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SQUARE FUNCTION INEQUALITIES
FOR MONOTONE BASES IN L1

ADAM OSĘKOWSKI

Communicated by D. E. Alspach

Abstract. We describe a novel method of handling general sharp square
function inequalities for monotone bases and contractive projections in L1. The
technique rests on the construction of an appropriate special function enjoying
certain size and convexity-type properties. As an illustration, we establish a
strong L1 → L1 and a weak-type L1 → L1,∞ estimate for square functions.

1. Introduction

The purpose of this article is to study certain square function estimates arising
naturally in the context of monotone bases and contractive projections in L1.
Our work here is a natural continuation of the research presented in [12], which
concerned mainly the maximal estimates arising in this context (see below). Let
us begin with the necessary background and notation. Suppose that the sequence
e = (en)n≥0, taking values in a given real Banach space X, is a Schauder basis:
that is, for every f ∈ X there exists a unique sequence a = (an)n≥0 ⊂ R
satisfying ‖f −

∑n
k=0 akek‖X → 0. This basis (en)n≥0 is called unconditional

if for any f ∈ X the corresponding series converges unconditionally. This can
be equivalently expressed as the inequality sup{‖PE‖ : E ⊂ N finite} < ∞,
where, for a given E, the symbol PE denotes the associated projection defined by
PEf =

∑
k∈E akek. A basis is monotone if for each n the projection Pn := P{0,1,...,n}

is contractive; equivalently, for any nonnegative integer n and any real numbers
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a0, a1, . . . , an, an+1, we have∥∥∥ n∑
k=0

akek

∥∥∥
X
≤

∥∥∥n+1∑
k=0

akek

∥∥∥
X
.

The primary interest of this article lies in the properties of monotone bases
in Lp(Ω,F , µ), where the underlying measure µ is assumed to be positive and
nonatomic. Assume first that 1 < p < ∞. Then, as observed by Ando [1],
every nonvanishing contractive projection of Lp is isometrically equivalent to
a conditional expectation. This argument can be pushed further to yield that
every nondecreasing sequence (Pn)n≥0 of contractive projections (i.e., satisfying
PmPn = Pm∧n for all m,n) gives rise to a sequence of conditional expectations
with respect to a nondecreasing family of sub-σ-algebras. Clearly, this immedi-
ately connects the subject with the theory of martingales. As shown by Dor and
Odell [7], an application of estimates for martingale transforms (for details on
martingale transforms, see Burkholder [2]) leads to the following.

Theorem 1.1. Assume that (Ω,F , µ) is a positive measure space. Let P−1 = 0,
P0, P1, P2, . . . be a nondecreasing sequence of contractive projections in Lp(Ω,
F , µ), 1 < p <∞. If f ∈ Lp(Ω,F , µ), then for any sequence of signs ε0, ε1, ε2, . . .∥∥∥ ∞∑

k=0

εk(Pk − Pk−1)f
∥∥∥
p
≤ Cp‖f‖p (1.1)

for some universal constant Cp which depends only on p.

One can show that the optimal choice for the constant Cp in (1.1) equals
p∗ − 1, where p∗ = max{p, p/(p − 1)}. This is a consequence of a related sharp
inequality for martingales established by Burkholder in [3] (see also [4]). The
theorem above implies that every monotone basis in Lp is unconditional provided
that 1 < p < ∞. Further combination with the results of Olevskĭı [9], [10] gives
that the unconditional constant of any monotone basis e of Lp (1 < p < ∞)
equals p∗ − 1. That is, for any n, any sequence a0, a1, a2, . . . , an of real numbers
and any sequence of signs ε0, ε1, ε2, . . . , εn, we have∥∥∥ n∑

k=0

εkakek

∥∥∥
p
≤ (p∗ − 1)

∥∥∥ n∑
k=0

akek

∥∥∥
p
, 1 < p <∞, (1.2)

and the constant p∗ − 1 cannot be improved. See also Choi [6] in which the
unconditional constant is defined in a slightly different manner.

There is a very interesting question about the validity of the inequality (1.2) in
the limit case p = 1. A well-known result due to Paley [13, Theorem V] (see also
Marcinkiewicz [8]) states that the Haar basis, a fundamental monotone basis of
L1([0, 1],B([0, 1]), | · |) is not unconditional. Thus there is a further question about
an appropriate version for the inequality (1.2) for p = 1, which will serve as a
substitute for the unconditionality. In [12], we established the maximal estimate∥∥∥ n∑

k=0

εkakek

∥∥∥
1
≤ β

∥∥∥sup
n≥0

∣∣∣ n∑
k=0

akek

∣∣∣∥∥∥
1
, (1.3)
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where β = 2.536 . . . is the unique solution to the equation

β = 3− exp
1− β

2
.

However, there is another very natural substitute of (1.2), which can be expressed
in terms of square functions. The purpose of the article is to pursue this line of
research. Here is the statement of our main result.

