemma 4.6 ([35, Lemma 5.6]). Let I : (0, 1] → (0,∞) be a nondecreasing func-
tion satisfying (2.3) and ∫ 1

0

ds

I(s)
< ∞.

Then

‖f‖(L∞)d1,I(0,1)
≈

∫ 1

0

f ∗(s)

I(s)
ds, f ∈ M(0, 1)

up to multiplicative constants depending on I.

Useful conditions on compactness of operatorHj
J formulated through its bound-

edness stated in Lemma 4.7 are proved in [35, Remark 4.8].
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Lemma 4.7. Let X(0, 1) 6= L1(0, 1) and Y(0, 1) be rearrangement-invariant func-
tion spaces. Suppose that j ∈ N and that J : (0, 1] → (0,∞) is a measurable
function satisfying

inf
t∈(0,1]

J(t)

t
> 0.

Then

Hj
J : L

1(0, 1) → Y(0, 1)

implies that

Hj
J : X(0, 1) ↪→↪→ Y(0, 1).

We continue by stating the characterization of almost-compact embeddings of
r.i. spaces from [34].

Theorem 4.8 ([34, Theorem 3.1]). Let X(R, µ) and Y(R, µ) be Banach function

spaces over a totally σ-finite measure space (R, µ). Then X(R, µ)
∗
↪→ Y(R, µ) if

and only if, for every sequence (fn)
∞
n=1 of µ-measurable functions on R satisfying

‖fn‖X(R,µ) ≤ 1 and fn → 0 µ-almost everywhere, one has ‖fn‖Y(R,µ) → 0.

The following lemma is an adaptation from [35].

Lemma 4.9 ([35, Lemma 5.5]). Assume that (2.4), (2.5), and (2.6) are fulfilled,
assume that Ω is an open domain, and assume that m ∈ N. Let ‖ · ‖X be an
rearrangement-invariant function space. Then every sequence (uk)

∞
k=1 bounded in

V m
X X(Ω) contains a subsequence (ukl)

∞
l=1 converging almost everywhere in Ω.

To prove Lemma 4.9, we need compact embedding V 1
XL

1(Bxl
) ↪→↪→ L1(Bxl

),
which was conveniently already proved in [15].

Theorem 4.10 ([15, Theorem 1.28]). Assume that (2.4), (2.5), and (2.6) are
fulfilled, and let Ω ⊂ Rn be an X-PS domain with diam(Ω) < R0

2
, where R0 is the

constant from (2.4). Then, one has the following.

(1) The embedding BVX(Ω) ↪→↪→ Lq(Ω) holds for any 1 ≤ q < Q
Q−1

.

(2) For any 1 ≤ p < Q, the embedding V 1
XL

p(Ω) ↪→↪→ Lq(Ω) holds provided
that 1 ≤ q < Qp

Q−p
.

(3) For any Q ≤ p < ∞ and any 1 ≤ q < ∞, the embedding V 1
XL

p(Ω) ↪→↪→
Lq(Ω) holds.

Proof of Lemma 4.9. Since Ω is open, for all x ∈ Ω there exists a ball (with
respect to metric d) Bx such that x ∈ Bx and Bx ⊂ Ω. There is a sequence
(xl)

∞
l of points in Ω such that {Bxl

, xl = 1, 2, . . . } is a covering of Ω because the
topology generated by the metric d is equivalent to the Euclidean topology.

Let (uk)
∞
k=1 be bounded in V m

X X(Ω). Balls with respect to metric d are an X-PS
domain; such X-PS domains fulfill (2.12) with a specific constant (consequence
of Theorem 1.18 in [15]). Proposition 11 in [14] yields that V 1

XX(Bxl
) → L1(Bxl)

for all all l = 1, 2, . . . ,∞. Moreover, the proof of Proposition 11 yields that the
embedding constant is dependent only on the constant from (2.12); therefore there
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exists a constant which holds for all embeddings V 1
XX(Bxl

) → L1(Bxl
), l ∈ N.

Consequently, there exists C > 0 such that

‖uk‖L1(Bxl
) ≤ C‖uk‖V m

X X(Bxl
) ≤ C‖uk‖V m

X X(Ω)

for all l ∈ N. Sequence (uk)
∞
k=1 is therefore bounded in V 1

XL
1(Bxl

) with the same
bounding constant for all l ∈ N. Now, for every l ∈ N, Theorem 4.10 yields that

V 1
XL

1(Bxl
) ↪→↪→ L1(Bxl

).

