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Abstract. For a set M of operators on a complex Banach space X , the
reflexive cover of M is the set Ref(M) of all those operators T satisfying Tx ∈
Mx for every x ∈ X . Set M is reflexive if Ref(M) = M. The notion is well
known, especially for Banach algebras or closed spaces of operators, because
it is related to the problem of invariant subspaces. We study reflexivity for
general sets of operators. We are interested in how the reflexive cover behaves
towards basic operations between sets of operators. It is easily seen that the
intersection of an arbitrary family of reflexive sets is reflexive, as well. However
this does not hold for unions, since the union of two reflexive sets of operators
is not necessarily a reflexive set. We give some sufficient conditions under which
the union of reflexive sets is reflexive. We explore how the reflexive cover of
the sum (resp., the product) of two sets is related to the reflexive covers of
summands (resp., factors). We also study the relation between reflexivity and
convexity, with special interest in the question: under which conditions is the
convex hull of a reflexive set reflexive?

1. Introduction

Let X be a complex Banach space and let B(X ) be the Banach algebra of
all bounded linear operators on X . For a nonempty set M ⊆ B(X ), let Mx =
{Mx;M ∈ M} denote the orbit ofM at vector x ∈ X , and letMx be its closure.
The reflexive cover of M is set Ref(M) = {T ∈ B(X );Tx ∈ Mx for every x ∈
X }. Hence, an operator T is in Ref(M) if and only if, for every x ∈ X and
every ε > 0, there exists an operator Mx,ε ∈ M such that ‖(T − Mx,ε)x‖ < ε.
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The pure algebraic version of this concept is the algebraic reflexive cover of M,
the set which is given by Refa(M) = {T ∈ B(X );Tx ∈ Mx for every x ∈ X }.
It is obvious that M ⊆ Refa(M) ⊆ Ref(M) ⊆ B(X ). In general, any inclusion
in the previous chain can be proper for a suitable set M; however, note that
Refa(M) = Ref(M) whenever every orbit Mx (x ∈ X ) is closed.

It is obvious that M1 ⊆ Ref(M1) ⊆ Ref(M2) if ∅ 6= M1 ⊆ M2 ⊆ B(X ).
Since, by the definition of the reflexive cover of a nonempty set M ⊆ B(X ), we

have Ref(M)x = Mx for every x ∈ X , it follows that Ref(Ref(M)) = Ref(M).
The algebraic reflexive cover has similar properties.

A basic question about a nonempty set M ⊆ B(X ) is: how large is its reflex-
ive cover? If Ref(M) = M, then M is considered reflexive, and if Ref(M) =
B(X ), then M is considered topologically transitive. Similarly, if Refa(M) = M,
then M is considered algebraically reflexive, and it is considered transitive if
Refa(M) = B(X ). It is obvious that every reflexive set is algebraically reflexive
and that every transitive set is topologically transitive. Due to technical reasons,
we set Ref(∅) = ∅ (i.e., we consider the empty set to be reflexive).

The reflexivity of sets with some additional algebraic structure has been studied
by many authors. Sometimes other terminology is used instead of reflexivity. The
most extensive study has been devoted to algebras and linear spaces of operators
because in that case reflexivity is intimately related to the problem of invari-
ant subspaces (see [10, Section 9.2]). The theory had its beginnings in Sarason’s
article [11], where he proved that the weakly closed algebra of operators on a
complex Hilbert space—which is generated by a normal operator, or an analytic
Toeplitz operator, and the identity operator—is reflexive. Loginov and Shulman
[8] extended the notion of reflexivity to linear spaces of operators. Hadwin et
al. [6] studied reflexivity of O(S), the strongly closed semigroup generated by
a nonzero operator S on a complex Hilbert space. An operator is considered
orbit-reflexive if O(S) is reflexive (it has been proved in [6] that many operators
are orbit-reflexive). Grivaux and Roginskaya [5] and, independently, Müller and
Vršovský [9] have shown that there exist operators on a Hilbert space which are
not orbit-reflexive.

The main goal of this paper is to study reflexivity of general sets of operators.
We are interested in the question of how reflexivity is related to some basic
operations between sets of operators. For instance, can the sum, the intersection,
or the union of reflexive sets be considered reflexive sets, as well? Our article is
organized as follows. In Section 2, we present a few examples of reflexive sets and
we prove basic results related to the reflexivity of sums and products of sets of
operators. Section 3 is devoted to the intersections and unions of sets of operators.
It is easily seen that the intersection of an arbitrary collection of reflexive sets is
reflexive, while on the other hand, the union of two reflexive sets is not reflexive in
general. We give some sufficient conditions under which the SOT-closure (strong
operator topology-closure) of the union of special collections of reflexive sets can
be reflexive, as well. Finally, in Section 4, we consider reflexivity of convex sets of
operators, showing that a convex set of operators is reflexive if its polar contains
enough rank 1 operators.
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At the end of this section we introduce our notation. For a complex Banach
space X , we denote by B(X ) the Banach algebra of all bounded operators on X .
The identity operator is denoted by I. The unit ball and the unit sphere of X
are denoted by BX and SX , respectively. The topological dual of X is X ∗ and
the pairing between these spaces is given by (x, ξ) 7→ 〈x, ξ〉, where x ∈ X and
ξ ∈ X ∗ are arbitrary and 〈x, ξ〉 denotes number ξ(x). For an operator T ∈ B(X ),
the image is denoted by im(T ) and the kernel by ker(T ). More generally, for a
nonempty set M ⊆ B(X ), we denote Im(M) = ∨M∈M im(M), where ∨ means
the closed linear span of a set of vectors, and Ker(M) =

⋂
M∈M ker(M). For

e ∈ X and ξ ∈ X ∗, we denote by e ⊗ ξ the operator which is given by x 7→ 〈x, ξ〉e
(x ∈ X ); if e and ξ are nonzero, then this is a bounded rank 1 operator. We denote
the set of all bounded rank 1 operators and operator 0 by F1(X ), and we denote
the linear space of all bounded finite rank operators by F(X ). For nonempty
sets M ⊆ B(X ) and Λ ⊆ C, let ΛM = {λM ;λ ∈ Λ,M ∈ M}. Similarly, for
nonempty sets M1,M2 ⊆ B(X ), we denote M1M2 = {M1M2;M1 ∈ M1,M2 ∈
M2} and M1 +M2 = {M1 +M2;M1 ∈ M1,M2 ∈ M2}. If one of the sets is a
singleton, then by the above notation we write that single element instead of the
singleton; for instance, ΛM = {λM ;λ ∈ Λ}, M + N = {M + N ;M ∈ M} and
so forth.

2. Examples and basic properties

We begin this section with some simple examples of reflexive sets. The first
example has been presented in [3]. For the sake of completeness, we include here
a simple proof which relies on the following known lemma (see [2]) that will be
used several times throughout this article.

Lemma 2.1. Let X be a complex vector space and let Y1, . . . ,Yn ⊆ X be
linear subspaces. If X = Y1 ∪ · · · ∪ Yn, then X = Yk for at least one index
k ∈ {1, . . . , n}.

Proof. Towards a contradiction, assume that each Yi (1 ≤ i ≤ n) is a proper
subspace of X . Then for every i ∈ {1, . . . , n} there exists a vector ei ∈ X \ Yi.
Let (λj)

∞
j=1 be a sequence of pairwise distinct complex numbers. For each j ∈ N,

let xj = e1 + λje2 + · · · + λn−1
j en. Because of X = Y1 ∪ · · · ∪ Yn, there exists

an index k such that Yk contains infinitely many vectors from this sequence.
Assume that j1, . . . , jn are distinct indices such that xj1 , . . . , xjn ∈ Yk. Of course,
any linear combination of these vectors is in Yk, as well. For 1 ≤ l ≤ n, let γl = 1
if l = k and let γl = 0 otherwise. The matrix of the linear system

λm
j1
z1 + · · ·+ λm

jnzn = γm+1 (m = 0, . . . , n− 1)

is a Vandermonde matrix with nonzero determinant. Hence, the system has a
unique solution (α1, . . . , αn) ∈ Cn. It follows that

ek =
n−1∑
m=0

( n∑
t=1

αtλ
m
jt

)
em+1 =

n∑
t=1

αt

(n−1∑
m=0

λm
jt em+1

)
= α1xj1 + · · ·+ αnxjn ,

which gives the contradiction ek ∈ Yk. �
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Proposition 2.2. Every nonempty finite set M ⊆ B(X ) is reflexive.

Proof. Note first that for a finite setM, every orbitMx (x ∈ X ) is closed. Hence
Ref(M) = Refa(M). Suppose that M = {M1, . . . ,Mn}, and let T ∈ Ref(M).
Then Tx ∈ {M1x, . . . ,Mnx} for every x ∈ X . Since Tx = Mix if and only if
x ∈ ker(T −Mi), we have X = ker(T −M1) ∪ · · · ∪ ker(T −Mn). Now we apply
Lemma 2.1 to conclude that T = Mk for some index k ∈ {1, . . . , n}. �

For nonempty sets U ,V ⊆ X , let MU ,V = {M ∈ B(X );MU ⊆ V }. If
U = V , then we will use the shorter notation MU , and in the case when a set is
singleton we will write that vector instead of the set; for instance Mu,v denotes
the set of all operators M such that Mu = v. It is easily seen that MU ,V =⋂

u∈U

⋃
v∈V Mu,v. Note that MU ,V is a semigroup if V ⊆ U . In particular,

every MU is a semigroup containing the identity operator.

Proposition 2.3. Let U ,V ⊆ X be nonempty sets. Then Ref(MU ,V ) ⊆ MU ,V .
If V is closed, then MU ,V is reflexive.

