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Abstract. Ornstein and Sucheston first proved that for a given positive con-
traction T : L1 → L1 there exists m ∈ N such that if ‖Tm+1 − Tm‖ < 2, then
limn→∞ ‖Tn+1−Tn‖ = 0. This result was referred to as the zero-two law. In the
present article, we prove a generalized uniform zero-two law for the multipara-
metric family of positive contractions of noncommutative L1-spaces. Moreover,
we also establish a vector-valued analogue of the uniform zero-two law for posi-
tive contractions of L1(M,Φ)—the noncommutative L1-spaces associated with
center-valued traces.

1. Introduction

Let (X,F , µ) be a measure space with a positive σ-additive measure µ, and
let L1(X,F , µ) be the usual associated real L1-space. A linear operator T :
L1(X,F , µ) → L1(X,F , µ) is called a positive contraction if Tf ≥ 0 whenever
f ≥ 0 and ‖T‖ ≤ 1. Some examples of positive contractions associated with
positive kernels can be found in [24].

In [21, Theorem 1.1], the following was proved.

Theorem 1.1. Let T : L1 → L1 be a positive contraction. Then either

sup
‖f‖1≤1

lim
n→∞

‖T n+1f − T nf‖ = 2 (1)
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or ‖T n+1f − T nf‖ → 0 for every f ∈ L1.

We note that this result first appeared in [13], but Ornstein and Sucheston [21]
were able to obtain its analytical proof. Later, the formulated theorem became
known as the strong zero-two law. Consequently, by [21, Theorem 1.3], if T is
ergodic with T ∗1 = 1 (e.g., T is ergodic and conservative), then either (1) holds
or ‖T ng‖1 → 0 for every g ∈ L1 with

∫
g dµ = 0.

By interchanging “sup” and “lim” in the strong zero-two law we have the
following uniform zero-two law, proved by Foguel in [4, Theorem I] using ideas
from [21].

Theorem 1.2. Let T : L1 → L1 be a positive contraction. If for some m ∈ N∪{0}
we have ‖Tm+1 − Tm‖ < 2, then

lim
n→∞

‖T n+1 − T n‖ = 0.

Zaharopol provided another proof of Theorem 1.2, which is reduced to the
following results.

Theorem 1.3 ([27, Section 2]). Let T : L1 → L1 be a positive contraction. Then
for the following statements,

(i) there is some m ∈ N such that ‖Tm+1 − Tm‖ < 2,
(ii) there is some m ∈ N such that ‖Tm+1 − (Tm+1 ∧ Tm)‖ < 1,
(iii) we have

lim
n→∞

‖T n+1 − T n‖ = 0,

the implications (i) ⇒ (ii) ⇒ (iii) hold.

To establish the implication (ii) ⇒ (iii), the following auxiliary fact was estab-
lished in [27].

Theorem 1.4 ([27, Theorem 1]). Let T, S : L1 → L1 be two positive contractions
such that T ≤ S. If ‖S − T‖ < 1, then ‖Sn − T n‖ < 1 for all n ∈ N.

In [17], the last result for Jordan algebras was extended. Therefore, the natural
next step is to find an analogue of Theorem 1.3 in the noncommutative setting.

The aim of this article is to prove a noncommutative version of a generalized
uniform “zero-two” law for the multiparametric family of positive contractions of
L1-spaces associated with von Neumann algebras. In the case when the algebra is
commutative, we recover a result of [16, Theorem 3.1]. Moreover, we emphasize
that Theorem 1.2 will be included in the main result in the present article as a
particular case.

On the other hand, development of the theory of integration for measures µ with
values in ordered spaces has inspired the study of lattice-normed Lp-spaces (see,
e.g., [15]). The existence of center-valued traces on finite von Neumann algebras
naturally leads to the development of the theory of integration for this kind of
trace. In [2] and [6], noncommutative Lp-spaces associated with central-valued
traces were investigated. More recently, in [3], a module approach in a somewhat
different direction was taken by choosing modules with L∞-spaces as the ring.
These works have succeeded in extending many important results in functional
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analysis to topological L∞-modules. In this article, we follow an approach that
is based on measurable bundles of Banach lattices (see [11], [12]), which differs
from the approach used in [3].

Another main aim of this paper is to establish the uniform zero-two law for
noncommutative L1-spaces associated with central-valued traces. In [6], it was
established that Lp-spaces associated with central-valued traces are Banach–
Kantorovich spaces, and the theory of Banach–Kantorovich spaces is now well-
developed (see, e.g., [15]). One of the important approaches to studying Banach–
Kantorovich spaces is provided by the theory of continuous and measurable
Banach bundles (see [11]). In this approach, the representation of a Banach–
Kantorovich lattice as a space of measurable sections of a measurable Banach
bundle makes it possible to obtain the needed properties of the lattice by means of
the corresponding stalkwise verification of the properties. In [6], as an application
of this approach, noncommutative Lp(M,Φ)-spaces associated with center-valued
traces are represented as a bundle of noncommutative Lp-spaces associated with
numerical traces.

In the second part of this article, we prove a vector-valued analogue of the
main result for positive contractions of noncommutative L1-spaces associated with
central-valued traces. To do this, we mainly employ the theory of continuous and
measurable Banach bundles for the existence of vector-valued lifting, which allows
us to prove the required result.