Consequently, a bounded sequence (vk)
∞
k=1 in V 1

XL
1(Bxl

) contains a subsequence
(vkr)

∞
r=1 such that vkr converges in L1(Bxl

).
We start with selecting a subsequence of (uk)

∞
k=1—let us name it (uk1,r)

∞
r=1—

such that it converges in L1(Bx1). Then there exists a subsequence of (uk1,r)
∞
r=1,

(uk2,r)
∞
r=1, such that it converges in L1(Bx2) and L1(Bx1). By repeating this step,

we get a sequence (ukl,r)
∞
r=1 for each l ∈ N which converges (with respect to r) in

L1(Bxs) for all s ∈ N, s ≤ l. The diagonal sequence, (ukl,l)
∞
l=1 is then the desired

subsequence of (uk)
∞
k=1 which converges almost everywhere on Ω. �

Theorem 4.11 (Reduction theorem for noncompact embeddings). Assume that
Ω ⊂ Rn is open. Suppose that there is some nondecreasing function I : [0, 1] →
R satisfying (2.2) and (2.3). Let m ∈ N, and let ‖ · ‖X(0,1) and ‖ · ‖Y(0,1) be
rearrangement-invariant function norms. If there exists a constant C > 0 such
that ∥∥∥∫ 1

t

f(s)

I(s)

(∫ s

t

dr

I(r)

)m−1

ds
∥∥∥
Y(0,1)

≤ C‖f‖X(0,1) (4.4)

for every nonnegative f ∈ M+(0, 1), then

V m
X X(Ω) → Y(Ω). (4.5)

Remark 4.12. The condition (4.4) can be restated as Hm
I : X(0, 1) → Y(0, 1).

Lemma 4.13 (W 1
XX(Ω) = V 1

XX). Assume that Ω ⊂ Rn is open. Suppose that
there is some nondecreasing function I : [0, 1] → R satisfying (2.2) and∫ s

0

dt

I(t)
< ∞ for some s > 0. (4.6)

Let Ω ⊂ Rn is open. Then there exists a constant C > 0 such that

‖f‖X(Ω) ≤ C‖X∇f‖X(Ω), f ∈ M(0, 1).

Consequently, up to a multiplicative constants, we get

‖f‖V 1
XX(Ω) ≈ ‖f‖X(Ω) + ‖X∇f‖X(Ω), f ∈ V 1

XX(Ω).

Proof. We will follow the approach of the Proposition 4.5 in [7]. We define

J(t) =

{
I(s), s ∈ [0, 1

3
],

I(1
3
), s ∈]1

3
, 1].

Then J(t) > cs for some constant c > 0, thanks to (4.6), and J fulfills

IΩ,X(s) ≥ c′J(c′s)



COMPACT EMBEDDINGS ON CARNOT–CARATHÉODORY SPACES 985

for some c′ > 0 and s near zero. A simple computation shows that H1
J : L

1(0, 1) →
L1(0, 1) and H1

JL
∞(0, 1) → L∞(0, 1). The interpolation theorem of Calderón [3,

Chapter 3, Theorem 2.12] then yields that H1
J : X(0, 1) → X(0, 1). Application

of Theorem 4.11 then implies the desired embedding

V 1
XX(Ω) → X(Ω). �

Let us restate here Lemma 3.5 from [15], which allows us to use the well-known
Maz’ya truncation technique.

Lemma 4.14. Let 1 ≤ p < ∞, and let Ω be a bounded open set in Rn. If
u ∈ W 1

XL
p(Ω) and F ∈ C1(R), F ′ ∈ L∞(R), then we have the following.

(1) F ◦ u ∈ W 1
XL

p(Ω) and

Xj(F ◦ u) = (F ′ ◦ u)Xju in D′(Ω) for 1 ≤ j ≤ m.

(2) Also, one has u+, u−, |u| ∈ V 1
XL

1(Ω) and

X∇u+ =

{
X∇u almost everywhere on {x ∈ Ω: u(x) ≥ 0},
0 otherwise,

X∇u− =

{
−X∇u almost everywhere on {x ∈ Ω: u(x) < 0},
0 otherwise,

X∇|u| =


X∇u almost everywhere on {x ∈ Ω: u(x)0},
0 almost everywhere on {x ∈ Ω: u(x) = 0},
−X∇u almost everywhere on {x ∈ Ω: u(x) < 0}.