Proof. Let T ∈ Ref(MU ,V ). For every u ∈ U and ε > 0 there exists Mu,ε ∈
MU ,V such that ‖Tu − Mu,εu‖ < ε. Since Mu,εu ∈ V for all u and ε, we have

Tu ∈ V . We conclude that Ref(MU ,V ) ⊆ MU ,V . If V is closed, then the opposite
inclusion holds as well. �

Remark 2.4. Note that MBX
is the semigroup of all contractions and that MSX

is the semigroup of all isometries. Hence, by Proposition 2.3, these sets are reflex-
ive.

The following proposition is a simple generalization of a well-known fact that
every 1-dimensional space of operators is reflexive.

Proposition 2.5. Let M ∈ B(X ) and let Λ ⊆ C be a nonempty set. Then
Ref(ΛM) = ΛM . In particular, if M 6= 0, then ΛM is a reflexive set if and only
if Λ is closed.

Proof. If M = 0, then there is nothing to prove. Assume therefore that M 6= 0.
Let T ∈ Ref(ΛM). Since M 6= 0 there exists x ∈ X such that Mx 6= 0. From
Tx ∈ ΛMx = ΛMx it follows that there exists λx ∈ Λ such that Tx = λxMx.
Let y ∈ X be arbitrary. If Mx and My are linearly dependent and γ ∈ C is
such that My = γMx, then it follows from T (y − γx) ∈ ΛM(y − γx) = {0}
that Ty = γTx = γλxMx = λxMy. Suppose now that Mx and My are linearly
independent and let λy, λx+y ∈ Λ be such that Ty = λyMy and T (x + y) =
λx+yM(x+y). It follows from T (x+y) = λx+yM(x+y) = λx+yMx+λx+yMy and
T (x+ y) = Tx+Ty = λxMx+λyMy that (λx+y −λx)Mx+(λx+y −λy)My = 0,
which gives λy = λx+y = λx. Hence we have T = λM for some λ ∈ Λ. The
opposite inclusion is obvious. �

Proposition 2.5 does not hold if we replace a single operator M by two or more
operators. For instance, if M1, M2 are distinct operators, then C{M1,M2} is the
union of 1-dimensional spaces CM1 and CM2 which is not necessarily reflexive,
as we see later in Example 3.2.
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There exist nonreflexive linear spaces of dimension 2 or more. For later use we
include an example which is based on the well-known fact that the reflexive cover
of M = {

[
α β
0 α

]
;α, β ∈ C} is Ref(M) = {

[
α β
0 γ

]
;α, β, γ ∈ C}. In the example we

will need the following lemma.

Lemma 2.6. Let M ⊆ B(X ) be a nonempty set. If T ∈ Ref(M), then im(T ) ⊆
Im(M) and Ker(M) ⊆ ker(T ). Hence, Im(Ref(M)) = Im(M) and
Ker(Ref(M)) = Ker(M).

We omit a simple proof of the lemma.

Example 2.7. Assume that dim(X ) ≥ 2. Let e1, e2 ∈ SX be linearly independent,
and let ξ1, ξ2 ∈ X ∗ be such that 〈ej, ξk〉 = δjk for 1 ≤ j, k ≤ 2 (the Kronecker’s
delta). Let Λ ⊆ C be a closed set such that 0 ∈ Λ. We claim that the reflexive
cover of M = {α(e1 ⊗ ξ1 + e2 ⊗ ξ2) + βe1 ⊗ ξ2;α ∈ Λ, β ∈ C} is Ref(M) =
{αe1 ⊗ ξ1 + βe1 ⊗ ξ2 + γe2 ⊗ ξ2;α, γ ∈ Λ, β ∈ C}. If Λ = {0}, then our claim
follows, by Proposition 2.5. Assume therefore that {0} ( Λ. Since Λ is a closed set,
every orbit Mx = Λ(〈x, ξ1〉e1 + 〈x, ξ2〉e2) + C〈x, ξ2〉e1 is a closed subset of X .
Hence Ref(M) = Refa(M). It is clear that Im(M) = ∨{e1, e2}, Ker(M) =
ker(ξ1) ∩ ker(ξ2) and X = Im(M) ⊕ Ker(M). It follows, by Lemma 2.6, that
every operator T ∈ Ref(M) is a linear combination of rank 1 operators ej ⊗ ξk
(1 ≤ j, k ≤ 2). Let T = τ11e1 ⊗ ξ1 + τ12e1 ⊗ ξ2 + τ21e2 ⊗ ξ1 + τ22e2 ⊗ ξ2, where
τjk ∈ C. Since Te1 ∈ Me1, there exists Me1 = αe1(e1 ⊗ ξ1 + e2 ⊗ ξ2) + βe1e1 ⊗ ξ2
such that Te1 = τ11e1 + τ21e2 is equal to Me1e1 = αe1e1. It follows that τ11 ∈ Λ
and τ21 = 0. Similarly, it follows from Te2 ∈ Me2 that τ22 ∈ Λ. Hence, every
operator in Ref(M) is of the form as claimed above. On the other hand, let T =
τ11e1 ⊗ ξ1 + τ12e1 ⊗ ξ2 + τ22e2 ⊗ ξ2 with τ11, τ22 ∈ Λ, τ12 ∈ C. Since every x ∈ X
can be written as x = 〈x, ξ1〉e1+ 〈x, ξ2〉e2+x0, where x0 ∈ Ker(M), we can show
that Tx ∈ Mx. Indeed, if 〈x, ξ2〉 = 0, let Mx = τ11(e1 ⊗ ξ1+e2 ⊗ ξ2) ∈ M, and if

〈x, ξ2〉 6= 0, let Mx = τ22(e1 ⊗ ξ1 + e2 ⊗ ξ2) + ((τ11 − τ22)
〈x,ξ1〉
〈x,ξ2〉 + τ12)e1 ⊗ ξ2 ∈ M.

It is easily seen that Tx = Mxx. This proves our claim. Hence, set M is not
reflexive. If Λ = C, then M is a nonreflexive 2-dimensional linear space. This
example also shows that the linear span of a reflexive set of operators is not
necessarily reflexive: if M1,M2 ∈ B(X ) span a nonreflexive 2-dimensional space,
then {M1,M2} is a reflexive set, by Proposition 2.2, but its linear span is not
reflexive.

We have already mentioned some basic properties of the reflexive cover. Now
we list a few more. We omit the proof of the following proposition since it relies
on a simple fact that Ref(M)x = Mx for every x ∈ X . We use the following

notation: the closure of a set M ⊆ B(X ) in (SOT) is denoted by MSOT
.

Proposition 2.8. Let M ⊆ B(X ) be a nonempty set. Then

(i) Ref(M) is SOT-closed, which means that MSOT ⊆ Ref(M) and

Ref(M) = Ref(MSOT
);

(ii) if M is a bounded set, then Ref(M) is bounded, as well, and
supM∈M ‖M‖ = supT∈Ref(M) ‖T‖.
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In general, Ref(M) is not closed in the weak operator topology (WOT). For
instance, let S be the unilateral shift on `2; that is, let S(x0, x1, x2, . . . ) =
(0, x0, x1, . . . ). Let M = {Sn;n ≥ 0}. It is well known and easy to see that 0
is in the WOT-closure of M, and hence it is in the WOT-closure of Ref(M). On
the other hand, since Sn is an isometry for every n ≥ 0 and the set of all isome-
tries is reflexive (see Remark 2.4), each operator T ∈ Ref(M) is an isometry,
which means that 0 /∈ Ref(M).

Proposition 2.9. Let M1,M2,M ⊆ B(X ) be nonempty sets. Then the follow-
ing hold.

(i) If M1 +M2 ⊆ M, then Ref(M1) + Ref(M2)
SOT

⊆ Ref(M).

(ii) If M1M2 ⊆ M, then Ref(M1) Ref(M2)
SOT

⊆ Ref(M).

Proof. (i) Assume that T1 ∈ Ref(M1) and that T2 ∈ Ref(M2). Let x ∈ X and
ε > 0 be arbitrary. Then there exist M1 ∈ M1 and M2 ∈ M2 such that ‖T1x −
M1x‖ < ε

2
and ‖T2x−M2x‖ < ε

2
. It follows that ‖(T1 + T2)x− (M1 +M2)x‖ < ε.

Hence Ref(M1) + Ref(M2) ⊆ Ref(M). Since, by Proposition 2.8(i), reflexive
cover is SOT-closed, the assertion follows.

(ii) Let M1 ∈ M1 and T2 ∈ Ref(M2) be arbitrary. For x ∈ X and ε > 0, there
exists M2 ∈ M2 such that ‖T2x−M2x‖ < ε. It follows that ‖M1T2x−M1M2x‖ <
‖M1‖ε. Since x and ε are arbitrary we conclude that M1T2 ∈ Ref(M1M2) ⊆
Ref(M). Now, let T1 ∈ Ref(M1) and T2 ∈ Ref(M2) be arbitrary. Again, for
every x ∈ X and every ε > 0, there exists M1 ∈ M1 such that ‖T1(T2x) −
M1(T2x)‖ < ε. Since M1T2 ∈ Ref(M) we may conclude that T1T2 ∈
Ref(Ref(M)) = Ref(M). �

Corollary 2.10. If M ⊆ B(X ) is a semigroup (resp., a linear space, or an
algebra), then Ref(M) is a semigroup (resp., a linear space, or an algebra).

Proposition 2.11. If M ⊆ B(X ) is a nonempty set such that dim(∨M) < ∞,
then dim(∨Ref(M)) < ∞.