Theorem 1.2. Suppose that e = (en)n≥0 is a monotone basis of L1(Ω,F , µ).
Then for any n and any sequence a0, a1, a2, . . . , an of real numbers, we have the
inequalities ∥∥∥ n∑

k=0

akek

∥∥∥
1
≤ 2

∥∥∥( n∑
k=0

|akek|2
)1/2∥∥∥

1
(1.4)

and ∥∥∥( n∑
k=0

|akek|2
)1/2∥∥∥

1
≤

√
3
∥∥∥ sup
0≤m≤n

∣∣∣ m∑
k=0

akek

∣∣∣∥∥∥
1
. (1.5)

The constants 2 and
√
3 are the best possible. They are already optimal in the

weak-type estimates

∥∥∥ n∑
k=0

akek

∥∥∥
1,∞

≤ 2
∥∥∥( n∑

k=0

|akek|2
)1/2∥∥∥

1
(1.6)

and ∥∥∥( n∑
k=0

|akek|2
)1/2∥∥∥

1,∞
≤

√
3
∥∥∥ sup
0≤m≤n

∣∣∣ m∑
k=0

akek

∣∣∣∥∥∥
1
. (1.7)

Here, as usual, ‖f‖1,∞ = supλ>0 λµ({ω ∈ Ω : |f(ω)| ≥ λ}) denotes the weak
first norm of f . We would like to mention here that the method we plan to develop
has its analogue in martingale theory (see [5], [11]), but the interplay between
the two settings is nontrivial. Namely, if we compare the above statement to its
version for martingale transforms, we have that the constants 2 and

√
3 are also

optimal in the probabilistic counterparts of (1.4) and (1.5) (again, see [5], [11]);
on the contrary, quite surprisingly, the best constants in the martingale versions
of (1.6) and (1.7) are strictly smaller.

A few words about the organization of the article are in order. Section 2 contains
the description of the structure of a monotone basis in L1. Section 3 is devoted to
the detailed presentation of the method which allows us to study general maximal
inequalities for a certain class of monotone bases. In Section 4, we construct the
special function which yields the validity of the inequalities (1.4) and (1.5). In
the final part of the article, Section 5, we address the question of optimality of
the constants in (1.6) and (1.7).
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2. On the structure of monotone bases in L1

The contents of this short section are based on work of Dor and Odell [7]. We
have decided to include them here for the sake of completeness and the reader’s
convenience. Our primary goal is to describe how to construct an isometry of
L1(Ω,F , µ) onto a certain L1(Ω,F , ν), which sends a given monotone basis e
onto a simple basis of the target space (the necessary definitions are introduced
below), so that the L1-norms of maximal function max0≤m≤n |

∑m
k=0 akek| and the

square function (
∑n

k=0 |akek|2)1/2, n = 0, 1, 2, . . ., are preserved.

Definition 2.1. A system of sets {An,i : i = 1, 2, . . . , 2n, n = 0, 1, 2, . . .} is called a
dyadic tree if for all n and 1 ≤ i ≤ 2n, we have

An+1,2i−1 ∩ An+1,2i = ∅ and An+1,2i−1 ∪ An+1,2i = An,i.

Definition 2.2. Given a dyadic tree of sets satisfying µ(An,i) > 0 for all n and i,
we define the associated generalized Haar sequence h = (hk)k≥0 by h0 = h0,1 =
χA0,1/‖χA0,1‖1 and

h2n−1+i−1 = hn,i = Hn,i/‖Hn,i‖1,
where

Hn,i = χAn,2i−1
/µ(An,2i−1)− χAn,2i

/µ(An,2i), i ≤ 2n, n = 1, 2, . . . .

If h forms a basis, it will be referred to as a generalized Haar basis.

It is easy to check that the generalized Haar sequence (hn)n≥0 is uniquely
determined by a dyadic tree {An,i} and the following condition: for each n ≥ 1
and 1 ≤ i ≤ 2n, the function hn,i is a linear combination of χAn,2i−1

and χAn,2i

such that

‖hn,i‖1 = 1 and
∫
Ω

hn,i = 0 for n ≥ 1. (2.1)

Note that if {An,i} is the family of all dyadic subintervals of [0, 1] and µ is
Lebesgue’s measure, then the generalized Haar basis reduces to the usual Haar
system in L1.

Definition 2.3. A basis d = (dk)k≥0 in L1(Ω,F , ν) is called simple if there is a
sequence (possibly finite) of disjoint sets En ∈ F covering Ω so that (dk)k≥0 is
the union of disjoint subsequences (dni )i≥1, n = 1, 2, . . ., satisfying the following
two conditions.

(i) For each n the sequence χEn/‖χEn‖1, dn2 , dn3 , . . . is a generalized Haar basis
for L1(En).

(ii) For each n we have dn1 = cnχEn +ψn, where ‖dn1‖1 = 1, ‖ψn‖1 ≤ ‖cnχEn‖1
and ψn is a combination of the elements of (dk)k≥0 which precede dn1 .

Next, let us recall [7], which asserts that monotone bases of L1 are equivalent
to simple bases.