5. Proof of the main theorem

Proof of Theorem 3.1. First, assume that Y(Ω) 6= L∞(Ω) or
∫ 1

0
ds
I(s)

= ∞. In this

case, Theorem 4.3 yields Xr
m,I(0, 1)

∗
↪→ Y(0, 1), and consequently Xr

m,I(Ω)
∗
↪→

Y(Ω).
Second, assume that (uk)

∞
k=1 is a sequence bounded in V m

X X(Ω). Lemma 4.9
ensures that there is subsequence (ukl)

∞
l=1 which converges to some function

u almost everywhere on Ω. The embedding (4.2) implies that Hm
I X(0, 1) →

Xr
m,I(0, 1). Theorem 4.11 then yields V m

X X(Ω) → Xr
m,I(Ω). Hence, (ukl)

∞
l=1 is

bounded in Xr
m,I(Ω). Therefore, the almost-compact embedding Xr

m,I(Ω)
∗
↪→

Y(Ω) and Theorem 4.8 yield that ukl → u ∈ Y(Ω). Thus, V m
X X(Ω) ↪→↪→ Y(Ω).

In the following, we will focus on the remaining case Y(Ω) = L∞(Ω) and∫ 1

0
ds
I(s)

< ∞. Assume first thatm = 1. Lemma 4.1 ensures thatX(0, 1) 6= L1(0, 1),

since we are assuming that

H1
J : X(0, 1) →→ L∞(0, 1).

This, together with the observation that∥∥∥∫ 1

t

dr

I(r)

∥∥∥
L∞(0,1)

=

∫ 1

0

dr

I(r)
< ∞ (5.1)
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and Theorem 4.5, yields that

X(0, 1)
∗
↪→ (L∞)d1,I(0, 1). (5.2)

Moreover, the inequality (5.1) and Lemma 4.4 yields that assumptions of Theorem
4.11 are met with X(0, 1) = (L∞)d1,I(0, 1) and Y(0, 1) = L∞(0, 1). Consequently,
we get

V 1
X(L

∞)d1,I(Ω) → L∞(Ω). (5.3)

Assume now that (uk)
∞
k=1 in V 1

XX(Ω) is a bounded sequence. Since
∫ 1

0
ds
I(s)

< ∞,

the Lemma 4.13 ensures that (uk)
∞
k=1 is bounded in W 1

XX(Ω) as well. Without
loss of generality we may assume that

‖uk‖W 1
XX(Ω) ≤ 1, k ∈ N. (5.4)

Lemma 4.9 then assures that there is a subsequence (vk)
∞
k=1 which converges in

measure to some function v. Indeed, our goal is to show that (vk)
∞
k=1 is a Cauchy

sequence in L∞(Ω) and that thus it converges to v in L∞(Ω), which will imply
that V 1

XX(Ω) is compactly embedded into L∞(Ω).
Fix ε > 0 and k, l ∈ N. Let us introduce the following notation:

d(x) =
∣∣vk(x)− vl(x)

∣∣ = min
{
d(x),

ε

2

}
+max

{
d(x)− ε

2
, 0
}

for x ∈ Ω. Moreover, let us write e(x) = max{d(x)− ε
2
, 0}, x ∈ Ω. Differentiability

of vk and vl combined with Lemma 4.14 ensures that d − ε
2
and e are both

differentiable almost everywhere in Ω. Because e is being derived from vk and
vl by subtraction, absolute value operator, and truncation by constant, standard
argumentation, accompanied by Lemma 4.14, it holds that∣∣X∇e(x)

∣∣ = χ{d≥ ε
2
}(x)

∣∣X∇vk(x)−X∇vl(x)
∣∣, (5.5)

for almost every x ∈ Ω. Consequently, we have

‖d‖L∞(Ω) ≤
∥∥∥min

{
d(x),

ε

2

}∥∥∥
L∞(Ω)

+ ‖e‖L∞(Ω)

≤ ε

2
+ C‖e‖W 1

X(L∞)d1,I(Ω)

≤ ε

2
+ C

∥∥χ{d> ε
2
}
∣∣X∇(vk − vl)