Proof. Observe first that M ⊆ ∨M implies that Ref(M) ⊆ Ref(∨M) and conse-
quently that ∨Ref(M) ⊆ Ref(∨M) since Ref(∨M) is SOT-closed linear space.
Denote S = ∨M and assume that it is a finite-dimensional space. Then each
orbit Sx (x ∈ X ) is a finite-dimensional linear subspace of X which means
that it is closed. It follows that Ref(S) = Refa(S). By [7, Corollary 2.9], we con-
clude that Refa(S) is finite-dimensional, which gives, by the inclusion above, that
dim(∨Ref(M)) < ∞. �

In general the sum of two reflexive sets is not reflexive. Again a 2-dimensional
nonreflexive space can serve as an example: it is the sum of any two distinct
1-dimensional subspaces, which are reflexive, by Proposition 2.5.

Proposition 2.12. Let M ⊆ B(X ) be a nonempty set and let N ∈ B(X ). Then
Ref(M+N) = Ref(M) +N ; in particular, M is reflexive if and only if M+N
is reflexive.

Proof. For each x ∈ X , one has (M+N)x = Mx+Nx, which gives (M+N)x =

Mx+Nx. Let T ∈ Ref(M). Then (T+N)x = Tx+Nx ∈ Mx+Nx = (M+N)x
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for every x ∈ X . Hence T +N ∈ Ref(M+N). On the other hand, assume that

T ∈ Ref(M +N). Then Tx ∈ (M+N)x = Mx +Nx for every x ∈ X . Hence
(T − N)x ∈ Mx for every x ∈ X . This proves that T − N ∈ Ref(M) and
therefore that T ∈ Ref(M) +N . �

Next proposition, which can be seen as an extension of Proposition 2.5, shows
that many subsets of a reflexive 2-dimensional linear subspace S ⊆ B(X ) are
reflexive.

Proposition 2.13. Let S ⊆ B(X ) be a reflexive 2-dimensional linear subspace.
For arbitrary M1,M2 ∈ S and nonempty closed sets Λ1,Λ2 ⊆ C, the set M =
Λ1M1 + Λ2M2 is reflexive.

Proof. If M1, M2 are linearly dependent, say M2 = µM1 (µ ∈ C), then M =
(Λ1 + µΛ2)M1 is reflexive, by Proposition 2.5. Assume therefore that M1, M2

are linearly independent. Let T ∈ Ref(M). Since M ⊆ S and S is reflexive, we
have T = α1M1 + α2M2 for some α1, α2 ∈ C. We have to show that αj ∈ Λj

(j = 1, 2). If there exists x ∈ X such that M1x, M2x are linearly independent,
then it follows from Tx ∈ Mx that α1M1x + α2M2x = λ1M1x + λ2M2x, for
some λ1 ∈ Λ1 and λ2 ∈ Λ2, which gives αj = λj ∈ Λj (j = 1, 2). Suppose now
that M1x, M2x are linearly dependent for every x ∈ X . By [4, Theorem 2.3],
there exist a nonzero e ∈ X and linearly independent ξ1, ξ2 ∈ X ∗ such that
M1 = e ⊗ ξ1 and M2 = e ⊗ ξ2. Hence T = e ⊗ (α1ξ1 + α2ξ2). Let x1, x2 ∈ X be
such that 〈xi, ξj〉 = δij (1 ≤ i, j ≤ 2). Since Txj ∈ Mxj, for j = 1, 2, there exist
λij ∈ Λi (1 ≤ i, j ≤ 2) such that Txj = (λ1jM1 + λ2jM2)xj (j = 1, 2) which gives
α1 = λ11 ∈ Λ1 and α2 = λ22 ∈ Λ2. Hence T ∈ M. �

In the proof of Proposition 2.13 we used Theorem 2.3 from [4] which gives the
complete description of a pair of locally linearly dependent operators. A similar
characterization for a triple of locally linearly dependent operators is given by [4,
Theorem 2.4]. As mentioned on page 1258 of [4], the problem of finding a similar
characterization for a collection of n ≥ 4 locally linearly dependent operators
seems to become extremely difficult. Because of this it seems that a result similar
to Proposition 2.13, but for S of dimension n ≥ 4, would be hard to prove.

Proposition 2.14. Let A ∈ B(X ) be left invertible with a left inverse Al ∈
B(X ), and let B ∈ B(X ) be right invertible with a right inverse Br ∈ B(X ). If
N is a nonempty subset of B(X ), then Ref(N ) = Al Ref(ANB)Br. In particular,
if ANB is reflexive, then N is reflexive.

Proof. Since M = ANB and N = AlMBr, we have ARef(N )B ⊆ Ref(M) and
Al Ref(M)Br ⊆ Ref(N ), by Proposition 2.9 (note that singletons are reflexive
sets, by Proposition 2.2). It follows that

Ref(N ) = Al
(
ARef(N )B

)
Br ⊆ Al Ref(M)Br ⊆ Ref(N )

which gives Ref(N ) = Al Ref(M)Br. IfM is reflexive, then Ref(N ) = AlMBr =
N ; that is, N is reflexive. �
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Corollary 2.15. Let M ⊆ B(X ) be a nonempty set and let A,B ∈ B(X ) be
invertible. Then Ref(AMB) = ARef(M)B. In particular, M is reflexive if and
only if AMB is reflexive.

For a nonempty set M ⊆ B(X ), let Sgrl(M) = {A ∈ B(X );AM ⊆ M} and
Sgrr(M) = {B ∈ B(X );MB ⊆ M}. It is easily seen that Sgrl(M) and Sgrr(M)
are semigroups containing I. By Corollary 2.10, Ref(Sgrl(M)) and Ref(Sgrr(M))
are semigroups as well. If I ∈ M, then Sgrl(M) ⊆ M and Sgrr(M) ⊆ M. On
the other hand, M ⊆ Sgrl(M) if and only if M is a semigroup if and only if
M ⊆ Sgrr(M). Hence, if M is a semigroup containing I, then Sgrl(M) = M =
Sgrr(M). However, in general, these semigroups are not necessarily related with
M through inclusions.

Proposition 2.16. Let M ⊆ B(X ) be a nonempty set.

(i) If M is reflexive, then semigroups Sgrl(M) and Sgrr(M) are reflexive as
well.

(ii) Operator A ∈ B(X ) is in Sgrl(Ref(M)) if and only if AMx ⊆ Mx for
every x ∈ X . Similarly, B ∈ Sgrr(Ref(M)) if and only if MBx ⊆ Mx
for every x ∈ X .

Proof. (i) It follows from the definition of Sgrl(M) that Sgrl(M)M ⊆ M,. By
Proposition 2.9, we have Ref(Sgrl(M)) Ref(M) ⊆ Ref(M). Hence, if M is reflex-
ive, then Ref(Sgrl(M))M ⊆ M which gives, by the definition of Sgrl(M), that
Ref(Sgrl(M)) ⊆ Sgrl(M). This proves the reflexivity of Sgrl(M). The reflexivity
of Sgrr(M) is proved similarly.

(ii) If A ∈ Sgrl(Ref(M)), then ARef(M)x ⊆ Ref(M)x for every x ∈ X .

By the continuity of A, ARef(M)x ⊆ Ref(M)x, and therefore AMx ⊆ Mx as

Ref(M)x = Mx for every x. To prove the opposite implication, assume that
AMx ⊆ Mx for every x ∈ X . Let T ∈ Ref(M) be arbitrary. For every x ∈ X
and ε > 0 there exists Mx,ε ∈ M such that ‖Tx −Mx,εx‖ < ε. By assumption,
AMx,εx ∈ Mx, which means that there exists Nx,ε ∈ M such that ‖AMx,εx −
Nx,εx‖ < ε. It follows that ‖ATx − Nx,εx‖ < (‖A‖ + 1)ε. Hence AT ∈ Ref(M).
The second part of (ii) is proved similarly. �

Example 2.17. Let M ∈ B(X ) and Λ ⊆ C be a nonempty closed set. Let M =
ΛM . We claim that

Sgrl(M) =
{
A ∈ B(X );∃λA ∈ Λ : λAΛ ⊆ Λ and im(M) ⊆ ker(λAI − A)

}
and

Sgrr(M) =
{
B ∈ B(X );∃λB ∈ Λ : λBΛ ⊆ Λ and im(λBI −B) ⊆ ker(M)

}
.

If M = 0 or Λ = {0}, then M = {0}, which gives Sgrl(M) = Sgrr(M) = B(X ).
Assume therefore that M 6= 0 and that Λ contains a nonzero number. Since, for
a nonzero number λ ∈ Λ, we have M = ( 1

λ
Λ)(λM), we may assume without loss

of generality that 1 ∈ Λ, which implies that M ∈ M.
We will check only the first equality. If A ∈ Sgrl(M), then AM ∈ M and there-

fore there exists λA ∈ Λ such that (λAI −A)M = 0, which means that im(M) ⊆
ker(ΛI−A). For arbitrary λ ∈ Λ, we have A(λM) ∈ M (i.e., λAλM ∈ M). Since
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M 6= 0, we conclude that ΛAλ ∈ Λ. On the other hand, if im(M) ⊆ ker(λAI −A)
for λA ∈ Λ satisfying λAΛ ⊆ Λ, then (λAI −A)(λM)x = 0 for every x ∈ X , and
therefore A(λM) = λAλM ∈ Sgrl(M).

Note that Sgrl(M) and Sgrr(M) are reflexive sets since M is reflexive, by
Proposition 2.5. We mention the following special case. Let Y be a comple-
mented closed subspace of X , with complement Z , and let Λ ⊆ C be a multi-
plicative semigroup containing 1. Then sets {A ∈ B(X );∃λA ∈ Λ such that Y ⊆
ker(λAI−A)} and {B ∈ B(X );∃λB ∈ Λ such that im(λBI−B) ⊆ Z } are reflex-
ive. Indeed, since Y is complemented there exists an idempotent P ∈ B(X ) such
that im(P ) = Y and ker(P ) = Z . We take M = ΛP and therefore the above
sets are precisely Sgrl(M) (resp., Sgrr(M)).