The present article is organized as follows. In Section 2, we collect some neces-
sary well-know facts about noncommutative L1-spaces. In Section 3, we prove an
auxiliary result (a noncommutative analogue of Theorem 1.4) about dominant
operators. Section 4 is devoted to the proof of a generalized uniform zero-two
law for a multiparametric family of positive contractions of the noncommutative
L1-spaces. In Section 5, we recall necessary definitions about L1(M,Φ)—the non-
commutative L1-spaces associated with center-valued traces. Finally, in Section 6,
by means of the result of Section 5, we first prove that every positive contraction
of L1(M,Φ) can be represented as a measurable bundle of positive contractions
of noncommutative L1-spaces, and this allows us to establish a vector-valued
analogue of the uniform zero-two law for positive contractions of L1(M,Φ).

2. Preliminaries

Throughout this article, let M be a von Neumann algebra with the unit 1
and let τ be a faithful, normal, semifinite trace on M . We therefore omit this
condition from the formulation of the theorems. Recall that an element x ∈ M
is called self-adjoint if x = x∗. The set of all self-adjoint elements is denoted by
Msa. By M∗ we denote a predual space to M (see [23] for definitions).

Let N = {x ∈ M : τ(|x|) < ∞}. Here |x| denotes the modulus of an element
x; that is, |x| =

√
x∗x. The map ‖ · ‖1 : N → [0,∞) given by the formula

‖x‖1 = τ(|x|) defines a norm (for details, see [19]). The completion of N with
respect to the norm ‖ · ‖1 is denoted by L1(M, τ). It is known from [19] that
the spaces L1(M, τ) and M∗ are isometrically isomorphic and therefore can be
identified. In what follows, we will use this fact without noting it.
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Theorem 2.1 ([19, Theorem 5]). The space L1(M, τ) coincides with the set

L1 =
{
x =

∫ ∞

−∞
λ deλ :

∫ ∞

−∞
|λ| dτ(eλ) < ∞

}
.

Moreover,

‖x‖1 =
∫ ∞

−∞
|λ| dτ(eλ).

It is known from [19] that the equality

L1(M, τ) = L1(Msa, τ) + iL1(Msa, τ) (2)

is valid. Note that L1(Msa, τ) is a predual to Msa.
Let T : L1(M, τ) → L1(M, τ) be any bounded linear operator, and let T̃

denote its restriction to L1(Msa, τ). Then due to (2) we have T (x+ iy) = T̃ (x) +
iT̃ (y), where x, y ∈ L1(Msa, τ). This means that any linear bounded operator is
uniquely defined by its restriction to L1(Msa, τ). Therefore, in what follows, we
only consider linear operators on L1(Msa, τ) over real numbers.

Recall that a linear operator T is called positive if Tx ≥ 0 whenever x ≥ 0.
A linear operator T is said to be a contraction if ‖T (x)‖1 ≤ ‖x‖1 for all x ∈
L1(Msa, τ). Denote

‖T‖ = sup
{
‖Tx‖1 : ‖x‖1 = 1, x ∈ L1(Msa, τ)

}
.

Let T, S : L1 → L1 be two positive contractions. In what follows, we write
T ≤ S if S − T is a positive operator.

The following auxiliary facts are well known (see, e.g., [17]).

Lemma 2.2. Let T : L1(Msa, τ) → L1(Msa, τ) be a positive operator. Then

‖T‖ = sup
‖x‖=1

‖Tx‖ = sup
‖x‖=1,x≥0

‖Tx‖.

Lemma 2.3. Let T, S : L1(Msa, τ) → L1(Msa, τ) be two positive contractions
such that T ≤ S. Then, for every x ∈ L1(Msa, τ), x ≥ 0, the following equality
holds:

‖Sx− Tx‖ = ‖Sx‖ − ‖Tx‖.

3. Dominant operators

In this section, we prove an auxiliary result related to dominant operators.
A similar result was proved in [17], but for the sake of completeness we show the
following.

Theorem 3.1. Let Z, T, S : L1(Msa, τ) → L1(Msa, τ) be positive contractions
such that T ≤ S and ZS = SZ. If there is an n0 ∈ N such that ‖Z(Sn0 −T n0)‖ <
1, then ‖Z(Sn − T n)‖ < 1 for every n ≥ n0.

Proof. Assume the contrary; that is, ‖Z(Sn − T n)‖ = 1 for some n > n0. Denote

m = min
{
n ∈ N :

∥∥Z(Sn0+n − T n0+n)
∥∥ = 1

}
.
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It is clear that m ≥ 1. The positivity of Z with T ≤ S implies that Z(Sn0+n −
T n0+n) is a positive operator. Then, according to Lemma 2.2, there exists a
sequence {xn} ∈ L1(Msa, τ) such that xn ≥ 0, ‖xn‖ = 1,∀n ∈ N, and

lim
n→∞

∥∥Z(Sn0+m − T n0+m)xn

∥∥ = 1. (3)

The positivity of Z(Sn0+m − T n0+m) and xn ≥ 0, together with Lemma 2.3,
yield that ∥∥Z(Sn0+m − T n0+m)xn

∥∥ = ‖ZSn0+mxn‖ − ‖ZT n0+mxn‖ (4)

for every n ∈ N. It then follows from (3) and (4) that

lim
n→∞

‖ZSn0+mxn‖ = 1, (5)

lim
n→∞

‖ZT n0+mxn‖ = 0. (6)

Thanks to the contractivity of S and Z together with ZS = SZ we obtain

‖ZSn0+mxn‖ =
∥∥S(ZSn0+m−1xn)

∥∥ ≤ ‖ZSn0+m−1xn‖ ≤ ‖Smxn‖.