∣∣∥∥
(L∞)d1,I(Ω)

+ C
∥∥χ{d> ε

2
}|e|

∥∥
(L∞)d1,I(Ω)

,

where we have used (5.3), Lemma 4.13, and (5.5). Therefore, we get

‖d‖L∞(Ω) ≤
ε

2
+ C

(∥∥χ{d> ε
2
}|X∇vk|

∥∥
(L∞)d1,I(Ω)

+
∥∥χ{d> ε

2
}|X∇vl|

∥∥
(L∞)d1,I(Ω)

+
∥∥χ{d> ε

2
}|vk|

∥∥
(L∞)d1,I(Ω)

+
∥∥χ{d> ε

2
}|vl|

∥∥
(L∞)d1,I(Ω)

)
=

ε

2
+ C

(∥∥(χ{d> ε
2
}|X∇vk|

)∗∥∥
(L∞)d1,I(0,1)

+
∥∥(χ{d> ε

2
}|X∇vl|

)∗∥∥
(L∞)d1,I(0,1)

× ‖χ{d> ε
2
}v

∗
k‖(L∞)d1,I(0,1)

+ ‖χ{d> ε
2
}v

∗
l ‖(L∞)d1,I(0,1)

)
.
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Since (5.4) holds, we have that∥∥(χ{d> ε
2
}|X∇vk|

)∗∥∥
(L∞)d1,I(0,1)

≤ sup
‖f‖X(0,1)≤1

‖χ(0,|{d> ε
2
}|)f

∗‖(L∞)d1,I(0,1)

and

‖χ{d> ε
2
}v

∗
k‖(L∞)d1,I(0,1)

≤ sup
‖f‖X(0,1)≤1

‖χ(0,|{d> ε
2
}|)f

∗‖(L∞)d1,I(0,1)
,

for k ∈ N. But (5.2) yields that there is δ > 0 such that

sup
‖f‖X(0,1)≤1

‖χ(0,δ)f
∗‖(L∞)d1,I(0,1)

<
ε

8C
.

Since (vk)
∞
k=1 converges in measure to v, we can find k0 ∈ N such that for every

k ≥ k0 ∣∣∣{x ∈ Ω:
∣∣vk(x)− v(x)

∣∣ > ε

4

}∣∣∣ < δ

2
.

Moreover, for all k, l ≥ k0, it holds that{
x ∈ Ω: |d| ≥ ε

2

}
⊂

{
x ∈ Ω:

∣∣vk(x)−v(x)
∣∣ ≥ ε

4

}
∪
{
x ∈ Ω:

∣∣vl(x)−v(x)
∣∣ ≥ ε

4

}
and that ∣∣∣{x ∈ Ω: |d| ≥ ε

2

}∣∣∣ ≤ δ.

Consequently, for k, l > n0, we have

‖d‖L∞(Ω) ≤
ε

2
+ 4C sup

‖f‖X(0,1)≤1

‖χ(0,|{d> ε
2
}|)f

∗‖(L∞)d1,I(0,1)

≤ ε

2
+ 4C sup

‖f‖X(0,1)≤1

‖χ(0,δ)f
∗‖(L∞)d1,I(0,1)

≤ ε.

Therefore (vk)
∞
k=1 is a Cauchy sequence in L∞(Ω) and V 1

XX(Ω) is compactly
embedded into L∞(Ω).

Next, we will deal with the case m > 1. (We still assume that Y(Ω) = L∞(Ω)

and
∫ 1

0
ds
I(s)

< ∞.) According to Lemma 4.6, for every f ∈ M(0, 1), we have

‖g‖(L∞)d1,I(0,1)
≈

∫ 1

0

g∗(s)

I(s)
ds = ‖HIg

∗‖L∞(0,1)

up to multiplicative constants depending on I. Thus, whenever f ∈ M(0, 1) and
a ∈ (0, 1), we have∥∥Hm

I (χ(0,a)f)
∥∥
L∞(0,1)

=
∥∥HI

(
Hm−1

I (χ(0,a)f)
)∥∥

L∞(0,1)

≈
∥∥Hm−1

I (χ(0,a)f)
∥∥
(L∞)d1,I(0,1)

,

up to multiplicative constants depending on I. As it is stated in Remark 3.2, the
assumption (3.3) is equivalent to

lim
a→0+

sup
‖f‖X(0,1)≤1

∥∥Hm
I (χ(0,a)f)

∥∥
L∞(0,1)

= 0,
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and hence it is also equivalent to

lim
a→0+

sup
‖f‖X(0,1)≤1

∥∥Hm−1
I (χ(0,a)f)

∥∥
(L∞)d1,I(0,1)

= 0.