3. Reflexivity of intersections and unions

In this section, we are concerned with the question: are the intersection and
the SOT-closure of the union of reflexive sets reflexive?

Proposition 3.1. Let {Mi; i ∈ I} be an arbitrary family of nonempty subsets of
B(X ). Then

Ref
(⋂
i∈I

Mi

)
⊆

⋂
i∈I

Ref(Mi) and Ref
(⋃
i∈I

Mi

)
⊇

⋃
i∈I

Ref(Mi)
SOT

.

(i) If every Mi (i ∈ I) is reflexive, then the intersection
⋂

i∈IMi is reflexive.

(ii) If
⋃

i∈IMi

SOT
is reflexive, then

⋃
i∈I Mi

SOT
=

⋃
i∈IRef(Mi)

SOT
.

Proof. Since
⋂

i∈IMi ⊆ Mj we have Ref(
⋂

i∈IMi) ⊆ Ref(Mj) for every j ∈ I.
Hence Ref(

⋂
i∈IMi) ⊆

⋂
i∈IRef(Mi). To prove (i), assume that every Mi (i ∈ I)

is reflexive. Then
⋂

i∈IMi ⊆ Ref(
⋂

i∈IMi) ⊆
⋂

i∈IRef(Mi) =
⋂

i∈IMi.
We have

⋃
i∈IMi ⊇ Mj and therefore Ref(

⋃
i∈IMi) ⊇ Ref(Mj), for every

j ∈ I. It follows that Ref(
⋃

i∈IMi) ⊇
⋃

i∈IRef(Mi)
SOT

, by Proposition 2.8(i).

Suppose that
⋃

i∈IMi

SOT
is reflexive. Then, by Proposition 2.8(i),⋃

i∈I

Mi

SOT

= Ref
(⋃
i∈I

Mi

)
⊇

⋃
i∈I

Ref(Mi)
SOT

⊇
⋃
i∈I

Mi

SOT

. (3.1)

�

Although the intersection of an arbitrary family of reflexive sets is reflexive,
the next example shows that the union of two reflexive sets is not necessarily
reflexive.

Example 3.2. Let e1, e2 ∈ SX be linearly independent vectors, and let ξ1, ξ2 ∈
SX ∗ be such that 〈ej, ξk〉 = δjk (1 ≤ j, k ≤ 2). Let M = {µe1 ⊗ ξ1;µ ∈ C} and,
for a number α, let A = αe1 ⊗ ξ2. Set M is a 1-dimensional linear space, and
hence it is reflexive and SOT-closed. Singleton {A} is reflexive and SOT-closed,
as well. We claim that Ref(M∪ {A}) = M∪ (M+ A). It is obvious that M ⊆
Ref(M∪{A}). Let us show that every T = M+A, where M ∈ M, is in Ref(M∪
{A}). We have T = e1 ⊗ (µξ1 +αξ2) for some µ ∈ C. Let x ∈ X be an arbitrary
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vector. We distinguish two cases. If 〈x, ξ1〉 = 0, then it follows that Tx = Ax.

On the other hand, if 〈x, ξ1〉 6= 0, then let Mx = (µ+ α 〈x,ξ2〉
〈x,ξ1〉)e1 ⊗ ξ1 ∈ M. It is

not hard to check that Tx = Mxx. This proves that Tx ∈ (M∪ {A})x for every
x ∈ X . Hence T ∈ Ref(M∪ {A}).

Now we prove the inclusion Ref(M ∪ {A}) ⊆ M ∪ (M + A). It holds, by
Proposition 2.5, if α = 0 (i.e., A = 0). Suppose therefore that α 6= 0. Note that for
every T ∈ Ref(M∪{A}), we have Ker(M∪{A}) ⊆ ker(T ) and im(T ) ⊆ Im(M∪
{A}). From the definition ofM and A it follows that Im(M∪ {A}) = Ce1. Hence,
either T = 0 or T is rank 1 operator with image Ce1. In any case, T = e1 ⊗ ζ
for some ζ ∈ X ∗. If we write ζ = 〈e1, ζ〉ξ1 + 〈e2, ζ〉ξ2 + ρ, where ρ ∈ X ∗ is such
that 〈ej, ρ〉 = 0 (j = 1, 2), then it is not hard to check that ρ = 0, which means
that T = e1 ⊗ (〈e1, ζ〉ξ1 + 〈e2, ζ〉ξ2). If 〈e2, ζ〉 = 0, then T = 〈e1, ζ〉e1 ⊗ ξ1 ∈ M.
Assume therefore that 〈e2, ζ〉 6= 0. Since Me2 = 0 for every M ∈ M and Ae2 =
αe1, we have (M∪ {A})e2 = {0, αe1}. It follows from Te2 = 〈e2, ζ〉e1 ∈ {0, αe1}
and 〈e2, ζ〉 6= 0 that T = 〈e1, ζ〉e1 ⊗ ξ1 + αe1 ⊗ ξ2 ∈ M+ A.

LetM be as before and letN = Ce1 ⊗ ξ2. It is clear thatM,N are 1-dimensional
linear spaces, which implies that they are reflexive. For every α ∈ C, it follows
from M ∪ {αe1 ⊗ ξ2} ⊆ M ∪ N that Ref(M ∪ {αe1 ⊗ ξ2}) ⊆ Ref(M ∪ N ).
We already know that Ref(M ∪ {αe1 ⊗ ξ2}) = M ∪ (M + αe1 ⊗ ξ2). Hence,
M + N =

⋃
α∈C(M ∪ (M + αe1 ⊗ ξ2)) ⊆ Ref(M ∪ N ). On the other hand,

if T ∈ Ref(M ∪ N ), then it follows from im(T ) ⊆ Im(M ∪ N ) = Ce1 and
ker(ξ1)∩ker(ξ2) = Ker(M∪N ) ⊆ ker(T ) that T ∈ M+N . Hence, Ref(M∪N ) =
M+N .

Inclusion Ref(M∪N ) ⊇ M + N in the last equality of Example 3.2 follows
from the following more general result.

Proposition 3.3. Let M1, . . . ,Mn ⊆ B(X ) (n ≥ 2) be linear spaces. If, for
every x ∈ X , there exists an index jx ∈ {1, . . . , n} such that

⋃n
i=1Mix ⊆ Mjxx,

then M1 + · · ·+Mn
SOT ⊆ Ref(M1 ∪ · · · ∪Mn).

Proof. Let T = M1+· · ·+Mn, where Mj ∈ Mj (1 ≤ j ≤ n). For every x ∈ X , we
have Tx = M1x+ · · ·+Mnx ∈ M1x+ · · ·+Mnx. Since Mjx are linear sets and⋃n

i=1 Mix ⊆ Mjxx, we haveM1x+· · ·+Mnx ⊆ (M1∪· · ·∪Mn)x. It follows that
T ∈ Ref(M1∪· · ·∪Mn), and consequentlyM1+· · ·+Mn ⊆ Ref(M1∪· · ·∪Mn).
Now we apply Proposition 2.8(i). �

Recall that operators M1, . . . ,Mn ∈ B(X ) are locally linearly dependent if, for
every x ∈ X , vectors M1x, . . . ,Mnx are linearly dependent.

Corollary 3.4. Let M1,M2 ∈ B(X ) be arbitrary operators and let Mj = CMj

(j = 1, 2). If M1, M2 are locally linearly dependent, then M1 +M2 ⊆ Ref(M1 ∪
M2). On the other hand, if M1, M2 are not locally linearly dependent, then T ∈
M1 +M2 is in Ref(M1 ∪M2) if and only if T ∈ M1 ∪M2.

Proof. If M1, M2 are locally linearly dependent, then, for every x ∈ X , either
M1x ⊆ M2x or M1x ⊇ M2x. It follows, by Proposition 3.3, that M1 +M2 ⊆
Ref(M1 ∪ M2). Assume now that M1, M2 are not locally linearly dependent.
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Then there exists x ∈ X such that M1x, M2x are linearly independent vectors.
If T = α1M1 + α2M2 ∈ M1 + M2 is in Ref(M1 ∪ M2), then it follows from

Tx ∈ (M1 ∪M2)x = M1x ∪ M2x that Tx ∈ Mjx for an index j ∈ {1, 2}.
Hence there is λ ∈ C such that α1M1x + α2M2x = λMjx. Since M1x, M2x are
linearly independent, it follows that αi = λ if i = j and αi = 0 if i 6= j; that is,
T ∈ M1 ∪M2. �

In the rest of this section we are interested in conditions which imply reflexivity
of the SOT-closure of the union of reflexive sets. For some families of reflexive sets
it is not hard to show that (the SOT-closure of) the union is reflexive. For instance,
let u ∈ X and let V ⊆ X be a nonempty closed set. Then, by Proposition 2.3,⋃

v∈V Mu,v = Mu,V is reflexive.

Proposition 3.5. Let U ,V ⊆ X be nonempty sets, V closed. The set M =⋃
u∈U Mu,V is reflexive if and only if U = Λu0 for some u0 ∈ X and ∅ 6= Λ ⊆ C.

If M is not reflexive, then it is transitive.

Proof. Assume that U = Λu0, where u0 ∈ X and ∅ 6= Λ ⊆ C. If U = {0}, then
M = M0,V , which is reflexive. Let U 6= {0}. We may suppose that U = Λu0,
where u0 6= 0 and 1 ∈ Λ. Let T ∈ Ref(M) be arbitrary. For every ε > 0, there
existsMε ∈ M such that ‖Tu0−Mεu0‖ < ε. It follows that ‖T (λu0)−Mε(λu0)‖ <
|λ|ε for every λ ∈ Λ. Fix λ and let ε → 0. Since Mε(λu0) ∈ V and V is closed,
we have T (λu0) ∈ V . Hence T ∈ M.