Theorem 2.4 ([7, Theorem 3.1]). Let (ek)k≥0 be a normalized monotone basis for
L1(Ω,F , µ). Then there is an isometry T of L1(Ω,F , µ) onto some L1(Ω,F , ν)
which sends (ek)k≥0 to some simple basis (dk)k≥0.
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The proof of this statement in [7] shows that one can take dν = |ϕ| dµ and
Tf = f/ϕ for an appropriately chosen measurable function ϕ : Ω → R \ {0}.
Thus, we see that for each nonnegative integer n and any numbers a0, a2, . . . , an,

T
(
max

0≤m≤n

∣∣∣ m∑
k=0

akek

∣∣∣) = max
0≤m≤n

∣∣∣ m∑
k=0

akdk

∣∣∣
and

T
(( n∑

k=0

|akek|2
)1/2)

=
( n∑

k=0

|akdk|2
)1/2

,

which implies that∥∥∥ max
0≤m≤n

∣∣∣ m∑
k=0

akek

∣∣∣∥∥∥
L1(µ)

=
∥∥∥ max
0≤m≤n

∣∣∣ m∑
k=0

akdk

∣∣∣∥∥∥
L1(ν)

and ∥∥∥( n∑
k=0

|akek|2
)1/2∥∥∥

L1(µ)
=

∥∥∥( n∑
k=0

|akdk|2
)1/2∥∥∥

L1(ν)

for each n. Therefore, (1.4) and (1.5) follow in full generality if we establish them
for simple bases only. We will now introduce a method which will enable us to
study this special case efficiently.

3. A related boundary value problem

Throughout this section, e = (ek)k≥0 stands for a simple basis of L1(Ω,F , µ).
For any f =

∑∞
k=0 akek, we will use the notation fn = Pnf =

∑n
k=0 akek

for the projection on the subspace generated by e0, e1, . . . , en. In addition, for
any n = 0, 1, 2, . . ., we will write f ∗

n(ω) = max0≤k≤n |fk(ω)| and Sn(f)(ω) =
(
∑n

k=0 |akek(ω)|2)1/2, ω ∈ Ω, for the maximal and square functions of f , respec-
tively.

We now turn our attention to the method. Consider the set

D =
{
(x, y, z) ∈ R× [0,∞)× [0,∞) : |x| ∨ z > 0

}
∪
{
(0, 0, 0)

}
,

and suppose that V : D → R is a fixed function satisfying V (0, 0, 0) = 0 and

V (x, y, z) = V
(
x, y, |x| ∨ z

)
, (x, y, z) ∈ D. (3.1)

This function need not be Borel or even measurable. Suppose further that we
want to establish the estimate∫

Ω

V
(
fn(ω), Sn(f)(ω), f

∗
n(ω)

)
dµ(ω) ≤ 0, n = 0, 1, 2, . . . , (3.2)

for all f ∈ L1(Ω). To do this, we introduce the class U(V ) which consists of all
functions U which enjoy the following.

(1) For all (x, y, z) ∈ D, we have

U(x, y, z) = U
(
x, y, |x| ∨ z

)
. (3.3)
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(2) For all (x, y, z) ∈ D, we have

U(x, y, z) ≥ V (x, y, z). (3.4)

(3) If |x| ≤ z and α1, α2 ∈ (0, 1), t1, t2 ∈ R satisfy α1+α2 = 1, α1t1+α2t2 = 0,
then

U(x, y, z) ≥ α1U
(
x+ t1, (y

2 + t21)
1/2, z

)
+ α2U

(
x+ t2, (y

2 + t22)
1/2, z

)
. (3.5)

(4) If |x| ≤ z and t1, t2 ∈ R, then

|t2|U(x, y, z) ≥ |t2|U
(
x+ t1, (y

2 + t21)
1/2, z

)
+ |t1|U

(
t2, |t2|, |t2|

)
. (3.6)

Let us gain some intuition about these requirements. The property (1) is a tech-
nical assumption which handles the maximal function in an appropriate induction
argument (see below). In a moment, we will show that the properties (1), (3), and
(4) yield (3.2), but with V replaced by U ; therefore, the role of the majorization
(2) is to enable the replacement of U by V . The condition (3) can be regarded
as an appropriate concavity-type property. More precisely, (3) means that for
any (x, y, z) ∈ D with |x| ≤ z, the function Φ(t) = U(x + t, (y2 + t2)1/2, z),
t ∈ R, is majorized by a linear function Ψ satisfying Ψ(0) = Φ(0) (if U is
of class C1, then Ψ(t) = U(x, y, z) + tUx(x, y, z); otherwise one sets Ψ(t) =
U(x, y, z)+ t lim sups→0+(U(x− s, (y2+ s2)1/2, z)−U(x, y, z))/s). Finally, (4) can
be understood as a uniform bound for the slopes of all such functions Ψ.

Observe first that the above requirements enforce the conditions

U(0, 0, 0) = 0 (3.7)

and
U
(
t, |t|, |t|

)
≤ 0, t ∈ R. (3.8)

Indeed, plugging t2 = 0 into (3.6) gives U(0, 0, 0) ≤ 0, while (1) together with
V (0, 0, 0) = 0 implies the reverse bound. Thus (3.7) follows. To see (3.8), fix t 6= 0,
and apply (4) to x = y = z = 0 and t1 = t2 = t. As the result, we get an estimate
which is equivalent to 0 ≥ U(t, |t|, 0) + U(t, |t|, |t|) which, by (3.3), yields (3.8).

What is the relation between the inequality (3.2) and the class U(V )? The
answer is contained in the following statement.

Theorem 3.1. If the class U(V ) is nonempty, then (3.2) is valid.