In order to use the previously proved case of this proof, we will show that
(L∞)d1,I(0, 1) 6= L∞(0, 1). Consider functions χ(0,a) for a ∈ (0, 1). We note that
‖χ(0,a)‖L∞(0,1) = 1. On the other hand, up to multiplicative constants depending
on I, we have

lim
a→0+

‖χ(0,a)‖(L∞)d1,I(0,1)
≈ lim

a→0+

∫ a

0

ds

I(s)
= 0.

If (L∞)d1,I(0, 1) = L∞(0, 1), then ‖ · ‖(L∞)d1,I(0,1)
must be equivalent to ‖ · ‖L∞(0,1)

up to multiplicative constants. Consequently, (L∞)d1,I(0, 1) 6= L∞(0, 1), because
it is impossible to have constant c > 0 such that ‖f‖L∞(0,1) ≤ c‖f‖(L∞)d1,I(0,1)

, for

all f ∈ L∞(0, 1).
Since (L∞)d1,I(0, 1) 6= L∞(0, 1), the previous part of proof implies that

V m−1
X X(Ω) ↪→↪→ (L∞)d1,I(Ω). (5.6)

Let (uk)
∞
k=1 be a bounded sequence in V m

X X(Ω). Then (uk)
∞
k=1 is bounded in

L1(Ω), so (
∫
Ω
uk(x) dx)

∞
k=1 is a bounded sequence of real numbers and we can

find a subsequence (u0
k)

∞
k=1 of (uk)

∞
k=1 such that the sequence (

∫
Ω
u0
k(x) dx)

∞
k=1 is

convergent.
Consider sequences (Xiu

0
k)

∞
k=1, Xi ∈ X, i = 1, . . . ,m. Owing to bounded-

ness of (u0
k)

∞
k=1 in V m

X X(Ω), (Xiu
0
k)

∞
k=1 is bounded in V m−1

X X(Ω). Using com-
pact embedding (5.6), we can inductively find (ui

k)
∞
k=1, subsequence of (ui−1

k )∞k=1,
i = 1, 2, . . . ,m, such that (Xiu

i
k)

∞
k=1 is convergent in (L∞)d1,I(Ω). Consequently,

(Xiu
m
k )

∞
k=1 is a Cauchy sequence in (L∞)d1,I(Ω) for every j = 1, 2, . . . ,m.

To conclude the proof, we need to show that (um
k )

∞
k=1 is a Cauchy sequence

in L∞(Ω). Let ε > 0. Assumptions (2.2) and (2.3) ensure (2.12). Therefore the
inequality (2.13) with X(Ω) = (L∞)d1,I(Ω) yields that there exists a constant
C > 0 such that∥∥∥u−

∫
Ω

u(x) dx
∥∥∥
L∞(Ω)

≤ C‖X∇u‖(L∞)d1,I(Ω) ≤ C
m∑
j=1

‖Xju‖(L∞)d1,I(Ω).

Because (Xju
m
k )

∞
k=1, j = 1, . . . ,m, is a Cauchy sequence in (L∞)d1,I(Ω), there

exists k0 ∈ N such that

‖Xju
m
l −Xju

m
l ‖(L∞)d1,I(Ω) ≤

ε

Cm
,

for all j = 1, . . . ,m, whenever k, l > k0. Sequence (u
m
k −

∫
Ω
um
k (x) dx)

∞
k=1 is Cauchy

sequence in L∞(Ω) since∥∥∥um
l −

∫
Ω

um
l (x) dx− um

k −
∫
Ω

um
k (x) dx

∥∥∥ ≤ C

m∑
j=1

‖Xju
m
l −Xju

m
l ‖(L∞)d1,I(Ω) < ε,

for k, l > k0. As L∞(Ω) is complete, therefore (um
k −

∫
Ω
um
k (x) dx)

∞
k=1 is a con-

vergent sequence. Sequence (
∫
Ω
um
k (x) dx)