Assume now that U is not of the form Λu0, for some u0 ∈ X and that ∅ 6= Λ ⊆
C. Then there exist linearly independent vectors u1, u2 ∈ U . Let v1, v2 ∈ V be
arbitrary and let ξ1, ξ2 ∈ X ∗ be such that 〈uj, ξk〉 = δjk (1 ≤ j, k ≤ 2). We claim
that, for every T ∈ B(X ), one has Tx ∈ (Mu1,v1 ∪Mu2,v2)x (x ∈ X ). Indeed,
if x ∈ X is such that 〈x, ξ1〉 = 0, then let Mx = T + (v1 − Tu1) ⊗ ξ1. Since
Mxu1 = v1, we see that Mx ∈ Mu1,v1 . We also have Mxx = Tx. Now let x ∈ X

be such that 〈x, ξ1〉 6= 0. For Mx = T + 〈x,ξ2〉
〈x,ξ1〉(Tu2 − v2) ⊗ ξ1 + (v2 − Tu2) ⊗ ξ2,

we have Mxu2 = v2, which means that Mx ∈ Mu2,v2 and that Mxx = Tx. This
proves thatMu1,v1∪Mu2,v2 is transitive. SinceMu1,v1∪Mu2,v2 ⊆ M, we conclude
that M is transitive, as well. �

Corollary 3.4 shows that local linear dependence can be an obstacle for reflex-
ivity of the union of reflexive sets. In the following theorem, we avoid this by a
condition on the images of the involved sets of operators.

Theorem 3.6. Let n ≥ 2 and let Mj ⊆ B(X ) (1 ≤ j ≤ n) be such that 0 ∈ Mj

for every j and Im(Mj)∩ Im(Mk) = {0} if j 6= k. Then Ref(M1 ∪ · · · ∪Mn) =
Ref(M1) ∪ · · · ∪ Ref(Mn); in particular, if every Mj (1 ≤ j ≤ n) is reflexive,
then the union M1 ∪ · · · ∪Mn is reflexive.

Proof. It is obvious that Ref(M1) ∪ · · · ∪ Ref(Mn) ⊆ Ref(M1 ∪ · · · ∪ Mn).
Assume that T ∈ Ref(M1 ∪ · · · ∪ Mn). For every x ∈ X , we have Tx ∈
(M1 ∪ · · · ∪Mn)x ⊆ M1x∪ · · · ∪Mnx. Hence, if we define Yj = {x ∈ X ;Tx ∈
Mjx} (1 ≤ j ≤ n), then X = Y1∪· · ·∪Yn. We claim that each Yj is a linear sub-
space of X . Indeed, let x1, x2 ∈ Yj and α1, α2 ∈ C be arbitrary. Since 0 ∈ Mj, we
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have α1x1 + α2x2 ∈ Yj if T (α1x1 + α2x2) = 0. Suppose that T (α1x1 + α2x2) 6= 0.
We have T (α1x1 + α2x2) = α1Tx1 + α2Tx2 ∈ α1Mjx1 + α2Mjx2 ⊆ Im(Mj)

and T (α1x1 + α2x2) ∈ M1(α1x1 + α2x2) ∪ · · · ∪ Mn(α1x1 + α2x2). Because of
Im(Mj) ∩ Im(Mk) = {0} when j 6= k, we may conclude that T (α1x1 + α2x2) ∈
Mj(α1x1 + α2x2); that is, α1x1+α2x2 ∈ Yj. Now it follows from X = Y1∪· · ·∪Yn

that X = Yj for at least one index j, by Lemma 2.1. Hence, T ∈ Ref(Mj). �

Corollary 3.7. Let M be a set of operators which contains operator 0, let A be a
nonzero operator such that Im(M)∩ im(A) = {0}, and let Λ ⊆ C be a nonempty
closed set. Then Ref(M∪ ΛA) = Ref(M) ∪ ΛA.

Proof. Denote Λ0 = Λ ∪ {0}. Since 0 ∈ M, we have M ∪ ΛA = M ∪ Λ0A.
Hence, by Theorem 3.6 and Proposition 2.5, Ref(M∪ ΛA) = Ref(M) ∪ Λ0A =
Ref(M) ∪ ΛA. �

In Corollary 3.7, we can replace set ΛA by any reflexive set N ⊆ B(X ) such
that Im(M) ∩ Im(N ) = {0} and N ∪ {0} is reflexive. In the following example
we describe a family of reflexive sets M ⊆ B(X ) such that M∪{0} is reflexive,
as well.

Example 3.8. Let A,B ∈ B(X ) be linearly independent, A injective, and let
M = CA + B. By Propositions 2.5 and 2.12, M is reflexive. It is obvious that
0 /∈ M. Denote by K the closed linear span of all kernels ker(αA+B) (α ∈ C).

Claim: If K is a proper subspace of X , then M∪ {0} is reflexive.
To prove the claim, assume that T ∈ Ref(M∪{0}) and T 6= 0. Since ker(T ) 6=

X we have that WT = X \ (K ∪ ker(T )) is an open dense subset of X . For x ∈
WT , we have Tx 6= 0 and therefore it follows from Tx ∈ (M∪ {0})x = Mx∪{0}
that there exists λx ∈ C such that Tx = (λxA + B)x. Let x ∈ WT and α 6= 0
be arbitrary. Then αx ∈ WT and therefore T (αx) = (λαxA+B)(αx), which gives
Tx = (λαxA + B)x. Since Ax 6= 0, we conclude that λαx = λx. Assume now
that x, y ∈ WT are linearly independent. By injectivity of A, vectors Ax and Ay
are linearly independent, too. It is obvious that there exists number ω 6= 0 such
that x + ωy ∈ WT . It follows from Tx = (λxA + B)x, Ty = (λyA + B)y, and
T (x+ ωy) = (λx+ωyA+ B)(x+ ωy) that λx+ωy − λx)Ax+ ω(λx+ωy − λy)Ay = 0
which gives λx = λx+ωy = λy. We have seen that there exists λ ∈ C such that
Tx = (λA + B)x for every x ∈ WT . Now let x ∈ K ∪ ker(T ). Since WT is
dense in X there exists a sequence (xn)

∞
n=1 ⊆ K ∪ ker(T ) which converges to x.

It follows from ‖Tx − (λA + B)x‖ ≤ ‖T (x − xn)‖ + ‖(λA + B)(xn − x)‖ that
Tx = (λA+B)x. We conclude that T = λA+B. Thus, M∪ {0} is reflexive.

For the next two results we need the following lemma.

Lemma 3.9. Let S, T ∈ B(X ). Assume that x1, . . . , xn ∈ X (n ≥ 2) are such
that Sx1, . . . , Sxn are linearly independent. Let Λ ⊆ C be a nonempty set, and
let Ω = {ω ∈ C;∃λω ∈ Λ : T (x1 + ωx2 + · · · + ωn−1xn) = λωS(x1 + ωx2 + · · · +
ωn−1xn)}. If the cardinality of Ω is at least n + 1, then there exists λ ∈ Λ such
that T (x1 + ωx2 + · · ·+ ωn−1xn) = λS(x1 + ωx2 + · · ·+ ωn−1xn) for all ω ∈ Ω.
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Proof. Assume that ω0, ω1, . . . , ωn are distinct numbers in Ω. By the assumption,
n∑

k=1

ωk−1
j Txk = λω

n∑
k=1

ωk−1
j Sxk for some λω ∈ Λ(j = 0, 1, . . . , n). (3.2)

Denote

V0 =


1 ω0 · · · ωn−1

0

1 ω2 · · · ωn−1
2

...
...

. . .
...

1 ωn · · · ωn−1
n

 and V1 =


1 ω1 · · · ωn−1

1

1 ω2 · · · ωn−1
2

...
...

. . .
...

1 ωn · · · ωn−1
n

 .

Let D0 = diag[λ0, λ2, . . . , λn] and D1 = diag[λ1, λ2, . . . , λn] be diagonal matrices.
Note that the Vandermonde matrices V0 and V1 are invertible since ω0, ω1, . . . , ωn

are distinct numbers. For an n × n matrix A and an operator B ∈ B(X ), we
have linear operator A ⊗ B on Cn ⊗ X which is given by

(A ⊗ B)(v1 ⊗ z1 + · · ·+ vk ⊗ zk) = Av1 ⊗Bz1 + · · ·+ Avk ⊗Bzk,

where v1, . . . , vk ∈ Cn and z1, . . . , zn ∈ X are arbitrary. Let e1, . . . , en be the
standard basis of Cn. Using (3.2) we can write

(Vi ⊗ I)(e1 ⊗ Tx1 + · · ·+ en ⊗ Txn) = (DiVi ⊗ I)(e1 ⊗ Sx1 + · · ·+ en ⊗ Sxn),

for i = 0, 1, which gives(
(V −1

0 D0V0 − V −1
1 D1V1)⊗ I

)
(e1 ⊗ Sx1 + · · ·+ en ⊗ Sxn) = 0,

that is,

(V −1
0 D0V0 − V −1

1 D1V1)e1 ⊗ Sx1 + · · ·+ (V −1
0 D0V0 − V −1

1 D1V1)en ⊗ Sxn = 0.

Since Sx1, . . . , Sxn are linearly independent, we have

(V −1
0 D0V0 − V −1

1 D1V1)ek = 0 for all k = 1, . . . , n.

Hence V −1
0 D0V0 − V −1

1 D1V1 = 0 (i.e., D0 and D1 are similar). It follows that
these diagonal matrices have the same eigenvalues. We conclude that λ1 = λ0

and therefore that all λω’s are equal. �

Theorem 3.10. Let M1, . . . ,Mn ∈ B(X ) (n ≥ 2) be such that im(Mj) ∩
im(Mk) = {0} if j 6= k. Let Λj ⊆ C (j = 1, . . . , n) be nonempty closed sets.
Then M = Λ1M1 ∪ · · · ∪ ΛnMn is a reflexive set of operators.