Proof. Since (ek)k≥0 is simple, we see that each term ek is either a generalized Haar
function, or it can be written in the form cχEk

+ ψk, where ψk is a combination
of e0, e1, . . . , ek−1, the set Ek is disjoint from the union of the supports of these
functions, and ‖ψk‖1 ≤ ‖cχEk

‖1. Take f ∈ L1(Ω,F , µ), and let a0, a1, a2, . . . be
the coefficients appearing in the expansion of f . The main ingredient of the proof
is to show that for any n ≥ 0,∫

Ω

U
(
fn, Sn(f), f

∗
n

)
dµ ≥

∫
Ω

U
(
fn+1, Sn+1(f), f

∗
n+1

)
dµ. (3.9)

To this end, fix n ≥ 0, and suppose first that en+1 is a generalized Haar function
and that its support E is contained in the union of the supports of e0, e1, . . . , en.
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Then the triples (fn, Sn(f), f
∗
n), (fn+1, Sn+1(f), f

∗
n+1) coincide outside E, and

hence it suffices to show that∫
E

U
(
fn, Sn(f), f

∗
n

)
dµ ≥

∫
E

U
(
fn+1, Sn+1(f), f

∗
n+1

)
dµ. (3.10)

But fn, Sn(f), and f ∗
n are constant on E because of the structure of the simple

basis e. Denoting the corresponding values by x, y, and z, we see that |x| ≤ z.
By (1), we have

U
(
fn+1, Sn+1(f), f

∗
n+1

)
= U

(
fn+1, Sn+1(f), f

∗
n

)
on Ω,

which allows us to transform the previous estimate into
1

µ(E)

∫
E

U
(
x+ an+1en+1,

(
y2 + |an+1en+1|2

)1/2
, z
)
dµ ≤ U(x, y, z).

This bound follows at once from (3) because en+1 is a generalized Haar function
(see the second equation in (2.1)). Next, suppose that en+1 is of the second type
(i.e., en+1 = cχEn+1 +ψn+1, for appropriate c 6= 0, En+1, and ψn+1). Let E be the
support of en+1. Again, the triples (fn, Sn(f), f

∗
n), (fn+1, Sn+1(f), f

∗
n+1) coincide

outside E; furthermore, U(fn, Sn(f), f
∗
n) = 0 on En+1 (see (3.7)). Consequently,

(3.9) can be rewritten in the form∫
E\En+1

U
(
fn, Sn(f), f

∗
n

)
dµ ≥

∫
E

U
(
fn+1, Sn+1(f), f

∗
n+1

)
dµ. (3.11)

The right-hand side above is equal to∫
En+1

U
(
c, |c|, |c|

)
dµ+

∫
E\En+1

U
(
fn + ψn+1,

(
S2
n(f) + ψ2

n+1

)1/2
, f ∗

n+1

)
dµ

= µ(En+1)U
(
c, |c|, |c|

)
+

∫
E\En+1

U
(
fn + ψn+1,

(
S2
n(f) + ψ2

n+1

)1/2
, f ∗

n

)
dµ

by virtue of (1). Applying (4), we get the pointwise estimate

U
(
fn + ψn+1,

(
S2
n(f) + ψ2

n+1

)1/2
, f ∗

n

)
≤ U

(
fn, Sn(f), f

∗
n

)
− |ψn+1|

c
U
(
c, |c|, |c|

)
.

By (3.8), we have the inequality U(c, |c|, |c|) ≤ 0. Moreover, ‖ψn+1‖1 ≤ cµ(En+1),
which follows from the form of en+1. This yields∫

E\En+1

|ψn+1|
c

U
(
c, |c|, |c|

)
dµ ≥ µ(En+1)U

(
c, |c|, |c|

)
.

Combining the above gives (3.11) and hence the sequence(∫
Ω

U
(
fn, Sn(f), f

∗
n

)
dµ

)
n≥0

is nonincreasing. Consequently, by (2), we obtain that for any n ≥ 0,∫
Ω

V
(
fn, Sn(f), f

∗
n

)
dµ ≤

∫
Ω

U
(
fn, Sn(f), f

∗
n

)
dµ ≤

∫
Ω

U
(
f0, S0(f), f

∗
0

)
dµ.
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It remains to note that f ∗
0 = S0(f) = |f0|, and we use (3.8) to get the desired

estimate (3.2). �

A very important phenomenon is that the implication of the above theorem
can be reversed: the validity of the estimate (3.2) yields the existence of a spe-
cial function satisfying conditions (1)–(4). We need some additional notation to
explain this fact. For a given measure space (Ω,F , µ) with µ(Ω) ≥ 1, we denote by
E(Ω,F , µ) the family of all simple bases (ek)k≥0 of L1(Ω,F , µ) such that e0 is the
characteristic function of a set of measure 1. Of course, this family is nonempty.
Next, for a given basis e ∈ E(Ω,F , µ) and a real number x, we define M(x, e) to
be the class of all functions f which admit the expansion f = xe0 +

∑n
k=1 akek

for some n and some sequence a1, a2, . . . , an ∈ R.
Equipped with the above definitions, we are ready to introduce the abstract

function U0 : D → R∪{∞} which will be shown to belong to the class U(V ). Set

U0(x, y, z) = sup
{∫

Ω

V
(
f,
(
y2e0 − x2e0 + S2(f)

)1/2
, f ∗ ∨ ze0

)
dµ

}
, (3.12)

where the supremum is taken over all measurable spaces (Ω,F , µ) with µ(Ω) ≥ 1,
all e ∈ E(Ω,F , µ), and all f ∈ M(x, e).

Theorem 3.2. If the inequality (3.2) holds true, then the function U0 belongs to
the class U(V ).