Hence, the last inequalities together with (5) imply

lim
n→∞

‖ZSn0+m−1xn‖ = 1, lim
n→∞

‖Smxn‖ = 1. (7)

Moreover, the contractivity of Z, S, and T (i = 1, 2) implies that
‖ZT n0+m−1xn‖ ≤ 1, ‖Tmxn‖ ≤ 1, and ‖ZSn0Tmxn‖ ≤ 1 for every n ∈ N.
Therefore, we may choose a subsequence {yk} of {xn} such that the sequences
{‖ZT n0+m−1yk‖}, {‖Tmyk‖}, and {‖ZSn0Tmyk‖} converge. Hence, let us denote
their limits as follows:

α = lim
k→∞

‖ZT n0+m−1yk‖, (8)

β = lim
k→∞

‖ZSn0Tmyk‖, (9)

γ = lim
k→∞

‖Tmyk‖. (10)

The inequality ‖Z(Sn0+m−1 − T n0+m−1)‖ < 1 with (7) implies that α > 0.
Hence we may choose a subsequence {zk} of {yk} such that ‖ZT n0+m−1zk‖ 6= 0
for all k ∈ N.

From ‖ZT n0+m−1zk‖ ≤ ‖Tmzk‖, together with (8) and (10), we find α ≤ γ,
and hence γ > 0.

Now, using Lemma 2.3, we get

‖ZSn0Tmzk‖ =
∥∥ZSn0+mzk − Z(Sn0+m − Sn0Tm)zk

∥∥
= ‖ZSn0+mzk‖ −

∥∥ZSn0(Sm − Tm)zk
∥∥

≥ ‖ZSn0+mzk‖ − ‖Smzk − Tmzk‖
= ‖ZSn0+mzk‖ − ‖Smzk‖+ ‖Tmzk‖. (11)

Due to (5) and (7) we have

lim
k→∞

(
‖ZSn0+mzk‖ − ‖Smzk‖

)
= 0,
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which with (11) implies that

lim
k→∞

‖ZSn0Tmzk‖ ≥ lim
k→∞

‖Tmzk‖.

This means β ≥ γ.
On the other hand, from ‖ZSn0Tmzk‖ ≤ ‖Tm

2 zk‖ it follows that γ ≥ β, and so
γ = β.

Let us denote

uk =
Tmzk
‖Tmzk‖

, k ∈ N.

Then from γ = β, together with (6), we obtain

lim
k→∞

‖ZSn0uk‖ = lim
k→∞

‖ZSn0Tmzk‖
‖Tmzk‖

= 1,

lim
k→∞

‖ZT n0uk‖ = lim
k→∞

‖ZT n0+mzk‖
‖Tmzk‖

= 0.

So, keeping in mind Lemma 2.3 and the positivity of Z(Sn0 − T n0), we find
that

lim
k→∞

∥∥Z(Sn0 − T n0)uk

∥∥ = 1.

Since ‖uk‖ = 1, uk ≥ 0 (for all k ∈ N), from Lemma 2.2 we infer that ‖Z(Sn0 −
T n0)‖ = 1, which is a contradiction. This completes the proof. �

We note that the proved theorem extends a main result (Theorem 3.3) of the
paper [17], which can be seen in the following corollary.

Corollary 3.2. Let T, S : L1(Msa, τ) → L1(Msa, τ) be positive contractions such
that T ≤ S. If there is an n0 ∈ N such that ‖Sn0 −T n0‖ < 1, then ‖Sn−T n‖ < 1
for every n ≥ n0.

The proof immediately follows if we take Z = Id. Note that if n0 = 1 and M
is a commutative von Neumann algebra, then from Corollary 3.2 we immediately
get Zaharopol’s result (see Theorem 1.4).

4. A multiparametric generalization of the zero-two law

In this section, we prove a multiparametric generalization of the zero-two law
for positive contractions of noncommutative L1-spaces.

Let T : L1(Msa, τ) → L1(Msa, τ) be a positive contraction. Then its dual T ∗

acts on Msa, and it is also positive and enjoys T ∗1 ≤ 1. If we have T ∗1 = 1, then
T is called a unital positive contraction.

Let us first introduce some notation. Denote N0 = N ∪ {0}. For any m =
(m1, . . . ,md),n = (n1, . . . , nd) ∈ Nd

0 (d ≥ 1) by the usual way, we define m+n =
(m1+n1, . . . ,md+nd), `n = (`n1, . . . , `nd), where ` ∈ N0. We write n ≤ k if and
only if ni ≤ ki (i = 1, 2, . . . , d).

Let us formulate our main result.
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Theorem 4.1. Let Z : L1(Msa, τ) → L1(Msa, τ) be a unital positive contraction.
Assume that Tk : L1(Msa, τ) → L1(Msa, τ), (k = 1, . . . , d) be unital positive
contractions such that ZTi = TiZ, TiTj = TjTi, for every i, j ∈ {1, . . . , d}. If
there are m ∈ Nd

0, k ∈ Nd
0 and a positive contraction S : L1(Msa, τ) → L1(Msa, τ)

such that SZ = ZS with

ZTm+k ≥ ZS, ZTm ≥ ZS with (12)∥∥Z(Tm+k − S)
∥∥ < 1,

∥∥Z(Tm − S)
∥∥ < 1, (13)

then for any ε > 0 there are M ∈ N and n0 ∈ Nd
0 such that∥∥ZM(Tn+k −Tn)

∥∥ < ε for all n ≥ n0.