∞
k=1 is a subsequence of (

∫
Ω
u0
k(x) dx)

∞
k=1
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which is convergent in L∞(Ω). Therefore (um
k )

∞
k=1 is convergent sequence in L∞(Ω),

as well. This concludes the proof. �

Proof of Theorem 3.3. It is proved in [7, Proposition 8.6] that if (3.6) holds, then
for any r.i. space Y and f ∈ M(0, 1) we have

‖Hm
I f‖Y(0,1) ≈ ‖Km

I f‖Y(0,1),

up to multiplicative constants depending on m and I. Moreover, it is shown in
[35, Proof of Theorem 5.3] that, under the same assumptions, it holds that∥∥Hm

I (χ(0,a)f)
∥∥
Y(0,1)

≈
∥∥Km

I (χ(0,a)f)
∥∥
Y(0,1)

(5.7)

for a given a ∈ (0, 1), up to multiplicative constants depending on m and I. At
the same place, it is shown that in this situation

lim
t→0+

ess sups∈(0,t)
1

J(s)
= 0

holds if and only if

lim
t→0+

tm−1

(I(t))m
= 0.

Therefore, if (3.7) holds, then Theorem 4.2 and the fact that Km
I = HJ yield that

lim
a→0+

sup
‖f‖X(0,1)≤1

∥∥Km
I (χ(0,a)f)

∥∥
Y(0,1)

= 0

is equivalent to

Km
I : X(0, 1) →→ Y(0, 1).

Remark 3.2, together with (5.7), yields that (3.8) implies (3.3). Therefore the
assumptions of Theorem 3.1 are satisfied and this ensures that (3.9) holds.

Assume now, that (3.10) is in force. In such a case, Theorem 4.2 yields that

lim
a→0+

sup
‖f‖L1(0,1)≤1

∥∥Hj
J(χ(0,a)f)

∥∥
L∞(0,1)

= 0.

Remark 3.2, together with Theorem 3.1 yields that

V m
X L1(Ω) ↪→↪→ L∞(Ω).

Standard embeddings X(Ω) ↪→ L1(Ω) and L∞(Ω) ↪→ Y(Ω) (which are valid for
all rearrangement-invariant spaces X(Ω) and Y(Ω)) then conclude the proof. �

Proof of Theorem 3.4. Consider the function I(t) = t1−
1
Q . It follows from the fact

that Ω is an X-PS domain and from (2.7) that (2.2) holds with such I(t). Simple
computation yields that (3.6) holds as well.

An application of the Theorem 3.3 will yield the claim. We have

lim
t→0+

tm−1

(I(t))m
= lim

t→0+

tm−1

tm−m
Q

= lim
t→0+

t
m
Q
−1. (5.8)

Therefore, if m > Q, then limt→0+
tm−1

(I(t))m
= 0 and Theorem 3.3 yields the claim.
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On the other hand, if m ≤ Q then limt→0+
tm−1

(I(t))m
6= 0. We have

Qm
Qf(t) =

∫ 1

t

∣∣f(x)∣∣sm
Q
−1 ds =

∫ 1

t

∣∣f(s)∣∣ sm−1

(s1−
1
Q )m

ds = Km
I f(t),

for f ∈ M(0, 1) and t ∈ (0, 1). Consequently, if (3.11) holds (and Q ≤ m), then
so does (3.8), and Theorem 3.3 yields the required embedding.

If Q = m, then we have

Qm
mf(t) =

∫ 1

t

∣∣f(s)∣∣ ds = H1
1f(t), f ∈ M(0, 1).

Simple computation now yields Qm
m : L1(0, 1) → L∞(0, 1). Consequently, since

L∞(0, 1) ↪→ Y(0, 1), we get Qm
m : L1(0, 1) → Y(0, 1). Application of Lemma 4.7

then yields the result. �

The proof of Theorem3.5 rests on the following characterization of almost-
compact embeddings between Lorentz–Zygmund spaces from [35, Proposition
7.12].

Theorem 5.1. Let p1, p2, q1, q2 ∈ [1,∞], α1, α2 ∈ R be such that both triples
(p, q, α) = (p1, q1, α1) and (p, q, α) = (p2, q2, α2) satisfy one of the conditions
(2.8)–(2.11). Then

Lp1,q1:α1(0, 1)
∗
↪→ Lp2,q2:α2(0, 1)

holds if and only of p1 > p2, or p1 = p2 and the following conditions are satisfied:

if p1 = p2 < ∞ and q1 ≤ q2, then α1 > α2;

if p1 = p2 = ∞ or q1 > q2, then α1 +
1

q1
> α2 +

1

q2
.