Proof. The condition (1) is a consequence of the pointwise bound f ∗ ≥ |f0| =
|x|e0, since f ∗ ∨ ze0 = f ∗ ∨ ((|x| ∨ z)e0). To prove (2), we compute the integral
in (3.12) for n = 0 and some arbitrary basis e ∈ E(Ω,F , µ). Because e0 is the
indicator function of some set of measure 1, we see that the integral is equal to
V (x, y, |x| ∨ z) = V (x, y, z) by (3.1). This implies the desired property (2). To
establish (3), choose x, y, z, α1, α2, t1, and t2 as in the statement of the condition.
Take two bases e1 ∈ E(Ω1,F1, µ1), e2 ∈ E(Ω2,F2, µ2) and two functions f 1, f 2

enjoying the following finite expansions in e1 and e2:

f i = (x+ ti)e
i
0 +

n∑
k=1

aike
i
k, i = 1, 2 (3.13)

(we may assume that the length of the expansion is the same for both pairs,
enlarging one of them by zeros if necessary). By the very definition of the square
function,

S2(f i) = (x+ ti)
2ei0 +

n∑
k=1

|aikeik|2. (3.14)

Now suppose that Ω1 and Ω2 are disjoint, and let us glue the measure spaces
(Ωi,F i, µi) into one space (Ω,F , µ), with Ω = Ω1∪Ω2, F = σ(F1,F2), and µ(A1∪
A2) = α1µ

1(A1)+α2µ
2(A2) for all Ai ∈ F i, i = 1, 2. Next, we concatenate e1 and

e2 into one basis e ∈ E(Ω,F , µ), putting e0 = e10χΩ1 + e20χΩ2 , e1 = 1
2
α−1
1 e10χΩ1 −

1
2
α−1
2 e20χΩ2 , and, for k ≥ 1,

e2k = α−1
1 e1kχΩ1 , e2k+1 = α−1

2 e2kχΩ2 .
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It is evident that this new sequence forms a simple basis of L1(Ω,F , µ). In addi-
tion, e0 is the indicator function of a certain set of measure 1, so e ∈ E(Ω,F , µ).
Using (3.13), we check easily that the function

f = f 1χΩ1 + f 2χΩ2 (3.15)

has the following expansion in the basis e:

f = xe0 + 2α1t1e1 +
n∑

k=1

(α1a
1
ke2k + α2a

2
ke2k+1).

Therefore, using the equality 2α1t1e1 = t1e
1
0χΩ1 + t2e

2
0χΩ2 , we have

S2(f) = x2e0 + t21e
1
0χΩ1 + t22e

2
0χΩ2 +

n∑
k=1

|a1ke1k|2χΩ1 +
n∑

k=1

|a2ke2k|2χΩ2 .

Consequently, by the definition of U0 and the formula (3.15) for f , we have

U0(x, y, z)

≥
∫
Ω

V
(
f,
(
y2e0 − x2e0 + S2(f)

)1/2
, f ∗ ∨ ze0

)
dµ

= α1

∫
Ω1

V
(
f 1,

(
(y2 + t21)e

1
0 − (x+ t1)

2e10 + S2(f 1)
)1/2

, (f 1)∗ ∨ ze10
)
dµ1

+ α2

∫
Ω2

V
(
f 2,

(
(y2 + t22)e

2
0 − (x+ t2)

2e20 + S2(f 2)
)1/2

, (f 2)∗ ∨ ze20
)
dµ2.

Take the supremum over all triples (Ωi,F i, µi), all n, and all functions f i to
get (3.5). Finally, to show (3.6), we may assume that t1, t2 6= 0. Pick two bases
ei ∈ E(Ωi,F i, µi) with (Ωi,F i, µi) as above and two functions f 1, f 2 of the form

f 1 = (x+ t1)e
1
0 +

n∑
k=1

a1ne
1
n, f 2 = t2e

2
0 +

n∑
k=1

a2ne
2
n.

Set

Ω = Ω1 ∪ Ω2, F = σ(F1,F2), µ(A1 ∪ A2) = µ1(A1) +
|t1|
|t2|

µ2(A2),

for all A1 ∈ F1, A2 ∈ F2. Furthermore, put e0 = e10χΩ1 , e1 = 1
2
e10χΩ1 + t2

2t1
e20χΩ2

and, for k ≥ 1, define

e2k = e1kχΩ1 and e2k+1 =
t2
t1
e2kχΩ2 .

It is straightforward to verify that e is a simple basis; this follows at once from
the simplicity of e1 and e2. The only thing which needs to be checked is whether
e1 satisfies Definition 2.3(ii). But this amounts to verifying the inequality∥∥∥1

2
e10χΩ1

∥∥∥
1
≤

∥∥∥ t2
2t1

e20χΩ2

∥∥∥
1
,
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which is trivial: actually, both sides are equal. Now, we easily see that the function
f given by f = f 1χΩ1 + f 2χΩ2 has the expansion

f = xe0 + 2t1e1 +
n∑

k=1

(
a1ke2k +

t1a
2
k

t2
e2k+1

)
.

Consequently, by the definition of U0, we get

U0(x, y, z) ≥
∫
Ω

V
(
f,
(
y2e0 − x2e0 + S2(f)

)1/2
, f ∗ ∨ ze0

)
dµ

=

∫
Ω1

V
(
f 1,

(
(y2 + t21)e

1
0 − (x+ t1)

2 + S2(f 1)
)1/2

, (f 1)∗ ∨ ze10
)
dµ1

+
|t1|
|t2|

∫
Ω2

V
(
f 2, S(f 2), (f 2)∗ ∨ 0

)
dµ2.