Here Tn := T n1
1 · · ·T nd

d , n = (n1, . . . , nd) ∈ Nd
0.

Proof. First we note that for any positive contraction T on L1-spaces (see [26,
p. 310]), there is γ > 0 such that∥∥∥(I +Tk

2

)`

−Tk
(I +Tk

2

)`∥∥∥ ≤ γ√
`
, for all ` ∈ N. (14)

Now take any ε > 0 and fix `ε ∈ N such that γ/
√
`ε < ε/2.

Define

Q1 =
1

2
(Tm+k − S) +

1

2
Tk(Tm − S).

It then follows from (12) and (13) that ZQ1 is positive and that ‖ZQ1‖ < 1.
Moreover, one has

Tm+k =
(I +Tk

2

)
S +Q1,

where I stands for the identity mapping.
For each ` ∈ N let us define

Q`+1 =
(I +Tk

2

)`

Q1S
` +Tm+kQ`, ` ∈ N.

Taking into account the positivity of S and Q1, one can see that Q` is a positive
operator on L1(Msa, τ) and ZQ` = Q`Z. Moreover, one has

T`(m+k) =
(I +Tk

2

)`

S` +Q`, ` ∈ N. (15)

Let us prove (15) by induction. Clearly, it is valid for ` = 1. Assume that (15)
is true for `, and we will prove it for `+ 1. Indeed, we have

T(`+1)(m+k) = Tm+kT`(m+k) =
(I +Tk

2

)`

Tm+kS` +Tm+kQ`

=
(I +Tk

2

)`((I +Tk

2

)
S +Q1

)
S` +Tm+kQ`

=
(I +Tk

2

)`+1

S`+1 +
(I +Tk

2

)`

Q1S
` +Tm+kQ`

=
(I +Tk

2

)`+1

S`+1 +Q`+1,
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which proves the required equality.

Now let us put V
(1)
` = S`, and

V
(d+1)
` = T`(m+k)V

(d)
` + V

(1)
` Qd

` , d ∈ N.

One can see that, for every d, ` ∈ N, the operator ZV (d)
` is positive since Z and

S are commuting. Moreover, one has

Td`(m+k) =
(I +Tk

2

)`

V
(d)
` +Qd

` , d, ` ∈ N. (16)

Again, let us prove the last equality by induction. Keeping in mind that (16)
is true for d, it is enough to establish (16) for d+ 1. Indeed, we have

T(d+1)`(m+k) = T`(m+k)T d(m+k) = T`(m+k)
((I +Tk

2

)`

V
(d)
` +Qd

`

)
=

(I +Tk

2

)`

T`(m+k)V
(d)
` +

((I +Tk

2

)`

S` +Q`

)
Qd

`

=
(I +Tk

2

)`

(T`(m+k)V
(d)
` + V

(1)
` Qd

` ) +Qd+1
`

=
(I +Tk

2

)`

V
(d+1)
` +Qd+1

` ,

which proves (16).
From Z∗(1) = T∗(1) = 1, it follows from (16) that

V
(d)∗
` (1) +Q∗d

` (1) = 1.

Now the positivity of ZV
(d)
` and ZQ` imply that ‖ZV (d)

` ‖ ≤ 1 and ‖ZQ`‖ ≤ 1.
From (12) and (13), due to Theorem 3.1, one finds that ‖Z(T`m−S`)‖ < 1 for

all ` ∈ N. Using this inequality with T∗(1) = 1 and the positivity of Z(T`m−S`),
we find that∥∥Z(T`m − S`)

∥∥ =
∥∥((T∗)`m − S∗`)Z∗∥∥ =

∥∥1 − S∗`(1)
∥∥ < 1. (17)

The equality (15) yields that

Q∗
`(1) = 1 − S∗`(1).

Hence, from (17), with the positivity of ZQ`, we obtain

‖ZQ`‖ =
∥∥Q∗

`(1)
∥∥ =

∥∥1 − S∗`(1)
∥∥ < 1

for all ` ∈ N.
Therefore, there is a number dε ∈ N such that ‖(ZQ`ε)

dε‖ < ε
4
. From the

commutativity of Z and Q` one finds

‖ZdεQdε
`ε
‖ <

ε

4
. (18)
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Now putting n0 = dε`ε(m+ k), from (16) with (18) we obtain∥∥Zdε(Tn0+k −Tn0)
∥∥ =

∥∥Zdε(Tdε`ε(m+k)+k −Tdε`ε(m+k))
∥∥

≤
∥∥∥Zdε

(
Tk

(I +Tk

2

)`ε
−
(I +Tk

2

)`ε)
V

(dε)
`ε

∥∥∥
+
∥∥ZdεQdε

`ε
(Tk − I)

∥∥
≤

∥∥∥Tk
(I +Tk

2

)`ε
−
(I +Tk

2

)`ε
∥∥∥

+ 2‖ZdεQdε
`ε
‖

≤ γ√
`ε

+ 2 · ε
4
< ε.