In particular, if p1, p2, q1, q2 ∈ [1,∞] are such that both triplets (p, q, α) = (p1, q1, 0)
and (p, q, α) = (p2, q2, 0) satisfy one of the conditions (2.8)–(2.11), then

Lp1,q1(0, 1)
∗
↪→ Lp2,q2(0, 1)

holds if and only if p1 > p2.

Proof of Theorem 3.5. Using Theorem 3.4, we can reduce (3.13) to proving that

Qm
Q : Lp1,q1(0, 1) →→ Lp1,q1(0, 1). (5.9)

We are going to derive the embedding (5.9) from assumption of the Theorem 3.5.
Assume first that p1 >

Q
m
, and then Theorem 5.1 yields that

Lp1,q1(0, 1)
∗
↪→ L

Q
m
,1(0, 1).

Since
∫ 1

0
1

s
1−m

Q
ds < ∞, application of Lemma 4.6 yields that

‖f‖
L

Q
m,1(0,1)

=

∫ 1

0

f ∗(s)

s1−
m
Q

ds ≈ ‖f‖(L∞)d

1,s
1−m

Q
(0,1). (5.10)
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Hence we get

Lp1,q1(0, 1)
∗
↪→ (L∞)d

1,s
1−m

Q
(0, 1). (5.11)

Now, we want to use Theorem 4.5 to get required compactness of the operator
Qm

Q . To this end, we need to verify assumptions of the corresponding theorems.

Since p1 >
Q
m

and m < Q, we have Lp1,q1(0, 1) 6= L1(0, 1). The role of function

J in the claim of Theorem 4.5 plays function J = s1−
m
Q (0, 1), which satisfies

condition (2.3). Finally,∥∥∥(∫ 1

t

ds

J(s)

)1∥∥∥
L∞(0,1)

=

∫ 1

0

1

s1−
m
Q

ds < ∞,

which is the condition (4.3) with J = s1−
m
Q (0, 1), j = 1 and Y(0, 1) = L∞(0, 1).

Theorem 4.5, combined with (5.11), now yields

Qm
Q : Lp1,q1(0, 1) →→ L∞(0, 1).

The previous result, together with the embedding L∞(0, 1) ↪→ Lp2,q2(0, 1), now
yields the claim.

Suppose now that p1 ≤ Q
m
. Assumptions of this theorem excludes cases when

Lp2,q2(0, 1) = L∞(0, 1) from consideration. This allows us to use the Theorem 4.3
to reduce (5.9) to

(Lp1,q1)r
1,s

1−m
Q
(0, 1)

∗
↪→ Lp2,q2(0, 1). (5.12)

It is shown in [7, Proposition 8.3] that Xr
j,J(0, 1) is the smallest rearrangement-

invariant space such that

Hj
J : X(0, 1) →→ Xr

j,J(0, 1)

holds. In [7, Theorem 6.8.] the following characterization of such rearrangement-
invariant space is given.

(Lp1,q1)r
1,s

1−m
Q
(0, 1) =


L

p1
1−mp1

Q

,q1
(0, 1) if m

Q
< 1 and 1 ≤ p1 <

Q
m
,

L∞,q1;−1(0, 1) if m
Q
< 1 and q1 > 1,

L∞(0, 1) otherwise.

Consequently, if p1 <
Q
m

and

p2 <
p1

1− mp1
Q

,

then the Theorem 5.1 ensures that (5.12) holds.
If p1 =

Q
m

then, again, Theorem 5.1 yields that (5.12) holds if p2 < ∞. �
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19. D. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in nontangentially
accessible domains, Adv. Math. 46 (1982), 80–147. Zbl 0514.31003. MR0676988. DOI
10.1016/0001-8708(82)90055-X. 975

20. D. Jerison D. and J. M. Lee, Extremals for the Sobolev inequality on the Heisenberg group
and the CR Yamabe problem, J. Amer. Math. Soc. 1 (1988), no. 1, 1–13. Zbl 0634.32016.
MR0924699. DOI 10.2307/1990964. 971
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