However, (f 2)∗ ≥ |f 2
0 |, so

V
(
f 2, S(f 2), (f 2)∗ ∨ 0

)
= V

(
f 2, S(f 2), (f 2)∗ ∨ |f 2

0 |
)
= V

(
f 2, g2, (f 2)∗ ∨ |t2|e20

)
,

and so it suffices to take the supremum over all f i to obtain (3.6). �

We conclude this section with two important observations.

Remark 3.3. (i) If the maximal function does not appear in the estimate
under investigation, then we may consider U , V defined on the appropriate
2-dimensional domain. Simply remove the variable z corresponding to the nonex-
isting maximal function. A similar argument applies to the case when the studied
inequality does not involve the square function: then the variable y can be omit-
ted. However, in general we cannot remove the variable x in the case when the
inequality involves the square and maximal functions only (e.g., like in (1.7)). To
understand the reason, we direct the reader to (3.12). If V does not depend on
y or z, then the same is true for U0 (i.e., there exists a special function of two
variables only). However, if V does not depend on x, then in general we cannot
say the same about U0.

(ii) In certain cases, the function U0 inherits some crucial properties from
the function V , which in turn simplifies the search for its explicit formula. For
example, if V is homogeneous of order p, then so is U0. To see this, pick arbitrary
(Ω,F , µ) with µ(Ω) ≥ 1, e ∈ E(Ω,F , µ), f ∈ M(x, e) and λ > 0. Then λf ∈
M(λx, e) and hence

U0(λx, λy, λz) ≥
∫
Ω

V
(
λf, λS(f), λ(f ∗ ∨ ze0)

)
dµ

= λp
∫
Ω

V
(
f, S(f), f ∗ ∨ ze0

)
dµ.

Taking the supremum over all the parameters gives the inequality

U0(λx, λy, λz) ≥ λpU0(x, y, z) for (x, y, z) ∈ D,
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and switching from λ to λ−1 yields the reverse bound. Using a similar reasoning,
one can show that if V satisfies the symmetry condition

V (x, y, z) = V (−x, y, z) = V (x,−y, z) for all (x, y, z) ∈ D,

then the same is true for U0.

4. Proofs of (1.4) and (1.5)

As an application of the method described in the previous section, let us present
the proofs of the estimates formulated in the introduction. Obviously, it suffices
to focus on the L1-inequalities (1.4) and (1.5); then the weak-type bounds follow
immediately by the use of Chebyshev’s inequality. We start with (1.4). In view of
Lebesgue’s monotone convergence theorem and Fatou’s lemma, it suffices to prove
that for any monotone basis e of L1(Ω,F , µ), any n and all a0, a1, a2, . . . , an ∈ R
we have ∫

Ω

∣∣∣ n∑
k=0

akek(ω)
∣∣∣ dµ(ω) ≤ 2

∫
Ω

( n∑
k=0

∣∣akek(ω)∣∣2)1/2

dµ(ω).

This can be rewritten in the more compact form∫
Ω

V
(
fn, Sn(f)

)
dµ ≤ 0, (4.1)

where V (x, y) = |x| − 2y and fn, Sn(f) are as previously. Thus the problem is
of the form (3.2) and hence it can be treated by means of Theorems 3.1 and 3.2.
Now, for any (x, y) ∈ R× [0,∞), define the special function by

U(x, y) =

{
−(2y2 − x2)1/2 if |x| ≤ y,

|x| − 2y if |x| > y.
(4.2)

Theorem 4.1. The function U belongs to U(V ).

Proof. We need to verify the conditions (1)–(4). The first of them is empty, since U
does not depend on z. To show the majorization (2), we may assume that |x| ≤ y
(otherwise both sides are equal). Squaring both sides, we obtain the equivalent
form (|x| − y)2 ≥ 0, which is obviously true. The main technical difficulty lies in
proving the conditions (3) and (4).

Proof of (3). We will prove the estimate

U
(
x+ t, (y2 + t2)1/2

)
≤ U(x, y) + Ux(x, y)t (4.3)

for all x ∈ R, y > 0, and t ∈ R. This will yield the desired condition. Indeed, if
we apply (4.3) to t = t1 and multiply both sides by α1, then apply (4.3) to t = t2
and multiply throughout by α2, and finally add the obtained estimates, we get
the inequality from (3) (for y > 0, but the passage to nonnegative y is trivial, by
a continuity argument).

To show (4.3), note that we may assume that x ≥ 0, by symmetry. We consider
four cases. Suppose first that x ≥ y and |x+ t| ≥ (y2+ t2)1/2. Then t ≥ −x, since
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otherwise, squaring the previous estimate, we would get x2 + 2tx ≥ y2, which is
a contradiction. Hence, (4.3) reduces to the trivial bound

x+ t− 2(y2 + t2)1/2 ≤ x+ t− 2y.

Suppose now that x ≥ y and |x+ t| ≤ (y2+ t2)1/2; then t ≤ t0, where t0 ≤ 0 is the
unique number satisfying x+ t0 = (y2 + t20)

1/2. The inequality (4.3) is equivalent
to 2y − x− t ≤ (2y2 + 2t2 − (x+ t)2)1/2. Both sides are nonnegative, so squaring
both sides we get the equivalent form

2y2 + 2yx+ x2 + 2xt+ 2yt ≤ 0.