Proof. Let T ∈ Ref(M). Since, for every x ∈ X , the orbit Mx is a closed subset
of X , we have

Tx ∈ Λ1M1x ∪ · · · ∪ ΛnMnx (x ∈ X ). (3.3)

Assume that T = 0. If 0 ∈ Λj for some j ∈ {1, . . . , n}, then T = 0 = 0 ·Mj ∈ M.
Suppose that 0 /∈ Λj for every j ∈ {1, . . . , n}. Then (3.3) gives 0 ∈ Λ1M1x ∪
· · · ∪ ΛnMnx for every x ∈ X , and we conclude that for each x ∈ X there is
jx ∈ {1, . . . , n} such that Mjxx = 0. Hence ker(M1) ∪ · · · ∪ ker(Mn) = X . By
Lemma 2.1, there exists k ∈ {1, . . . , n} such that ker(Mk) = X (i.e., Mk = 0).
We conclude that T = 0 = Mk ∈ M.
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Assume now that T 6= 0, which means that im(T ) 6= {0}. It follows from (3.3)

that im(T ) ⊆ im(M1)∪ · · · ∪ im(Mn). Let Yj = im(T )∩ im(Mj) for j = 1, . . . , n.

Each Yj is a closed subspace of im(T ). It is clear that im(T ) = Y1 ∪ · · · ∪Yn and
that Yj ∩ Yk = {0} if j 6= k. Again we use Lemma 2.1 to conclude that there

exists k ∈ {1, . . . , n} such that im(T ) = Yk ⊆ im(Mk), which also gives Yj = {0}
if j 6= k.

First we consider the case dim(im(T )) = 1 (i.e., T is a rank 1 operator). Let
e ∈ X be such that Te 6= 0 and let ξ ∈ X ∗ be such that 〈e, ξ〉 = 1. Then
T = Te ⊗ ξ. Since Te 6= 0, there exists a nonzero λe ∈ Λk such that Te = λeMke;
note that Mke is also nonzero. An arbitrary vector x ∈ X can be written as
x = αe + y where α ∈ C and y ∈ ker(T )(= ker(ξ)). Assume that α 6= 0. Then
Tx = αTe 6= 0, which means that there exists a nonzero λx ∈ Λk such that
Tx = λxMkx. This and Te = λeMke together give Mky = αλe−λx

λx
Mke, which

implies that Mkx = α λe

λx
Mke =

α
λx
Te. Since x is an arbitrary vector, we conclude

that Mk is a rank 1 operator whose image is spanned by Te. Let 0 6= η ∈ X ∗

be such that Mk = Te ⊗ η. If ξ and η were linearly independent, then there
would exist f ∈ X such that 〈f, ξ〉 6= 0 and 〈f, η〉 = 0. It would then follow that
Tf = 〈f, ξ〉Te 6= 0 and therefore Tf = λfMkf for some λf ∈ Λk. However, this
is impossible since Mkf = 0. We conclude that ξ and η are linearly dependent.
Let µ ∈ C be such that ξ = µη. It follows from Te = λeMke that µ = λe ∈ Λk.
Hence T ∈ ΛkMk.

Now we consider the case dim(im(T )) ≥ 2. Let e1, e2 ∈ X be such that Te1
and Te2 are linearly independent. Then there exist nonzero λ1, λ2 ∈ Λk such that
Te1 = λ1Mke1 and Te2 = λ2Mke2. It follows that Mke1 and Mke2 are linearly
independent, as well. Since Te1 and Te2 are linearly independent, T (e1+ωe2) 6= 0
for every ω ∈ C, which means that there exists λω ∈ Λk such that T (e1 + ωe2) =
λωMk(e1 + ωe2). By Lemma 3.9, there exists λ ∈ Λk such that λω = λ for every
ω ∈ C. In particular, λ = λ1 = λ2 6= 0. Let y ∈ ker(T ) be arbitrary. Then
e1 and e2 + y are such that Te1 and T (e2 + y) are linearly independent. As
before, we see that there exists µ ∈ Λk such that T (e1 + ω(e2 + y)) = µMk(e1 +
ω(e2 + y)) for any ω ∈ C. Since we already have Te1 = λMke1, it follows that
µ = λ. If ω = 1 in T (e1 + ω(e2 + y)) = λMk(e1 + ω(e2 + y)), then we get
0 = Ty = λMky. Hence ker(T ) ⊆ ker(Mk). Note that the opposite inclusion
holds as well because Tx 6= 0, for a vector x ∈ X , implies that Tx = λxMkx
for some λx ∈ Λk. Thus, ker(T ) = ker(Mk). Now let x ∈ X be arbitrary. If
it is a linear combination of Te1 and Te2 (say, Tx = α1Te1 + α2Te2), then
T (x − α1e1 − α2e2) = 0 and therefore Mk(x − α1e2 − α2e2) = 0. It follows that
Tx = λα1Mke1+λα2Mke2+λMk(x−α1e1−α2e2) = λMkx. In the case when Te1,
Te2 and Tx are linearly independent, vectors Mke1, Mke2 and Mkx are linearly
independent as well. Since T (e1 + ωe2 + ω2x) 6= 0 for every ω ∈ C, we thus have
T (e1 + ωe2 + ω2x) = λωMk(e1 + ωe2 + ω2x) for some λω ∈ Λk. By Lemma 3.9,
there exists µ ∈ Λk such that T (e1 + ωe2 + ω2x) = µMk(e1 + ωe2 + ω2x) for
any ω ∈ C. Using Te1 = λMke1, we conclude that µ = λ. We have shown that
Tx = λMkx for any x ∈ X . Hence T ∈ ΛkMk. �
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If n = 2, then Theorem 3.10 is a particular case of Corollary 3.7. However, for
n ≥ 3, the assertion of Theorem 3.10 cannot be deduced from Theorem 3.6. In
the next theorem we replace conditions on images by injectivity of the involved
operators to prove the reflexivity of the union.

Theorem 3.11. Let M1, . . . ,Mn ∈ B(X ) (n ≥ 2) be linearly independent injec-
tive operators, and let Λ1, . . . ,Λn ⊆ C be nonempty closed sets. Then M =
Λ1M1 ∪ · · · ∪ ΛnMn is a reflexive set.

Proof. Note first that, for every x ∈ X , the orbit Mx is closed, and it is the
union of closed sets ΛjMjx (1 ≤ j ≤ n). Hence, if T ∈ Ref(M), then for every
x ∈ X there exists an index jx such that Tx ∈ ΛjxMjxx. If there exists an
index j ∈ {1, . . . , n} such that Tx ∈ ΛjMjx for every x ∈ X , then T ∈ ΛjMj,
by Proposition 2.5. Towards a contradiction, assume that this is not the case.
Suppose that there exist indices j1, . . . , jm ∈ {1, . . . , n} (2 ≤ m ≤ n) such that
Tx ∈ Λj1Mj1x ∪ · · · ∪ ΛjmMjmx for every x ∈ X , and suppose that for every ji
there exists a vector eji ∈ X such that Teji ∈ ΛjiMjieji and Teji /∈ ΛjlMjleji if
i 6= l. Without loss of generality, we may assume that ji = i.

It is obvious that e1, . . . , em are nonzero vectors. Let d be the dimension of
∨{e1, . . . , em}. Without loss of generality, we may assume that this linear space is
spanned by e1, . . . , ed. For every index j ∈ {1, . . . , n} the vectors Mje1, . . . ,Mjed
are linearly independent because Mj is an injective operator. If d = 1, then
ei = αie1 for every 2 ≤ i ≤ m, where αi ∈ C. This would give a contradiction
Tei ∈ Λ1M1ei. Hence 2 ≤ d ≤ m.

For every ω ∈ C, let xω = e1 + ωe2 + · · ·+ ωd−1ed and let Ωj = {ω ∈ C;Txω ∈
ΛjMjxω} for 1 ≤ j ≤ m. It is clear that Ω1∪· · ·∪Ωm = C. Hence, there exists an
index k ∈ {1, . . . ,m} such that Ωk is an infinite set. By Lemma 3.9, there exists
λ ∈ Λk such that Txω = λMkxω for every ω ∈ Ωk. Let ω1, . . . , ωd be distinct
nonzero numbers from Ωk. It follows from

Te1 + ωiTe2 + · · ·+ ωd−1
i Ted

= λMke1 + λωiMke2 + · · ·+ λωd−1
i Mked (1 ≤ i ≤ d)

that Tei = λMkei for every i ∈ {1, . . . , d}. Since d ≥ 2, there exists l ∈ {1, . . . , d}
such that l 6= k, and we have a contradiction Tel ∈ ΛkMkel. �

We close this section with an example in which we apply Theorems 3.10
and 3.11.

Example 3.12. Let A be a complex Banach algebra. For a ∈ A, let La : A → A
be the left multiplication by a on A; that is, La is a bounded linear operator on
A given by Lax = ax (x ∈ A). It is clear that the closure of the image of La is
Ra = aA, the closed right ideal in A generated by a. Operator La is injective if
and only if a is not a left zero-divisor (i.e., ax 6= 0 for every 0 6= x ∈ A).

Assume that a1, . . . , an ∈ A is an n-tuple of elements such that either every aj
(1 ≤ j ≤ n) is not a left zero-divisor or Rai ∩ Raj = {0} if i 6= j. If T ∈ B(A)
is such that for every x ∈ A there exist λx ∈ C and an index jx satisfying
Tx = λxajxx, then, by Theorems 3.10 and 3.11, there exist λ ∈ C and an index
j such that T = λLaj .
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4. Reflexivity of convex sets

In this section we study reflexivity of convex sets of operators. For a nonempty
set M ⊆ B(X ), we denote by conv(M) its convex hull.