Take any n ≥ n0. Then from the last inequality, one gets∥∥Zdε(Tn+k −Tn)
∥∥ =

∥∥Tn−n0Zdε(Tn0+k −Tn0)
∥∥ ≤

∥∥Zdε(Tn0+k −Tn0)
∥∥ < ε,

which completes the proof. �

Corollary 4.2. Assume that Tk : L1(Msa, τ) → L1(Msa, τ) (k = 1, . . . , d) are
unital positive contractions such that TiTj = TjTi, for every i, j ∈ {1, . . . , d}. If
there are m ∈ Nd

0, k ∈ Nd
0, and a positive contraction S : L1(Msa, τ) → L1(Msa, τ)

such that

Tm+k ≥ S, Tm ≥ S with (19)

‖Tm+k − S‖ < 1, ‖Tm − S‖ < 1, (20)

then one has

lim
n→∞

‖Tn+k −Tn‖ = 0.

The proof immediately follows from Theorem 4.1 if one takes Z = Id.

Remark 4.3. We note that in [20] a similar kind of result, for a single contractions
of C∗-algebras, was proved. Our main result extends it for more general multi-
parametric contractions. We point out that if the algebra becomes commutative,
then the proved theorems cover the main results of [16, Theorem 3.1].

Corollary 4.4. Let T, P : L1(Msa, τ) → L1(Msa, τ) be two commuting unital pos-
itive contractions. If for some m0 ∈ N and a positive contraction S : L1(Msa, τ) →
L1(Msa, τ) we have

Tm0+kPm0 ≥ S, Tm0Pm0 ≥ S with

‖Tm0+kPm0 − S‖ < 1, ‖Tm0Pm0 − S‖ < 1,

then

lim
n,m→∞

‖T n+kPm − T nPm‖ = 0.

The proof immediately follows from Corollary 4.2 if we take m = (m0,m0) and
k = (k, 0).

Remark 4.5. Since the dual of L1(Msa, τ) is Msa, we have that, due to the duality
theory, the proved Theorem 4.1 holds true if we replace the L1-space with Msa.
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Recall that for a given linear operator T : L1(Msa, τ) → L1(Msa, τ), an element
x ∈ L1(Msa, τ) is a a fixed point of T , if Tx = x. The set of all fixed points of T
is denoted by Fix(T ).

Corollary 4.6. Let T : L1(Msa, τ) → L1(Msa, τ) be a unital positive contraction.
If for some m0 ∈ N and a positive contraction S : L1(Msa, τ) → L1(Msa, τ) we
have

Tm0+1 ≥ S, Tm0 ≥ S with

‖Tm0+1 − S‖ < 1, ‖Tm0 − S‖ < 1,

and

L1(Msa, τ) = Fix(T )⊕ (I − T )
(
L1(Msa, τ)

)‖·‖1
, (21)

then there exists a projection P : L1(Msa, τ) → L1(Msa, τ), (‖P‖ ≤ 1) such that

lim
n→∞

T nx = Px.

Proof. Due to (21) and the density argument, it is enough to prove the assertion
for x ∈ Fix(T ) and x ∈ (I − T )(L1(Msa, τ)). For x ∈ Fix(T ), we immediately
have

lim
n→∞

T nx = x.

According to Corollary 4.2, we find ‖T n(I − T )‖ → 0 as n → ∞. Hence, for
x ∈ (I − T )(L1(Msa, τ)), we get limn→∞ T nx = 0, and hence P is a projection
onto Fix(T ). This completes the proof. �

We note that in [22] some regularity conditions more general than ergodicity are
used to obtain different versions of the Esterle–Katznelson–Tzafriri theorem [14].

5. Noncommutative L1-spaces associated with a center-valued trace

In this section, we recall some necessary notions and facts about the noncom-
mutative L1-spaces associated with a center-valued trace.

Let M be any finite von Neumann algebra, and let S(M) be the set of all mea-
surable operators affiliated to M (see [18] for definitions). Let Z be some subalge-
bra of the center Z(M). Then we may identify Z with the ∗-algebra L∞(Ω,Σ,m)
and S(Z) with L0(Ω,Σ,m). Recall that a center-valued (i.e., Z-valued) trace
on the von Neumann algebra M is a Z-linear mapping Φ : M → Z with
Φ(x∗x) = Φ(xx∗) ≥ 0 for all x ∈ M . It is clear that Φ(M+) ⊂ Z+. A trace
Φ is said to be faithful if the equality Φ(x∗x) = 0 implies x = 0 and normal if
Φ(xα) ↑ Φ(x) for every xα, x ∈ Msa, xα ↑ x. Note that the existence of such traces
was studied in [1].

LetM be an arbitrary finite von Neumann algebra, and let Φ be a center-valued
trace on M . The local measure topology t(M) on S(M) is the linear (Hausdorff)
topology whose fundamental system of neighborhoods of 0 is given by

V (B, ε, δ) =
{
x ∈ S(M) : there exists p ∈ P (M), z ∈ P

(
Z(M)

)
such that xp ∈ M, ‖xp‖M ≤ ε, z⊥ ∈ W (B, ε, δ),ΦM(zp⊥) ≤ εz

}
,
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where ‖ · ‖M is the C∗-norm in M . It is known that (S(M), t(M)) is a complete
topological ∗-algebra (see [25]).

From [18, Section 3.5], we have the following criterion for convergence in the
topology t(M).

Proposition 5.1. A net {xα}α∈A ⊂ S(M) converges to zero in the topology t(M)

if and only if ΦM(E⊥
λ (|xα|)

t(M)−→ 0 for any λ > 0.