This bound is true for t = t0 by the previous case. Hence, since t ≤ t0 and x, y
are nonnegative, the inequality holds. Next, assume that x ≤ y and |x + t| ≤
(y2 + t2)1/2. Then (4.3) reads

−
(
2y2 + 2t2 − (x+ t)2

)1/2 ≤ −(2y2 − x2)1/2 + xt(2y2 − x2)−1/2,

or, equivalently,

2y2 − x2 − xt ≤
[
(2y2 − x2)(2y2 − x2 + t2 − 2xt)

]1/2
.

If the left-hand side is negative, then there is nothing to prove; otherwise, we
square both sides and manipulate a little to obtain the equivalent estimate x2t2 ≤
(2y2 − x2)t2, which is true due to the assumption x ≤ y. Finally, suppose that
x ≤ y and |x + t| ≥ (y2 + t2)1/2. Then (x + t)2 ≤ y2 + 2xt + t2 ≤ 2(y2 + t2) and
the calculations from the previous case can be repeated: we get

U(x, y) + Ux(x, y)t ≥ −
(
2y2 + 2t2 − (x+ t)2

)1/2
,

and the expression on the right-hand side is not smaller than |x+t|−2(y2+t2)1/2,
which can be easily checked by squaring.

Proof of (4). If t2 = 0, then both sides are equal; otherwise, we divide both
sides by |t2| and note that the inequality reduces to

U(x, y) ≥ U
(
x+ t, (y2 + t2)1/2

)
− |t|

for all x, y, and t. Again, we consider four cases, depending on the interplay
between x, y and x + t, (y2 + t2)1/2. If |x| ≥ y and |x + t| ≥ (y2 + t2)1/2, then
the desired bound is the sum of the obvious estimates |x| ≥ |x + t| − |t| and
−2y ≥ −2(y2 + t2)1/2. If |x| ≥ y and |x+ t| ≤ (y2 + t2)1/2, then

|x| − 2y + |t| ≥ −y + |t| ≥ −(y2 + t2)1/2 ≥ −
(
2y2 + 2t2 − (x+ t)2

)1/2
,

which is precisely the claim. If |x| ≤ y and |x+ t| ≥ (y2 + t2)1/2, then, using (2),
we have

−(2y2 − x2)1/2 ≥ |x| − 2y ≥ |x+ t| − |t| − 2(y2 + t2)1/2,

as desired. Finally, if |x| ≤ y and |x + t| ≤ (y2 + t2)1/2, the estimate (4), after
squaring, is equivalent to

t2 − xt+ |t|
(
2(y2 + t2)− (x+ t)2

)1/2 ≥ 0,
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and follows from the estimates t2 ≥ 0 and (2(y2+t2)−(x+t)2)1/2 ≥ (y2+t2)1/2 ≥
y ≥ |x|. �

The proof of the estimate (1.5) will be similar (of course, a different special
function will be used). Arguing as previously, it is enough to show that for any
monotone basis e of L1(Ω,F , µ), any n, and all a0, a1, a2, . . . , an ∈ R, we have∫

Ω

( n∑
k=0

∣∣akek(ω)∣∣2)1/2

dµ(ω) ≤
√
3

∫
Ω

max
0≤m≤n

∣∣∣ m∑
k=0

akek(ω)
∣∣∣dµ(ω).

This is equivalent to saying that∫
Ω

V
(
fn, Sn(f), f

∗
n

)
dµ ≤ 0, (4.4)

where V (x, y, z) = y −
√
3|x| ∨ z. This problem is of the form (3.2), and we

can apply the machinery developed in the preceding section. The corresponding
special function U : D → R is given by

U(x, y, z) =
y2 − x2 − 2(|x| ∨ z)2

2
√
3(|x| ∨ z)

, (4.5)

when |x| ∨ z > 0, and U(0, 0, 0) = 0.

Theorem 4.2. The function U belongs to U(V ).

Proof. The condition (1) is evident. To show majorization (2), observe that for
(x, y, z) 6= (0, 0, 0),

U(x, y, z) =
y2 − x2 − 2(|x| ∨ z)2

2
√
3(|x| ∨ z)

≥ y2 − 3(|x| ∨ z)2

2
√
3(|x| ∨ z)

=
(y −

√
3(|x| ∨ z))2 + 2

√
3y(|x| ∨ z)− 6(|x| ∨ z)2

2
√
3(|x| ∨ z)

≥ V (x, y, z).

Again, the most elaborate part of the proof is the study of (3) and (4).
Proof of (3). As previously, we will show the slightly stronger bound

U
(
x+ t, (y2 + t2)1/2, z

)
≤ U(x, y, z) + Ux(x, y, z)t (4.6)

for any x, t ∈ R and y, z > 0 such that |x| ≤ z. By symmetry, we may and do
assume that t ≥ 0. If |x + t| ≤ z, then both sides are equal. If |x + t| > z, then
|x+ t| ∨ z = x+ t and the estimate becomes

y2 + t2 − 3(x+ t)2

x+ t
≤ y2 − x2 − 2xt− 2z2

z

or (y2 + t2 − (x+ t)2)(z − (x+ t)) ≤ 2(x+ t)z(x+ t− z). Dividing both sides by
x+ t− z we get the equivalent form x2 − 2xt− y2 ≤ 2(x+ t)z, which is evident:
we have y2 ≥ 0 and x2 + 2xt ≤ 2x(x+ t) ≤ 2z(x+ t).
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Proof of (4). If t2 = 0, then the inequality is satisfied. If t2 6= 0, we divide both
sides by t2, put t = t1, and obtain the equivalent form

U(x, y, z) ≥ U
(
x+ t, (y2 + t2)1/2, z

)
− |t|√

3
.