Proposition 4.1. Let M ⊆ B(X ) be nonempty. Then conv(Ref(M)) ⊆
Ref(conv(M)). If M is convex, then Ref(M) is convex.

Proof. We prove the second part of the proposition first. Assume that M is
convex. Then Mx is convex for every x ∈ X . Let T1, T2 ∈ Ref(M) be arbitrary
and let t ∈ [0, 1]. Then (tT1 + (1 − t)T2)x = t(T1x) + (1 − t)(T2x) ∈ Mx,
which means that tT1 + (1 − t)T2 ∈ Ref(M). Now let M be arbitrary. Since
M ⊆ conv(M), we have Ref(M) ⊆ Ref(conv(M)). By the first part of the proof,
Ref(conv(M)) is convex and therefore conv(Ref(M)) ⊆ Ref(conv(M)). �

The next corollary gives a necessary condition for the convex hull of M to be
reflexive.

Corollary 4.2. Let M ⊆ B(X ) be a nonempty set. If conv(M) is reflexive, then
conv(Ref(M)) = conv(M).

Proof. Since conv(M) is reflexive we have conv(Ref(M)) ⊆ conv(M), by Propo-
sition 4.1. On the other hand, the inclusion M ⊆ Ref(M) implies conv(M) ⊆
conv(Ref(M)). �

It follows from Corollary 4.2 that conv(M) is not reflexive if Ref(M) 6⊂
conv(M). The next example shows that condition Ref(M) ⊆ conv(M) is not
sufficient for reflexivity of conv(M) even if M is a reflexive set.

Example 4.3. Let S ⊆ B(X ) be a nonreflexive 2-dimensional linear space spanned
by injective operators M1 and M2. For instance, space S in Example 2.7 has this
property if dim(X ) = 2. By Theorem 3.11,M = {λM1;λ ∈ C}∪{µM2;µ ∈ C} is
a reflexive set. On the other hand, its convex hull is conv(M) = S, a nonreflexive
set.

Let Φ be a bounded linear functional on B(X ). Then P(T ) = 1
2
(Φ(T )+Φ(T )),

where T ∈ B(X ) is arbitrary, defines a bounded R-linear functional, and one has
Φ(T ) = P(T )− iP(iT ) for every T ∈ B(X ). Hence, P is the real part of Φ, and
Q(T ) = −P(iT ) (T ∈ B(X )) is the imaginary part of Φ. On the other hand,
if P is a bounded R-linear functional on B(X ), then the above equality defines
a bounded (C-)linear functional. Every bounded finite-rank operator F = e1 ⊗
ξ1 + · · ·+ ek ⊗ ξk on X defines by

ΦF (T ) = 〈Te1, ξ1〉+ · · ·+ 〈Tek, ξk〉
(
T ∈ B(X )

)
(4.1)

a bounded linear functional on B(X ). Its real part is PF (T ) = Re(ΦF (T )) (T ∈
B(X )).

For a nonempty closed set G ⊆ C and Φ ∈ B(X )∗, let MΦ(G) = {M ∈
B(X ); Φ(M) ∈ G}.
Proposition 4.4. Let e ∈ X and ξ ∈ X ∗ be nonzero and let G ⊆ C be a
nonempty closed set. Then MΦe⊗ξ

(G) is a reflexive set. In particular, ker(Φe⊗ξ)
and ker(Pe⊗ξ) are reflexive.
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Proof. Let T ∈ Ref(MΦe⊗ξ
(G)). For every ε > 0, there exists Mε ∈ MΦe⊗ξ

(G)
such that ‖Te − Mεe‖ < ε. Hence |Φe⊗ξ(T ) − Φe⊗ξ(Mε)| = |〈Te − Mεe, ξ〉| ≤
‖Te −Mεe‖‖ξ‖ < ε‖ξ‖. Since Φe⊗ξ(Mε) ∈ G and G is closed, we conclude that
Φe⊗ξ(T ) ∈ G; that is, T ∈ MΦe⊗ξ

(G). For the last part, observe that ker(Φe⊗ξ) =
MΦe⊗ξ

({0}) and that ker(Pe⊗ξ) = MΦe⊗ξ
(iR). �

Recall that a closed subspace of B(X ) has (complex) codimension 1 if and
only if it is the kernel of a functional in B(X )∗. Similarly, a closed subspace of
B(X ) has real codimension 1 if and only if it is the kernel of the real part of a
functional in B(X )∗.

Proposition 4.5. Let M ⊆ B(X ) be a closed subspace of complex codimension
1 and let Φ ∈ B(X )∗. Then M is reflexive if and only if there exist 0 6= e ∈ X
and 0 6= ξ ∈ X ∗ such that M = ker(Φe⊗ξ). If Φ is not of the form Φe⊗ξ for some
rank 1 operator e ⊗ ξ, then ker(Φ) is topologically transitive.

Proof. Let Φ ∈ B(X )∗ be such that M = ker(Φ). If Φ = Φe⊗ξ for some nonzero
e ∈ X and ξ ∈ X ∗, thenM is reflexive, by Proposition 4.4. To prove the opposite
implication, assume that M is reflexive. For every x ∈ X , the orbit Mx is a
closed subspace of X . If for every x 6= 0 the orbit Mx were equal to X , then
we would have Tx ∈ Mx for every T ∈ B(X ) and every x ∈ X and therefore
M would not be reflexive but topologically transitive. Hence, there exists 0 6=
e ∈ X such that Me 6= X . It follows that there exists 0 6= ξ ∈ X ∗ such that
Me ⊆ ker(ξ). This gives that Φe⊗ξ is nonzero and Φe⊗ξ(M) = 〈Me, ξ〉 = 0 for
every M ∈ M, that is, M ⊆ ker(Φe⊗ξ). Since M is of complex codimension 1
the last inclusion has to be an equality.

If Φ is not of the form Φe⊗ξ for some rank 1 operator e ⊗ ξ, then ker(Φ) is
not reflexive, by the first part of this proposition. Hence, Ref(ker(Φ)) is a closed
subspace of B(X ) which contains ker(Φ) as a proper subspace. This is possible
only if Ref(ker(Φ)) = B(X ). �

Corollary 4.6. Let M ⊆ B(X ) be a closed real subspace of (real) codimension 1.
Then M is reflexive if and only if there exist 0 6= e ∈ X and 0 6= ξ ∈ X ∗ such
that M = ker(Pe⊗ξ). If P is not of the form Pe⊗ξ for some rank 1 operator e ⊗ ξ,
then ker(P) is topologically transitive.

Proof. Let M = ker(P), where P is a bounded R-linear functional on B(X ).
Let Q be defined by Q(T ) = −P(iT ) (T ∈ B(X )) and let Φ = P + iQ. Hence,
Q is R-linear functional and Φ ∈ B(X )∗. If P = Pe⊗ξ, then M is reflexive, by
Proposition 4.4. Assume now that M = ker(P) is reflexive. Since T ∈ ker(P) if
and only if iT ∈ ker(Q), it is not hard to see that ker(Q) is reflexive as well. It
follows that ker(Φ) = ker(P)∩ker(Q) is reflexive. Hence, by Proposition 4.5, there
exist 0 6= e ∈ X and 0 6= ξ ∈ X ∗ such that Φ = Φe⊗ξ and therefore P = Pe⊗ξ.

If P is not of the form Pe⊗ξ, then Φ is not of the form Φe⊗ξ, which means that
ker(Φ) is topologically transitive. Since ker(Φ) ⊆ ker(P), we conclude that ker(P)
is topologically transitive, as well. �

Let P 6= 0 be a bounded R-linear functional on B(X ), and let c ∈ R. We
designate HP(c) = {T ∈ B(X ); P(T ) ≥ c} a closed half-space of B(X ). Since
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P 6= 0, there exists EP ∈ B(X ) such that P(EP) = 1. It is easily seen that
HP(c) = HP(0) + cEP.

Corollary 4.7. Let P 6= 0 be a bounded R-linear functional on B(X ) and let
c ∈ R. Half-space HP(c) is reflexive if and only if P = Pe⊗ξ for some 0 6= e ∈ X ,
0 6= ξ ∈ X ∗. If it is not reflexive, then it is topologically transitive.

Proof. We may assume that c = 0. Let Φ ∈ B(X )∗ be such that P is its real
part. Then HP(0) = MΦ(C+), where C+ = {z ∈ C; Re(z) ≥ 0}. If P = Pe⊗ξ,
for some 0 6= e ∈ X , 0 6= ξ ∈ X ∗, then Φ = Φe⊗ξ and, by Proposition 4.4,
MΦ(C+) is reflexive. On the other hand, if P is not of the form Pe⊗ξ, then ker(P)
is topologically transitive, by Corollary 4.6. Since ker(P) ⊆ HP(0), we conclude
that HP(0) is topologically transitive also. �

Recall that every closed convex set is the intersection of a family of closed half
spaces.

Corollary 4.8. If M ⊆ B(X ) is a closed convex set such that there exist an
index set I and ei ∈ X , ξi ∈ X ∗, ci ∈ R (i ∈ I) such that M =

⋂
i∈IHPei⊗ξi

(ci),
then M is reflexive.

Proof. By Corollary 4.7, every half space HPei⊗ξi
(ci) (i ∈ I) is reflexive. Hence,

by Proposition 3.1(i), M is reflexive. �

It is well known that (B(X ),F(X )) is a dual pair in the sense of [1, Defi-
nition 5.90] if the pairing is given by (T, F ) 7→ PF (T ), where T ∈ B(X ) and
F ∈ F(X ) are arbitrary. Recall that F ∈ F(X ) defines ΦF ∈ B(X )∗ (see
(4.1)) and that PF is the real part of ΦF . The one-sided polar of a nonempty set
M ⊆ B(X ) is

M◦ =
{
F ∈ F(X ); PF (T ) ≤ 1 for all T ∈ M

}
.