Following [2], an operator x ∈ S(M) is said to be Φ-integrable if there exists a

sequence {xn} ⊂ M such that xn
t(M)→ x and ‖xn − xm‖Φ

t(Z)−→ 0 as n,m → ∞.

Let x be a Φ-integrable operator from S(M). Then there exists a Φ̂(x) ∈ S(Z)

such that Φ(xn)
t(Z)−→ Φ̂(x). In addition, Φ̂(x) does not depend on the choice of a

sequence {xn} ⊂ M , for which xn
t(M)−→ x, Φ(|xn − xm|)

t(Z)−→ 0 (see [2]). It is clear

that each operator x ∈ M is Φ-integrable and that Φ̂(x) = Φ(x).
Denote by L1(M,Φ) the set of all Φ-integrable operators from S(M). If x ∈

S(M), then x ∈ L1(M,Φ) if and only if |x| ∈ L1(M,Φ); in addition, |Φ̂(x)| ≤
Φ̂(|x|) (see [1]). For any x ∈ L1(M,Φ), set ‖x‖1,Φ = Φ̂(|x|). It is known that
L1(M,Φ) is a linear subspace of S(M), ML1(M,Φ)M ⊂ L1(M,Φ), and x∗ ∈
L1(M,Φ) for all x ∈ L1(M,Φ) (see [1]).

Now let us recall some facts about Banach–Kantorovich spaces over the ring
of measurable functions (see [12]).

Let X be a mapping that maps every point ω ∈ Ω to some Banach space
(X(ω), ‖ · ‖X(ω)). In what follows, we assume that X(ω) 6= {0} for all ω ∈ Ω.
A function u is said to be a section of X if it is defined almost everywhere in
Ω and takes its value u(ω) ∈ X(ω) for ω ∈ dom(u), where ω ∈ dom(u) is the
domain of u. Let L be some set of sections.

Definition 5.2. (see [12]). A pair (X,L) is said to be a measurable bundle of
Banach spaces over Ω if

1. λ1c1 + λ2c2 ∈ L for all λ1, λ2 ∈ R and c1, c2 ∈ L, where λ1c1 + λ2c2 : ω ∈
dom(c1) ∩ dom(c2) → λ1c1(ω) + λ2c2(ω);

2. the function ‖c‖ : ω ∈ dom(c) → ‖c(ω)‖X(ω) is measurable for all c ∈ L;
3. for every ω ∈ Ω the set {c(ω) : c ∈ L, ω ∈ dom(c)} is dense in X(ω).

A section s is a step section, if there are pairwise disjoint sets A1, A2, . . . , An ∈
Σ and sections c1, c2, . . . , cn ∈ L such that

⋃n
i=1Ai = Ω and s(ω) =

∑n
i=1 χAi

(ω)×
ci(ω) for almost all ω ∈ Ω.

A section u is measurable if for any A ∈ Σ there is a sequence sn of step sections
such that sn(ω) → u(ω) for almost all ω ∈ A.

Let M(Ω, X) be the set of all measurable sections. By L0(Ω, X) we denote the
factorization of M(Ω, X) with respect to equality almost everywhere. Usually,
by û we denote a class from L0(Ω, X) containing a section u ∈ M(Ω, X), and
by ‖û‖ we denote an element of L0(Ω) containing ‖u(ω)‖X(ω). Let L∞(Ω, X) =
{u ∈ M(Ω, X) : ‖u(ω)‖X(ω) ∈ L∞(Ω)} and L∞(Ω, X) = {û ∈ L0(Ω, X) : ‖û‖ ∈
L∞(Ω)}. In what follows, by 1 we denote the identity of the algebra L∞(Ω, X).
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We notice that one can define the spaces L∞(Ω, X) and L∞(Ω, X) with the real-
valued norms ‖u‖L∞(Ω,X) = supω∈Ω |u(ω)|X(ω) and ‖û‖∞ = ‖‖û‖‖L∞(Ω), respec-
tively.

Definition 5.3. Let X,Y be measurable bundles of Banach spaces. A set of linear
operators {T (ω) : X(ω) → Y (ω)} is called ameasurable bundle of linear operators
if T (ω)(u(ω)) is a measurable section for any measurable section u.

Let (X,L) be a measurable bundle of Banach spaces. If each X(ω) is a non-
commutative L1-space (i.e., X(ω) = L1(M(ω), τω)) associated with finite von
Neumann algebras M(ω) and with a strictly normal numerical trace τω on M(ω),
then the measurable bundle (X,L) of Banach spaces is called a measurable bundle
of noncommutative L1-spaces.

Theorem 5.4 ([6, Theorem 1]). There exists a measurable bundle (X,L) of non-
commutative L1-spaces L1(M(ω), τω) such that L0(Ω, X) is a Banach–Kantorovich
∗-algebroid that is isometrically and order ∗-isomorphic to L1(M,Φ). Moreover,
the isometric and order ∗-isomorphism H : L1(M,Φ) → L0(Ω, X) can be chosen
with the following properties:

(a) Φ(x)(ω) = τω(H(x)(ω)) for all x ∈ M and for almost all ω ∈ Ω.
(b) x ∈ M if and only if H(x)(ω) ∈ M(ω) almost everywhere, and there exists

a positive number λ > 0 such that ‖H(x)(ω)‖M(ω) ≤ λ for almost all ω.