By symmetry, we may assume that t ≥ 0. If |x + t| ≤ z, then some simple
manipulations transform the estimate into −2xt−2zt ≤ 0, which is obviously true.
Suppose then that |x+ t| > z; then |x+ t| = x+ t and, after some straightforward
calculations,

U
(
x+ t, (y2 + t2)1/2, z

)
− |t|√

3
=

y2 + x2

2
√
3(x+ t)

− 4(x+ t)

2
√
3

≤ y2 + x2

2
√
3z

− 4z

2
√
3
≤ U(x, y, z).

This completes the proof. �

5. Sharpness

In this section, we address the optimality of the constants 2 and
√
3 involved in

the estimates (1.4)–(1.7). Obviously, it is enough to show that these constants are
the best in the weak-type estimates (1.6) and (1.7), respectively. Our argument
will exploit Theorem 3.2.

Sharpness of (1.6). Suppose that the estimate (1.6) holds true with some con-
stant β. Then for any n and any coefficients a0, a1, . . . , an ∈ R, we have

2µ
(∣∣∣ n∑

k=0

akek

∣∣∣ ≥ 2
)
≤ β

∫
Ω

( n∑
k=0

|akek|2
)1/2

dµ.

This is equivalent to the estimate∫
Ω

V
(
fn, Sn(f)

)
dµ ≤ 0,

where V is given by V (x, y) = 2χ{|x|≥2} − βy. By Theorem 3.2, the function

U0(x, y) = sup
{∫

Ω

V
(
fn, Sn(f)

)
dµ

}
,

with the supremum taken over appropriate parameters, belongs to the class U(V ).
Since V (x, y) = V (−x, y) for all x, y, the function U0 inherits this property. Apply
(3) with x = y = 0, t1 = −t2 = 1, α1 = α2 = 1 to get

0 = U0(0, 0) ≥ 1

2
U0(1, 1) +

1

2
U0(−1, 1) = U0(1, 1),

so in particular U0(1, 1) is finite. Now, for given integers 0 ≤ k < n, apply (4)
with x = 1 + k/n, y = (1 + k/n2)1/2, t1 = 1/n and t2 = 1 to obtain

U0
(
1 +

k

n
,
(
1 +

k

n2

)1/2)
≥ U0

(
1 +

k + 1

n
,
(
1 +

k + 1

n2

)1/2)
+

1

n
U0(1, 1).
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This, by induction, implies that

U0(1, 1) ≥ U0
(
2,
(
1 +

1

n

)1/2)
+ U0(1, 1),

and hence, using (2), we get

0 ≥ U0
(
2,
(
1 +

1

n

)1/2)
≥ V

(
2,
(
1 +

1

n

)1/2)
= 2− β

(
1 +

1

n

)1/2

.

Letting n → ∞, we see that β must be at least 2. This proves the desired
sharpness. �

Sharpness of (1.7). The argument is similar. We assume that the inequality (1.7)
holds true with some constant γ. Then for any n and any coefficients a0, a1, . . . ,
an ∈ R, we have

√
3µ

(( n∑
k=0

|akek|2
)
≥

√
3
)
≤ γ

∫
Ω

max
0≤m≤n

∣∣∣ m∑
k=0

akek

∣∣∣dµ,
or

∫
Ω
V (fn, Sn(f), f

∗
n) dµ ≤ 0, where V (x, y, z) =

√
3χ{y≥

√
3} − γ|x| ∨ z. By the

machinery developed in Section 3, the function

U0(x, y, z) = sup
{∫

Ω

V
(
fn, Sn(f), f

∗
n

)
dµ

}
(with the supremum taken over appropriate parameters) lies in the class U(V ).
Furthermore, we have U0(x, y, z) = U0(−x, y, z), since the same property holds
for V .

By (4), applied to x = y = z = 0, t1 = −t2 = 1, and α1 = α2 = 1/2, we get

0 = U0(0, 0, 0) ≥ 1

2
U0(1, 1, 0) +

1

2
U0(−1, 1, 0) = U0(1, 1, 0) = U0(1, 1, 1),

where in the last passage we have exploited (1). Consequently, U0(1, 1, 1) is finite.
Now apply (4) with x = y = z = 1, t1 = −1, and t2 = 1 to obtain

U0(1, 1, 1) ≥ U0(0,
√
2, 1) + U0(1, 1, 1),

or U0(0,
√
2, 1) ≤ 0, by the aforementioned finiteness of U0(1, 1, 1). Now use (3)

with x = 0, y =
√
2, z = 1, t1 = −t2 = 1, and α1 = α2 = 1/2 to get

0 ≥ U0(0,
√
2, 1) ≥ 1

2
U0(1,

√
3, 1) +

1

2
U0(−1,

√
3, 1) = U0(1,

√
3, 1).

This, by (2), implies that V (1,
√
3, 1) ≤ 0, or γ ≥

√
3. Hence the constant

√
3 is

indeed the best possible. �
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