Similarly, the one-sided polar of a nonempty set N ⊆ F(X ) is defined by

N ◦ =
{
T ∈ B(X ); PF (T ) ≤ 1 for all F ∈ N

}
.

Denote G1 = {z ∈ C; Re(z) ≤ 1}. It is obvious that,

N ◦ =
⋂
F∈N

MΦF
(G1).

Hence, if N ⊆ F1(X ), then, by Propositions 4.4 and 3.1(i), N ◦ is a reflexive
subset of B(X ).

Theorem 4.9. If M ⊆ B(X ) is a convex set such that 0 ∈ M, then

Ref(M) =
(
M◦ ∩ F1(X )

)◦
.

Proof. Since M◦ ∩ F1(X ) ⊆ M◦, we have that M ⊆ M◦◦ ⊆ (M◦ ∩ F1(X ))◦.
As we mentioned before this theorem, (M◦ ∩ F1(X ))◦ is reflexive and therefore
Ref(M) ⊆ (M◦ ∩ F1(X ))◦. To prove the opposite inclusion, assume that S ∈
B(X ) is not in Ref(M). Then there exist e ∈ X and ε > 0 such that ‖Se−Me‖ >
ε for every M ∈ M. It follows that Se /∈ Me. Note that Se 6= 0 since 0 ∈ Me.
By [1, Corollary 5.80], there exists a bounded R-functional ρ on X and a ∈ R
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such that ρ(x) ≤ a for every x ∈ Me and ρ(Se) > a. Without loss of generality,
we may assume that a = 1. Let ξ ∈ X ∗ be given by 〈x, ξ〉 = ρ(x)− iρ(ix). Then
Pe⊗ξ(T ) = Re(〈Te, ξ〉) = ρ(Te) for every T ∈ B(X ). Hence Pe⊗ξ(M) ≤ 1 for
every M ∈ M, which means that e ⊗ ξ ∈ M◦ ∩ F1(X ). On the other hand,
Pe⊗ξ(S) > 1 and therefore S /∈ (M◦ ∩ F1(X ))◦. �

We omit a simple proof of the following corollary.

Corollary 4.10. A nonempty convex set M ⊆ B(X ) is reflexive if and only if
M−M = ((M−M)◦ ∩ F1(X ))◦, for some (and therefore for every) M ∈ M.

Corollary 4.11. Let M ⊆ B(X ) be such that 0 ∈ conv(M). Then conv(M) is
reflexive if and only if

conv(M) =
(
M◦ ∩ F1(X )

)◦
.

Proof. Since M ⊆ conv(M), we have M◦ ⊇ conv(M)◦. On the other hand, if
F ∈ M◦ then PF (t1M1 + · · · + tkMk) ≤ 1 for arbitrary M1, . . . ,Mk ∈ M and
t1, . . . , tk ∈ [0, 1] such that t1 + · · ·+ tk = 1. Hence F ∈ conv(M)◦, and therefore
M◦ = conv(M)◦. It follows, by Theorem 4.9, that Ref(conv(M)) = (M◦ ∩
F1(X ))◦. If conv(M) is reflexive, then the last equality implies that conv(M) =
(M◦ ∩ F1(X ))◦. On the other hand, if conv(M) = (M◦ ∩ F1(X ))◦ holds, then
conv(M) is reflexive because the polar of every subset of F1(X ) is reflexive. �

By Proposition 2.2, every finite set of operators is reflexive. We already know
that the linear span of a reflexive set of operators is not necessarily reflexive. What
about the convex hull of a finite set of operators? The answer to this question is
trivial in the case of a single operator. For two operatorsM1,M2 ∈ B(X ), we have
conv({M1,M2}) = {tM1 + (1− t)M2; t ∈ [0, 1]} = [0, 1](M1 −M2) +M2. Hence,
by Propositions 2.5 and 2.12(i), conv({M1,M2}) is reflexive. Note that when we
consider reflexivity of the convex hull of operators M0,M1, . . . ,Mn ∈ B(X ), we
may assume, by Proposition 2.12(i), that M0 = 0. Let Sn = {(s1, . . . , sn) ∈
Rn; 0 ≤ s1, . . . , sn, s1 + · · · + sn ≤ 1}. Then conv({0,M1, . . . ,Mn}) = {s1M1 +
· · ·+ snMn; (s1, . . . , sn) ∈ Sn}.

Recall that operators M1, . . . ,Mn ∈ B(X ) are locally linearly independent
(LLI ) if for every nonzero vector x ∈ X vectors M1x, . . . ,M2x are linearly inde-
pendent. For the last result in this paper, we need a slightly stronger assumption
on the involved operators. We say that M1, . . . ,Mn are 2-locally linearly indepen-
dent over R (briefly, R-2-LLI) if, for every pair of vectors x1, x2 ∈ X which are
linearly independent over R, the set of 2n vectors Mixj (1 ≤ i ≤ n, 1 ≤ j ≤ 2) are
linearly independent over R. It is obvious that for every nonzero x ∈ X vectors
M1x, . . . ,Mnx are linearly independent over R if M1, . . . ,Mn are R-2-LLI.

Theorem 4.12. If M1, . . . ,Mn ∈ B(X ) are R-2-LLI, then

M = conv
(
{0,M1, . . . ,Mn}

)
=

{
s1M1 + · · ·+ snMn; (s1, . . . , sn) ∈ Sn

}
is a reflexive set.

Proof. Note first that, for every x ∈ X , the orbit Mx is a closed subset of
X because it is the convex hull of finite set {0,M1x, . . . ,Mnx}. Assume that
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T ∈ Ref(M). Then Tx ∈ Mx for every x ∈ X , which means that there exists
s(x) = (s1(x), . . . , sn(x)) ∈ Sn such that Tx = s1(x)M1x + · · · + sn(x)Mnx. We
claim that s(x) is uniquely determined by x if x 6= 0. Indeed, assume that x 6= 0
and that there are s(x), s′(x) ∈ Sn such that Tx = s1(x)M1x + · · · + sn(x)Mnx
and Tx = s′1(x)M1x+ · · ·+ s′n(x)Mnx. It follows that(

s1(x)− s′1(x)
)
M1x+ · · ·+

(
sn(x)− s′n(x)

)
Mnx = 0.

Since M1, . . . ,Mn are R-2-LLI and therefore R-1-LLI, we have sj(x) = s′j(x) for
j = 1, . . . , n. Thus, s : x 7→ s(x) is given a well-defined mapping from X \ {0}
to Sn.

If x ∈ X \ {0} and λ ∈ C \ {0}, then it follows from Tx = s1(x)M1x + · · · +
sn(x)Mnx that T (λx) = s1(x)M1(λx)+· · ·+sn(x)Mn(λx). On the other hand, we
have T (λx) = s1(λx)M1(λx)+· · ·+sn(λx)Mn(λx), as well. Hence, sj(λx) = sj(x)
for j = 1, . . . , n.

Let x, y ∈ X be linearly independent. Then

T (x+ y) =
n∑

j=1

sj(x+ y)Mj(x+ y) =
n∑

j=1

sj(x+ y)Mjx+
n∑

j=1

sj(x+ y)Mjy

and

T (x+ y) = Tx+ Ty =
n∑

j=1

sj(x)Mjx+
n∑

j=1

sj(y)Mjy,

which gives

n∑
j=1

(
sj(x)− sj(x+ y)

)
Mjx+

n∑
j=1

(
sj(y)− sj(x+ y)

)
Mjy = 0.

It follows, because of R-2-LLI, that sj(x + y) = sj(x) = sj(y) for j = 1, . . . , n.
We have shown that s : X \ {0} → Sn is a constant mapping; that is, there
exists s = (s1, . . . , sn) ∈ Sn such that Tx = s1M1x + · · · + snMnx for every
x ∈ X \ {0}. Since the last equality holds trivially for x = 0, we conclude that
T = s1M1 + · · ·+ snMn ∈ M. �
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3. J. Bračič, Algebraic reflexivity for semigroups of operators, Electron. J. Linear Algebra 18
(2009), 745–760. Zbl 1187.47031. MR2565884. DOI 10.13001/1081-3810.1342. 753

4. M. Brešar and P. Šemrl, On locally linearly dependent operators and derivations, Trans.
Amer. Math. Soc. 351 (1999), no. 3, 1257–1275. Zbl 0920.15009. MR1621729. DOI 10.1090/
S0002-9947-99-02370-3. 757

5. S. Grivaux and M. Roginskaya, On Read’s type operators on Hilbert spaces, Int. Math. Res.
Not. IMRN 2008, Art. ID 083. Zbl 1159.47003. MR2439560. DOI 10.1093/imrn/rnn083.
752

6. D. Hadwin, E. Nordgren, H. Radjavi, and P. Rosenthal, Orbit-reflexive operators, J. Lond.
Math. Soc. (2) 34 (1986), no. 1, 111–119. Zbl 0624.47002. MR0859152. DOI 10.1112/jlms/
s2-34.1.111. 752

7. D. R. Larson, Reflexivity, algebraic reflexivity and linear interpolation, Am. J. of Math. 110
(1988), no. 2, 283–299. Zbl 0654.47023. MR0935008. DOI 10.2307/2374503. 756

8. A. I. Loginov and V. S. Shulman, Hereditary and intermediate reflexivity of W ∗-algebras (in
Russian), Izv. Ross. Akad. Nauk Ser. Mat. 39 (1975), no. 6, 1260–1273; English translation
in Math. USSR-Izv. 9 (1975), no. 6, 1189–1201. Zbl 0339.46047. MR0405124. 752
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