(c) z ∈ Z if and only if H(z) = ( ̂z(ω)1ω) for some ẑ(ω) ∈ L∞(Ω), where 1ω

is 1, the unit algebra M(ω); in particular, H(1)(ω) = 1ω for almost all ω.
(d) The section (H(x)(ω))∗ is measurable for all x ∈ L1(M,Φ).
(e) The section H(x)(ω) ·H(y)(ω) is measurable for all x, y ∈ M .

Let M be a finite von Neumann algebra with a center-valued trace Φ on M .
Then M can be identified with a linear subspace of L∞(Ω, X) by the isomorphism
H, since if x ∈ M , then one has∥∥H(x)

∥∥
L0(Ω,X)

= ‖x‖1 = Φ
(
|x|

)
∈ L∞(Ω).

The existence of the lifting in a noncommutative setting was proved in [10].

Theorem 5.5 ([10, Theorem 3.1]). There exists a mapping ` : M → L∞(Ω, X)
with the following properties:

(a) For every x ∈ M one has `(x) ∈ x, dom `(x) = Ω.
(b) If x1, x2 ∈ M and λ1, λ2 ∈ R, then `(λ1x1 + λ2x2) = λ1`(x1) + λ2`(x2).
(c) ‖`(x)(ω)‖Lp(M(ω),τω) = p(‖x‖p)(ω) for all x ∈ M and for all ω ∈ Ω.
(d) If x ∈ M,λ ∈ L∞(Ω), then `(ex) = p(e)`(x).
(e) If x ∈ M , then `(x∗) = `(x)∗.
(f) If x, y ∈ M , then `(xy) = `(x)`(y).
(g) The set {`(x)(ω) : x ∈ M} is dense in L1(M(ω), τω) for all ω ∈ Ω.

Remark 5.6. We note that, in the case of C∗-algebras, the existence of the lifting
was given in [7].

Definition 5.7. The defined map ` in Theorem 5.5 is called a noncommutative
vector-valued lifting associated with the lifting ρ.
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6. Vector-valued analogue of the noncommutative zero-two law

In this section, we prove the existence of a vector-valued analogue of Theo-
rem 4.1.

LetM be any finite von Neumann algebra, and let L1(M,Φ) be the noncommu-
tative L1-space associated with M and the center-valued trace Φ. Let (X,L) be
a measurable bundle of noncommutative L1-spaces L1(M(ω), τω) associated with
finite von Neumann algebras M(ω) and with strictly normal numerical traces τω
on M(ω), corresponding to L1(M,Φ). In what follows, we denote by 1, as before,
the identity of the algebra L∞(Ω, X).

Theorem 6.1. Let T : L1(M,Φ) → L1(M,Φ) be a positive contraction with
T (1) ≤ 1. Then there exists a measurable bundle of positive contractions Tω :
L1(M(ω), τω) → L1(M(ω), τω) such that

Tω

(
x(ω)

)
= (Tx)(ω),

for all x ∈ L1(M,Φ) and for almost all ω ∈ Ω, and

‖T‖(ω) = ‖Tω‖L1(M(ω),τω)→L1(M(ω),τω).

Proof. Let x ∈ Msa. Then

|Tx| ≤ T
(
|x|

)
≤ ‖x‖MT (1) ≤ ‖x‖M1;

that is, Tx ∈ M . If x ∈ M , then there exist y, z ∈ Msa such that x = y + iz.
Then Tx = Ty + iTz. As Ty, Tz ∈ M , we have Tx ∈ M .

Let ` : M(⊂ L∞(Ω, X)) → L∞(Ω, X) be the noncommutative vector-valued
lifting associated with the lifting p (see Theorem 5.5).

We define the linear operator ϕω from {`(x)(ω) : x ∈ M} into L1(M(ω), τω) by

ϕω

(
`(x)(ω)

)
= `(Tx)(ω).

The contractivity of T implies that∥∥ϕω

(
`(x)(ω)

)∥∥
L1(M(ω),τω)

=
∥∥`(Tx)(ω)∥∥

L1(M(ω),τω)
= ρ

(
‖Tx‖1

)
(ω)

≤ ρ
(
‖x‖1

)
(ω) =

∥∥`(x)(ω)∥∥
L1(M(ω),τω)

.

This means that ϕω is bounded and well defined. Moreover, one has

‖ϕω‖L1(M(ω),τω)→L1(M(ω),τω) ≤ 1.

The positivity of T yields that ϕω is positive as well.
Since the set {`(x)(ω) : x ∈ M} is dense in L1(M(ω), τω), we can extend ϕω

by continuity to a linear positive contraction Tω : L1(M(ω), τω) → L1(M(ω), τω)
by Tω(x(ω)) = limn→∞ ϕω(`(xn)(ω)).

From ϕω(`(x)(ω)) ∈ L∞(Ω, X), for any x ∈ M , we obtain Tω(x(ω)) ∈ M(Ω, X)
for any x ∈ M(Ω, X). Therefore, {Tω} is a measurable bundle of positive opera-
tors.

Using the same argument as in the proof of [9, Theorem 4.5], one can prove

Tω

(
x(ω)

)
= (Tx)(ω)

for all x ∈ L1(M,Φ) and for almost all ω ∈ Ω.
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Now let us establish ‖T‖(ω) = ‖Tω‖L1(M(ω),τω)→L1(M(ω),τω).
Let x ∈ M . Then∥∥ϕω

(
`(x)(ω)

)∥∥
L1(M(ω),τω)

=
∥∥`(Tx)(ω)∥∥

L1(M(ω),τω)
= ρ

(
‖Tx‖1

)
(ω)

≤ ρ
(
‖T‖‖x‖1

)
(ω) = ρ

(
‖T‖

)
(ω)p

(
‖x‖1

)
(ω)

= ρ
(
‖T‖

)
(ω)

∥∥`(x)(ω)∥∥
L1(M(ω),τω)

.

If x(ω) ∈ L1(M(ω), τω), then one finds∥∥Tωx(ω)
∥∥
L1(M(ω),τω)

= lim
n→∞

∥∥ϕω

(
`(xn)(ω)

)∥∥
L1(M(ω),τω)

≤ ρ
(
‖T‖

)
(ω) lim

n→∞

∥∥`(xn)(ω)
∥∥
L1(M(ω),τω)

= ρ
(
‖T‖

)
(ω)

∥∥x(ω)∥∥
L1(M(ω),τω)

.

Hence, ‖Tω‖L1(M(ω),τω)→L1(M(ω),τω) ≤ ρ(‖T‖)(ω).
By [8, Proposition 2], for any ε > 0 there exists x ∈ L1(M,Φ) with ‖x‖1 = 1

such that

‖Tx‖1 ≥ ‖T‖ − ε1.

Then

ρ
(
‖T‖

)
(ω)− ε ≤ ρ

(
‖Tx‖1

)
(ω) =

∥∥`(Tx)(ω)∥∥
L1(M(ω),τω)

=
∥∥Tω`(x)(ω)

∥∥
L1(M(ω),τω)

≤ ‖Tω‖L1(M(ω),τω)→L1(M(ω),τω)

∥∥`(x)(ω)∥∥
L1(M(ω),τω)

= ‖Tω‖L1(M(ω),τω)→L1(M(ω),τω)p
(
‖x‖1

)
(ω)

= ‖Tω‖L1(M(ω),τω)→L1(M(ω),τω).

The arbitrariness of ε yields

p
(
‖T‖

)
(ω) ≤ ‖Tω‖L1(M(ω),τω)→L1(M(ω),τω).

Hence

p
(
‖T‖

)
(ω) = ‖Tω‖L1(M(ω),τω)→L1(M(ω),τω)

for all ω ∈ Ω, or, equivalently, we have

‖T‖(ω) = ‖Tω‖L1(M(ω),τω)→L1(M(ω),τω)

for almost all ω ∈ Ω. This completes the proof. �

Corollary 6.2. Let T : L1(M,Φ) → L1(M,Φ) be a positive contraction with
T (1) = 1. Then there exists a measurable bundle of positive contractions Tω :
L1(M(ω), τω) → L1(M(ω), τω) such that

Tω

(
x(ω)

)
= (Tx)(ω)

for all x ∈ L1(M,Φ) and for almost all ω ∈ Ω and

‖T‖(ω) = ‖Tω‖L1(M(ω),τω)→L1(M(ω),τω).
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Let T : L1(M,Φ) → L1(M,Φ) be a positive contraction with T (1) = 1, and
let Tω : L1(M(ω), τω) → L1(M(ω), τω) be a measurable bundle of positive con-
tractions. Then T is called unital positive contraction if one has T ∗

ω(1ω) = 1ω for
almost all ω ∈ Ω.

Theorem 6.3. Assume that T : L1(M,Φ) → L1(M,Φ) is a unital positive
contraction. If there are m, k ∈ N0 = N ∪ {0} and a positive contraction S :
L1(M,Φ) → L1(M,Φ) with S(1) = 1 such that

Tm+k ≥ S, Tm ≥ S with

‖Tm+k − S‖ < 1, ‖Tm − S‖ < 1,

then

(o)− lim
n→∞

‖T n+k − T n‖ = 0.

Proof. By Corollary 6.2, there exist Tω : L1(M(ω), τω) → L1(M(ω), τω) and Sω :
L1(M(ω), τω) → L1(M(ω), τω) such that Tω(x(ω)) = (Tx)(ω) and Sω(x(ω)) =
(Sx)(ω) for all x ∈ L1(M,Φ) and for almost all ω ∈ Ω.

From Tm+k ≥ S, Tm ≥ S we get Tm+k
ω ≥ Sω, T

m
ω ≥ Sω for almost all ω ∈ Ω.

Since ‖Tm+k − S‖ < 1, ‖Tm − S‖ < 1, we find

‖Tm+k
ω − Sω‖L1(M(ω),τω)→L1(M(ω),τω) < 1, ‖Tm

ω − Sω‖L1(M(ω),τω)→L1(M(ω),τω) < 1

for almost all ω ∈ Ω. Then, by using T ∗
ω(1ω) = 1ω, we determine that the positive

contraction Tω satisfies all conditions of Corollary 4.2 for almost all ω ∈ Ω.
Therefore,

lim
n→∞

‖T n+k
ω − T n

ω ‖L1(M(ω),τω)→L1(M(ω),τω) = 0

for almost all ω ∈ Ω.
According to

‖T n+k − T n‖(ω) = ‖T n+k
ω − T n

ω ‖L1(M(ω),τω)→L1(M(ω),τω), a.e.

we obtain limn→∞ ‖T n+k − T n‖(ω) = 0 for almost all ω ∈ Ω, which means that

(o)− lim
n→∞

‖T n+k − T n‖ = 0.

This completes the proof. �
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